
8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 1/22

AMICUS18®

www.protonbasic.co.uk

Powered by Proton Development Suite® Compiler by Les Johnson

Driving 3 to 8 seven segment displays & Keypad

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc©.
Proton Development Suite® or PDS® are a registered trademark of the author Les Johnson.

The project has been developed and written by Alberto Freixanet.

The document has been edited by John Drew.

07/23/2018: Manual version 1.1 The project has been compiled with PDS version 3.6.1.7.

INTRODUCTION:

I have recovered from the forum background a code to drive 4 seven segment displays. The

author is unknown; it could be a Les Johnson code. I have renewed the code to adapt it to

the new versions of the compiler (V3.6.1.7). I have tried to make the code as efficient and

fast as possible. Now I have been able to extend the code to scan 8 digits.

Writing such a code in the main program is a very difficult task almost impossible without

imposing a very strict timing for its application, restricting its possibilities. It is for this reason

it is better to use interrupts to scan the digits.

This new project is a variant of the projects already published. The particularity of scanning

is used to read a keyboard by adding 4 resistors and occupying only 4 pins in the PIC®.

The code has been tested with Proteus V8.2 SP0.

Multiplexing:

The devices that use this type of display are commonly found in digital clocks, electronic

meters, counters, signaling and other equipment to show only numerical data. The display

segments are usually referred to by the letters "a" through "g". To multiplex the 7 segment

displays with the microcontroller, you must determine or look for the pattern corresponding to

the digit to be shown. This can be something like a table to interpret a number into the

corresponding segments for display. This interpreted number is sent to the port where the

display is connected.

The speed of scanning:

With more connected digits more speed is required in the scan to avoid blinking.

Brightness of the segments:

http://www.protonbasic.co.uk/

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 2/22

For example in the case of 4 digits, the segments will be activated for 25% of the time. So,

for this type of application it is absolutely necessary to use a high brightness display and

adjust the current sufficiently.

Code speed:

The writing of the code is also important to avoid blinking. Parameters must be calculated

and transferred without interrupts causing value errors. In my opinion it would be highly

recommended to use a PIC® with the maximum speed e.g. 40 MHz, 48 MHz or 64 MHz

depending on the family. We will see an example in the code.

The variables used depends on the number of digits, for example.

A Word will be used to value up to 999 (3 digits).

A Word will be used for a value up to 9999 (4 digits).

A Dword will be used for a value up to 99999 (5 digits).

A Dword will be used for value up to 999999 (6 digits).

A Dword will be used for value up to 9999999 (7 digits).

A Dword will be used for value up to 99999999 (8 digits).

You can intuit that to calculate the values of the 8 digits with a variable Dword the number of

lines of code will be much more important. It is another argument to operate the clock of the

PIC® at maximum frequency.

The hardware:

The demonstration program is prepared to use common cathode or common anode displays.

If each segment could, on peak, consume 15mA, then the consumption of one digit could

reach 15 x 8 = 120mA. Consequently, to enable a display it is necessary to use a transistor

that will support this current and high performance and high brightness displays with low

consumption must be used.

In the case of using the keyboard, you must minimize the number of pins used. That is why a

demultiplexer of type 74HCT238 is used for the digits. The transistors are replaced by a

ULN2803 that occupies less space on the PCB.

I present 2 types of schematics. When a PIC to +5V is chosen, an 8-bit PORT could be used

to send the information to the 8 segments. When using the internal AD converter, I

recommend current in the PIC® is minimised in order to reduce the noise in the power

supply. To reduce the current, it is necessary to use a buffer such as model UDN2981A. In

addition this configuration will also allow the use of +3.3V PICs® and a display powered with

+5V, as drawn in the diagram. Only the resistors for the keyboard will be connected to +3.3V

and all other hardware will be connected to the display voltage (+5V).

For 28-pin PICs® the configuration is slightly different. The configuration of the library allows

connection of the keyboard (4 bits) in a Low Nibble or High Nibble, but not for the DIGITS

PORT (4 bits) that must always be connected in a Low Nibble PORT. See the example with

the PIC18F25K20 of the Amicus18 board.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 3/22

Parameters of the test program:

You can configure all possible versions: 3, 4, 5, 6, 7 or 8 displays, Common cathode,

common anode with transistors. Although, for the keyboard project I have chosen the

common cathode model. Likewise the decimal point is configured automatically in the

position defined by the variable float.

The code for the keyboard is considered as an option and can be removed from the

compiled code.

The code has been tested with Proteus V8.20. It can be adapted to any CPU, and interrupt

timing of 10mS (100Hz) must be generated by TMR0 or TMR2. You could use another Timer

if you choose. The scanning and writing on the PORT is done by interrupt. The code of the

Timer0 and Timer2 has been written as simply as possible for the tests. But the possibility of

refining the value of timing is more complicated. Great precision is not very important either.

It is the visual flicker test that will matter.

Configuration of Timer:

I have written 2 versions of Timer (Timer0 and Timer2), being the most common in all the

PICs®. To reduce the number of code lines in the interrupt routine, I have not reloaded the

Timer0 and the Timer2 as this is not required. This way you can save 6 execution cycles.

Code:

Context Save

 If DisPlayInterruptFlag = 1 Then

 Code...

 Code...

 DisPlayInterruptFlag = 0 '/ Reset Timer interrupt flag

 EndIf

Context Restore '/ Exit the interrupt routine

"DisPlayInterruptFlag" is generic for the timer interrupt flag. This way you do not need to

change the code when changing the timer. The Timer2 is easier to adjust by PR2 SFR but

only uses one byte for the counter. It does not reach 10mS for a clock of 40, 48 and 64 Mhz

(4 or 6 mS)

As the PICs® have many variations the PDS user should review the PIC® datasheet that will

be used and modify the timer configuration accordingly.

Configuration of the DisplayInit_Sub:

This routine contains all the PIC® and hardware parameters. The code will depend on each

PIC® and it will be the responsibility of the user PDS to adapt it. In particular putting the pins

to digital, not always a simple task for some PICs®.

Configuration of the PORTs:

The configuration of the ports must be done at the beginning of the program.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 4/22

Code: (For the PIC18F25K20)

 '/ Definition of the PORTS for Display segments.

 Symbol SEGMENTS = LATB '/ PORT for Display segments = 8Bits

 '/ Definition of the pins to enable displays to write.

 Symbol PORT_Digits = LATA '/ PORT to enable the digits

 '/ Pins location in the PORT: Always = LowNibble

 Symbol AddressDA = LATA.0 '/ Address 0 of the Digits.

 Symbol AddressDB = LATA.1 '/ Address 1 of the Digits.

 Symbol AddressDC = LATA.2 '/ Address 2 of the Digits.

 Symbol LE2 = LATA.3 '/ Enable/Disable all Digits.

 $ifdef _Keypad

 '/ Declare the position of the PORT Keypad LowNibble/HighNibble

 Symbol PORT_Keypad = PORTC '/ PORT to read the Keypad

 '/ Pins location in the PORT. (LowNibble/HighNibble)

 $define _PORTkeypad LowNibble

 Symbol KA = PORTC.0 '/ Input A Keypad

 Symbol KB = PORTC.1 '/ Input B Keypad

 Symbol KC = PORTC.2 '/ Input C Keypad

 Symbol KD = PORTC.3 '/ Input D Keypad

 $endif

 '/ Declare the pin of the Buzzer.

 $ifdef _BuzzerOption

 Symbol BUZZER = LATA.5 '/ Output Buzzer

 $endif

 '/--

 '/ Configurations of PORTS (automatic)

$ifdef _Keypad

 $if _PORTkeypad = LowNibble

 Symbol DipsKeypadMask = %00001111 '/ Enable Low nibble.

 Symbol NOKEYpressed = 15

 $else

 Symbol DipsKeypadMask = %11110000 '/ Enable High nibble.

 Symbol NOKEYpressed = 240

 $endif

 $endif

 '/--

Data Table for Segments:

To perform the conversion of numbers to segments, a data table is needed.

In the original code, this table was written in ROM with CData. But I found out that by placing

it in the eeprom, access to the data could be faster and provided that the table starts at

address 0 of the eeprom. For beginners, it is necessary to know when the entry or exit of a

routine is a byte, the compiler almost always places the result to the WREG SFR. In this

code, one line could be deleted. Here is the conversion of the original code into new code to

read the EEPROM.

 $if TableData = 0

 '/ Data from the ROM memory.

 WREG = dRsOutByteIn - 48 '/ Convert ASCIIdec to BCD.

 INDF1 = CRead8 SegmentsData[WREG]'/ Data for segments.

 $else

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 5/22

 '/ Data from the Eeprom memory.

 EEADR = dRsOutByteIn - 48 '/ Convert ASCIIdec to BCD.

 EECON1bits_RD = 1 '/ Set the eeprom to read.

 INDF1 = EEDATA '/ Data for segments.

 $endif

As the input is an ASCII character sent by the RsOut command, this code transform the data

received to segments:

Data Table for Keypad:

To perform the conversion of KEYS to Numbers, a data table is needed. Using a

LookDown command, the returned values can be re-arranged to correspond with the

legends printed on the keypad. In this way you will need a table for each type of keyboard.

$if _Keypad = 4X4

'/KEY 0 1 2 3

dMyKey = LookDown dKeyPressed,[%01110010,%10110001,%10110010,%10110100,_

'/4 5 6 7 8 9 % 10

%11010001,%11010010,%11010100,%11100001,%11100010,%11100100,%11101000,_

'/X 11 - 12 + 13 = 14 ON 15

%11011000,%10111000,%01111000,%01110100,%01110001]

$define KeypadExit 15

$endif

$if _Keypad = 4X3

'/KEY 0 1 2 3

dMyKey = LookDown dKeyPressed,[%01110010,%11100001,%11100010,%11100100,_

'/4 5 6 7 8 9 * 10

%11010001,%11010010,%11010100,%10110001,%10110010,%10110100,%01110001,

'/# 11

%01110100]

$define KeypadExit 11

$endif

With the help of the preprocessor you could incorporate many different keyboards.

Very important:

The user must define a special constant [KeypadExit] using the last key. This will serve to

determine the exit key and the last key of the keyboard.

Interrupt routine:

To do the scan and write the PORT: I have modified the original code to improve the flicker,

in the old case it could be some microseconds. The displays are off when the value of the

PORT is changed.

Code:

LE2 = 1 '/ All digits OFF.

$ifdef _ProteusTest

DelayCS 2 '/ Problem of Proteus. Could be disabled for real wold.

$endif

$if DisplayMode = 0

SEGMENTS = ~PRINT_TENS '/ For Commom Cathode display

$else

DelayCS 1 '/ Problem of Proteus. Must be same execution time to write.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 6/22

SEGMENTS = PRINT_TENS '/ For Commom Anode display

$endif

WREG = PORT_Digits & DipsAddressMask '/ Read + Clear all bits of Digits

 '/ address + Multiplexer On.

PORT_Digits = WREG | 1 '/ Write DIGIT number 2

Originally the table was written for displays with common anode. Using a very fast trick the

code can be adapted to display with common cathode.

$if TableData = 0 '/ ROM Table.

'/---

SegmentsData: CData Byte

'/0 1 2 3 4 5 6 7 8 9 blank blank blank blank blank

192,249,164,176,153,146,131,248,128,152,255,255,255,255,255,255,255,_

'/A B C D E F G H I J K L M N O P Q R

136,131,198,161,134,142,144,137,207,225,138,199,200,171,163,140,148,175,

S T U V W X Y Z [

146,135,227,193,213,137,145,164,255 '/ 44 numbers

'/ ":" is the character for Space on the display.

'/---

$else '/ Eeprom Table.

'/---

'/ For more efficiency the Table EData must be placed in address 0 of the

eeprom.

SegmentsData EData Byte

'/0 1 2 3 4 5 6 7 8 9 blank blank blank blank blank

192,249,164,176,153,146,131,248,128,152,255,255,255,255,255,255,255,_

'/A B C D E F G H I J K L M N O P Q R

136,131,198,161,134,142,144,137,207,225,138,199,200,171,163,140,148,175,

 S T U V W X Y Z [

146,135,227,193,213,137,145,164,255 '/ 44 numbers

'/ ":" is the character for Space on the display.

'/---

$endif

The table is lineal from the character “0” until the character “Z”. The characters “Colon”,

“Semi-Colon”, “Less Than”, “Equal”, “Greater Than”, “Question Mark” and “AT Symbol” are

read as a Blank character. To write a “space” of blank character a “:” (Colon) could be used.

Write the Segments with Common Anode & Common Cathode configuration:

Code:

 $if DisplayMode = 0

 SEGMENTS = ~PRINT_ONES '/ For Common Cathode display

 $else

 SEGMENTS = PRINT_ONES '/ For Common Anode display

 $endif

Avoid the blinking caused by interrupts:

If the interrupt occurs during the execution of the routine "RsOut" we could send the digits

some old values for the high and new digits for the low digits at the same time. To solve this

problem I have created some buffers whose load is independent of the interrupts in the

following way. The interrupt generated by the Timer stops for a very short time.

Code:

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 7/22

 ' Make a copy to print the values for the interrupt routine.

 DisPlayInterruptEnable = 0 '/ Avoid blinking.

 PRINT_ONES = ONES

 PRINT_TENS = TENS

 PRINT_HUNDREDS = HUNDREDS

 PRINT_THOUSANDS = THOUSANDS

 PRINT_TENTHOUSANDS = TENTHOUSANDS

 PRINT_HUNDREDTHOUSANDS = HUNDREDTHOUSANDS

 DisPlayInterruptEnable = 1

Configuration of the Library:

The test program is completely configurable to obtain the necessary code to drive 3 to 8

displays with Keypad options.

'/===

 '/ Uncomment the next line to disable the Proteus test.

 $define _ProteusTest

'/---

' Device = 18F23K20

' Device = 18F24K20

 Device = 18F25K20

' Device = 18F26K20

' Device = 18F43K20

' Device = 18F44K20

' Device = 18F45K20

' Device = 18F46K20

 $ifdef _ProteusTest

 Declare Xtal = 8 ' For Proteus testing

 $else

 Declare Xtal = 64 ' For real PIC (64Mhz)

 $endif

 Declare Optimiser_Level = 3

 Declare Dead_Code_Remove = On

 Declare Float_Display_Type = Fast

 Declare Show_System_Variables = On

 Declare Create_Coff = On

 Declare Watchdog = OFF

 Declare Bootloader = OFF

 Declare Eeprom_Address $F00000

'/===

'/ Configuration of the Config Fuses.

 '/ DEFINE THE PLL: On / OFF

 $define PLL_ConfigFuses OFF '/ Must be always OFF for Proteus.

 '/ Enable the to use the internal Oscillator.

 '/ Uncomment the next line to enable the configuration.

' $define _InternalOSC_

 '/ Uncomment the Line to use the CLOCK OUT FUNCTION:

 '/ If CLKOUT function is enabled, CLKOUT on RA6 & Port function On

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 8/22

 '/ RA7 otherwize Port function On RA6 & RA7.

' $Define _CLKOUT_Function_

'/---

'/ Configuration of the displays hardware.

'/ Declare Display Mode (0 => Common Cathode) (1 => Common Anode)

 '/ with transistors

 $define DisplayMode 0

 '/ Declare Number of Digits (3,4,5,6,7,8)

 $define NumberDigits 8

 '/ Declare the Delay to see the Error in the Display. (MS)

 $define ErrorDelayMS 2000

'/---

'/ Configuration of the Keypad hardware.

 '/ Declare the Keypad option.

 '/ Comment the next line to disable the Keypad option

 '/ Define the Keypad type. (4X4/4X3)

 $define _Keypad 4X4

 '/ Declare the Keypad TimeOut. (MS)

 $define KeypadTimeoutMS 2000

 '/ Declare number or digits for Password. (4 to 8)

 '/ Comment the next line to disable the Password option

 $define PassWordDigits 6

'/---

'/ Declare the Timer used for scanning of the display. (one only)

'/ Comment one line to disable the option.

' $define ScanTimer0

 $define ScanTimer2

'/---

'/ Declare the delay for buzzer when a key is pressed.

'/ This delay must to be adjusted with the Interrupt Timing. (MS)

'/ Comment the next line to disable this option.

 $define BuzzerDelayMS 250

'/===

The Challenge:

The idea of further increasing the possibilities of the 7 segment displays has occurred to me,

using all the wonderful options offered by the Proton Development Suite compiler. The trick

is taking a command capable of extracting and sending each digit of a specific number. Then

any of the serial communication commands could be used. Thanks to Les Johnson for

leaving us the possibility of modifying the low level routines, we can achieve some small

wonders.

Proton allows software functions to be modified. I have modified the RsOut command to

continue to use modifiers, but instead of outputting to a serial pin the output goes to the pins

driving the 7 segment displays. This has made it easier to send integers, floats, signed

variables, strings etc to the pins connected to the displays.

What is the RsOut command?

According to the PDS manual.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 9/22

Rsout

Syntax

Rsout Item {, Item... }

Overview:

Send one or more Items to a predetermined pin at a predetermined baud rate in standard

asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is

automatically made an output. Of course, we are not going to use any PIC® pin.

Parameters:

Item may be a constant, variable, expression, or string list. There are no operators as such,

instead there are modifiers.

The modifiers allowed are listed below:

Modifier Operation

Bin{1..to number of display digits} Send binary digits

Dec{0..to number of display digits} Send decimal digits (amount of digits after decimal point

with floating point)

Hex{1..to number of display digits} Send hexadecimal digits

Sbin{1..to number of display digits} Send signed binary digits

Sdec{0..to number of display digits} Send signed decimal digits

Shex{1..to number of display digits} Send signed hexadecimal digits

Rep c\n Send character c repeated n times

Str array\n Send all or part of an array

Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the

default is all the digits that make up the value will be displayed, so always write the number

of required digits (very important) The RsOut command must be terminated by "CR"

(Carriage Return) to end the process of sending the bytes to the display. If a floating point

variable is to be displayed, then the digits after the Dec modifier determine how many

remainder digits are sent i.e. numbers after the decimal point.

Code:

Dim MyFloat as Float

MyFloat = 3.145

Rsout Dec2 MyFloat,CR ' Send 2 values after the decimal point

The above code will send 3.14. If the digit after the Dec modifier is omitted, then 3 values will

be displayed after the decimal point.

Code:

' Display a negative value on the display.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 10/22

Symbol Negative = -200

Rsout Sdec Negative,CR

MySWord = -200

Rsout Sdec MySWord,CR

For the display application it is not advisable to use other modifiers. Other modifiers could

cause a crash of the PIC® program because you cannot override/modify these.

Operation mode:

It is preferable to use these forms only.

RsOut Dec MyWord,CR

RsOut Dec3 MyFloat,CR

RsOut Hex3 MyWord,CR

RsOut Bin4 MyWord,CR

If you prefer to have control of the variables to avoid errors; use my macros

PrintDispInt(Dec, MyDword) ' Only for Integer.

PrintDispInt(Bin8, MyWord) ' Only for Integer.

PrintDispFloat(Dec3, MyFloat) ' Only for Float.

PrintDispSign(SDec, MySDword) ' Only for Signed.

PrintDispSign(Bin7, MySDword) ' Only for Signed.

Printing a Float variable.

At the last minute, I have thought about incorporating the possibility to write ASCII

characters in the display. The code is built in such a way that characters must be entered in

upper case only as the compiler sends upper case for HEX characters.

RsOut "COMPILER",CR

You can use the colon character to print a space (Blank) on the display.

RsOut "MY:PDS",CR

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 11/22

A B C D E F G H

I J K L M N O P

Q R S T U V W X

Y Z 0 1 2 3 4

You will always have to take into account the number of displays used. Again, the RsOut

command must be terminated with "CR". Without these, the PICmicro™ will continue to

transmit data until an overflow error is detected.

Error detection:

As typos are very common, I have planned a detection of the number of incoming bytes to

avoid printing erroneous values on the display. Since I cannot know what your code will be

like, the only way to perform the operation is to use interrupts. You can check that your

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 12/22

program will continue running while printing the text "Error" on the displays for a

configurable time ().

Principle of operation:

The biggest problem is transforming the data sent by the RsOut command with the MSB

first. To solve this problem, an array of (Number of Displays + 1) bytes is used. The MSB of

the number is written first in the top of the array and it keeps recording until position zero. As

the characters move within the array, a blank character is written in the free positions. In this

way, digits without numbers will always be turned off. Then the incoming number becomes

LSB first.

How the new RsOut command works:

The first step is to disable the RsOut command:

#disable RsOut

The subroutine must start with the same origin label:

 Asm
 RsOut
 EndAsm

Not to be confused with the new command, the label is written in ASM.

And it ends with:

 Return

This routine, in addition to recognizing ASCII characters, will transform them directly into

information about the segments in the array.

The RsOut code begins by writing the character received in the array and the number of

bytes received increases. In addition, the command is canceled when an error is written on

the display. A Clrwdt is also placed if the Watchdog has been declared. The eeprom is set

to read [EECON1 = 0] if the eeprom option has been chosen by the user.

'/ New RsOut Routine.

 Asm

 messg "RSOUT ROUTINE" '/ To find this routine in the asm file.

 EndAsm

 Asm

 RsOut

 EndAsm

 #ifdef watchdog_req

 Clrwdt

 #endif

 If F_PrintErrorDelay = 1 Then

 Return '/ If overflow error return to the

 '/ RsOut command.

 EndIf

 INDF1 = WREG '/ Put the value into the array.

 dRsOutByteIn = WREG '/ Save it.

 Inc dBytesReceived '/ Increments Number of bytes received.

 $if TableData = 1

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 13/22

 EECON1 = 0 '/ Eeprom to read. (only once is sufficient)

 $endif

 Code…

For any unauthorized character or if the number of characters exceeds the maximum

allowed by the array, an error will be generated. This one will be printed on the display for a

time configurable by the user. As this error is managed by an interrupt, it will be completely

independent of the user's code. In addition, the RsOut command will be disabled during this

time.

For the code to be compatible with the identifiers, special characters are detected.

Dot character (.):

 Case 46 '/ Looking for Dot ("."). (Floating DP)

 Inc FSR1 '/ Looking for the last valid digit received.

 INDF1.7 = 0 '/ Set DP as common Anode in last digit received.

 Dec FSR1 '/ Restore the FSR1 pointer for next byte.

 Dec dBytesReceived '/ It is not a new value.

The trick is to go back to the previous character and include the decimal point.

Minus character (-):

 Case 45 '/ Looking for Minus ("-").

 INDF1 = MinusCharacter '/ Load directly the display value.

 Dec FSR1 '/ Next array address to write.

The value (45) is (-) in ASCII. It is very simple to enter the minus character in the array.

Control of unwanted characters:

 Case > 90 '/ Looking for disallowed character values.

 '/ NO increment the pointer. Value is not valid. Goto Error.

 GoTo SetAnErrorDisp

All received ASCII characters greater than (Z) cause an error.

End of data entry:

To terminate the input of ASCII characters you will need a CR (Carriage Return) as the

standard command to avoid disorienting the user.

 Case 13 '/ Test final bytes; looking For Carriage Return.

 INDF1 = 255 '/ Clear the CR and blanck the position.

 Dec dBytesReceived '/ It is not a valid byte.

 GoTo CheckErrorBytesReceived '/ All bytes received already.

Control of the number of characters:

Since the array contains the characters for the display used, the number of characters is

controlled to generate an error if necessary.

 If dBytesReceived > LenghtDISP_STRING - 1 Then

Error printing on the display:

Depending on the number of digits on the display, a different word will be generated.

 $if NumberDigits = 8

 PRINT_ONES = 175 '/ Character r (Digit 1)

 PRINT_TENS = 163 '/ Character o (Digit 2)

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 14/22

 PRINT_HUNDREDS = 175 '/ Character r (Digit 3)

 PRINT_THOUSANDS = 175 '/ Character r (Digit 4)

 PRINT_TENTHOUSANDS = 134 '/ Character E (Digit 5)

 PRINT_HUNDREDTHOUSANDS = 255 '/ Blank (Digit 6)

 PRINT_THOUSANDTHOUSANDS = 255 '/ Blank (Digit 7)

 PRINT_TENTHDTHOUSANDS = 255 '/ Blank (Digit 8)

 $endif

Put the characters in LSB position:

In order to correctly display the characters on the display, the first character must be in the

zero position of the array. This code moves all the characters to the right.

'/ Move the bytes from high position to lower position. (LSB first)

 Dec dBytesReceived '/ prepare FSR1

 FSR1 = dHighPointerFSR1 '/ Restore FSR1 to higher byte of the array.

 FSR1 = FSR1 - dBytesReceived '/ Point FSR1 at the last byte received.

 FSR0 = VarPtr (DISP_STRING) '/ Point FSR0 to lower byte of STRING.

 Inc dBytesReceived '/ Restore the correct value of dBytesReceived.

 Repeat

 #ifdef watchdog_req

 Clrwdt

 #endif

 INDF0 = INDF1 '/ Copy all bytes

 INDF1 = 255 '/ Blanking old bytes

 Inc FSR0

 Inc FSR1

 Dec dBytesReceived

 Until dBytesReceived = 0 '/ Shift all the digits already.

Print the new characters on the display:

All new characters are copied to other variables to be displayed. The interrupt routine will

take care of this task.

 $if NumberDigits = 8

 PRINT_ONES = ONES

 PRINT_TENS = TENS

 PRINT_HUNDREDS = HUNDREDS

 PRINT_THOUSANDS = THOUSANDS

 PRINT_TENTHOUSANDS = TENTHOUSANDS

 PRINT_HUNDREDTHOUSANDS = HUNDREDTHOUSANDS

 PRINT_THOUSANDTHOUSANDS = THOUSANDTHOUSANDS

 PRINT_TENTHDTHOUSANDS = TENTHDTHOUSANDS

 $endif

Restore the array:

Once copied the characters are no longer useful, be sure to delete the array with blank

characters.

'/ Clear DISP_STRING, blanking all the digits.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 15/22

 FSR0 = VarPtr (DISP_STRING)

 PRODH = LenghtDISP_STRING

 Repeat

 #ifdef watchdog_req

 Clrwdt

 #endif

 POSTINC0 = 255 '/ Blank character.

 Dec PRODH

 Until PRODH = 0

 INDF0 = 0 '/ Set Array as String again.

Restore the PORTS:

For security reasons, the configuration of all the PORTS used is restored. (Better immunity

to noise)

 Output SEGMENTS '/ Put the display PORT as Output.

 '/ Every individual pin is set as output.

 Output AddressDA

 Output AddressDB

 Output AddressDC

 Output LE2

 '/ Every individual pin is set as input.

 $ifdef _Keypad

 Input KA

 Input KB

 Input KC

 Input KD

 $endif

Restore the pointers:

It is very important to restore all pointers to receive a new command RsOut.

'/ Configure the array pointers To start a new RsOut command.

 FSR0 = VarPtr (DISP_STRING) '/ FSR0 At the beginning of the array.

 FSR1 = FSR0 + (LenghtDISP_STRING - 1) '/ FSR1 at the end of the array

 '/ to start a new RsOut command.

 dHighPointerFSR1 = FSR1 '/ Make a copy of FRS1.

 Return '/ End of routine RsOut.

Special commands:

Reminder for macros:

Macros not used in the main program do not occupy lines of code in the compiled file. In

addition I have found that the variables of the macros will be declared only if the macro is

used, for example:

#ifMacro- _mInkeyDisp, _mEnterNumber, _mEnterValue, _mPasswordInput

 Dim dKeyPadFlags As Byte System

 Dim F_KeyPressed As dKeyPadFlags.0

 Dim F_KeyRead As dKeyPadFlags.1

 Dim F_KeypadTimeOut As dKeyPadFlags.2

 Dim F_KeyBuzzerDelay As dKeyPadFlags.3

 Dim dKeyPressed As Byte System

 Dim dKeyPressedOld As Byte System

 Dim dMyKey As Byte System

 Dim KeypadTimeOut As Word System

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 16/22

 Dim dKeyReleasedCounter As Byte System

 $ifdef _BuzzerOption

 Dim KeyBuzzerDelay As Byte System

 $endif

#endIfMacro-

Macro InkeyD():

MyKey = InkeyD()

This command works in the same way as the Inkey command of the PDS. It should be used

in a loop that will not have any delay incorporated. This code has been very difficult to write

because the keys come from the interrupt routine that cannot be controlled very well from the

main program.

The first pressed key is considered valid. In the other direction, an anti-bounce system is

needed to detect the raised key. Self-repeating is not allowed. If there is no key pressed the

result of "MyKey" will be equal to 255.

An option of a Buzzer can be defined by the user. When a key is pressed, an output of one

pin of the PIC is activated. The duration of the buzzer, which is configurable, is performed by

the interrupt routine.

$ifdef _BuzzerOption

F_KeyBuzzerDelay = 1 '/ Enable the Buzzer pulse.

'/ This delay must to be adjusted with the Interrupt Timing.

KeyBuzzerDelay = VKeyBuzzerDelay '/ Time of the Buzzer pulse.

High BUZZER '/ Start Buzzer.

$endif

Macro EnterNumber(pValue, pExit):

This powerful macro, made by the preprocessor, allows entering a value in a Byte / Word or

Dword [pValue] with the keyboard being displayed in real time on the display. This command

will be used for all variables. If you need this macro only once in your program, use this

command. The variable [pExit], also defined by the user, is a control byte. If pExit equals 0

then an error has occurred. If pExit is equal to 255, the result is correct.

 Macro EnterValue(pValue, pExit):

If you need the macro several times in your program, better to use this command that uses a

subroutine to save lines of code. A transition variable [DISPVAL] will be used, which can be

a Word or Dword variable according to the number of digits (automatic). If the user wants to

use only one type of variable, you will have to manually change the definition.

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 17/22

Macro PasswordInput(pValue, pExit):

A variant of these macros could be an original way to enter a password key for any control.

The trick is to use a Dword variable only. The keys will be displayed by a minus on the

display. The number of keys previously defined by the user is detected. If there is an error or

TimeOut the variable [pExit] will be equal to 0. If the value is correct (not the password),

[pExit] will be equal to 255. The code will be available in the variable [dPassWordVal] and

will be passed to the variable defined by user in (pValue).

Note: All these last 3 commands have a TimeOut planned and configurable by the user. See

an example of use in the main test program.

CONCLUSION

PDS users can now use this template [RSOutDigitsKeypad_xxK20.Inc] for other PICs®
applying the suggestions described above.

I have written many comments in the code to understand the operation of the library.

I hope that my comments on my code are accurate enough so that PDS users can modify

the test code to make it their own.

Good luck for your project.

8 Seven Segments Displays & Keypad V1.0. July 23 2018

Alberto Freixanet

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 18/22

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 19/22

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 20/22

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 21/22

8 Seven Segments Displays & Keypad V1.1 By Alberto Freixanet (EA3AGV)

July 2018 - 22/22

