STATE MACHINE

/ o—f%} STATE MACHINE 4
El:lE!l:lGV E i) AMICUS18® www.protonbasic.co.uk [[

BY PROTON

BY PROTON

Powered by Proton Development Suite® Compiler of Crownhill Associates Limited©

STATE MACHINE PARTS

A Clock Calendar full project with the DS1307 & the TC74

A simple multi-tasking System

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc®©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited®©.

The project has been developed and written by Alberto Freixanet.
The document has been edited by John Drew.

Introduction:

We are going to study a full project demo made with my Multi-Tasks State Machine.
It is essential to move from a linear programming approach to a structured method.

Multi-Tasking System:

| have previously introduced a very simple multi tasking system. This article substantially
modifies the operation of the previously described state machine. We will study the new
commands that will allow us to write the tasks very easily.

The multitasking system is reserved to run small programs in the background by lightening
the main program of repetitive tasks and to simplify the writing of the user program. The idea
is to run a maximum number of routines when the PIC has no external inputs or outputs or to
delay the less urgent in favor of the urgent code.

It is not an RTOS system, because the tasks are simple and short. A task started cannot be
interrupted by the TaskSwitcher. This very strict structure allows a programmer to obtain a
very fast system. It could approach the speed of a Time Slicing system when the timing
requirements are very important such as reading to the ADC every 4ms.

Note:

The program has been specially designed to work with ADC reading at 250Hz (every 4ms)
so | have had to strictly comply with rules 1, 2, 3, 4, 6, 7, 10 and 11. You will see that the
tasks are as short as possible. I've had to optimize all the codes, using a few tricks. For less
demanding applications the task code could be longer and more standard.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 1/40

http://www.protonbasic.co.uk/

The mulititasks system is reserved for the machine of states # 2. For that new rules have
been defined.

New Rules:
1- This State Machine is a large loop that can never stop.
2- ltis forbidden to use the DelayMS compiler command or some loops to follow rule # 1.

3- Timing rule: (Time Main SM1 State + Time Task max) = (ADC Timing — 1ms). The ADC
result could be lost.

4- The State Machine must run at maximum speed to ensure the timing is correct. Take this
into account when writing the code.

5- You cannot use the 'GoTo' command to a destination that is outside the static code area
of a module.

6- The SM allows separation of the whole program into small autonomous modules. If a
single-module code fails, it could be either a single problem with this same code or badly
initialised parameters.

7- Do not delay the main code by inserting other long codes, better to use the Tasks System
in the background or/and split the code into several modules.

8- If the ADC timing of the chosen ADC is fast, the tasks will have to run faster as well.
9- The Tasks Switcher distributes the tasks according to their priority.

10- Tasks are automatically deleted from the buffer after they are assigned.

11- A task (JOB) could run in one state only or could be split into several states.

12- Tasks are always interspersed within the main program loop. This way you will not miss
the information that would be passed from a state to a task or back.

13- The SM would work better if the peripherals connected to the PIC will use the SPI bus. If
using an LCD display, preferably use the full 8-bit bus.

14- The PDS user must organize all the tasks of the program.

I remind you that the greatest quality of the state machine is the ease in which the code may
be extended and/or maintained. The code may be considered as a set of separate mini-
programs.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 2/40

The State Machine Diagram:

STATE MACHINE DIAGRAM

{ RESET

h 4
>{ STATE MACHINE INIT }4

JI\ :
| USER FUNCTIONS |
\ 4
| SM FUNCTIONS |
: I\ 7\
4
SM1SCHEDULER }— — SM2 SCHEDULER
OUT OF RANGE OUT OF RANGE
< SM1 STATEOO | |« »| | sm2sTATEOL >
SM1STATEN | |« » | SM2STATEN
MAIN STATES TASKS

In this way the tasks are always intertwined with the main program. Which means only
one task runs at any one time.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV) June 2017 - 3/40

The Tasks Switcher Diagram:
TASKS SWITCHER

~

™
ALL -

/ TASKS SUSPENDED ?

CLEAR BUFFER POINTER

v

READ TASKS BUFFER

y

—~
— = \‘\

h 4
INC BUFFER POINTER DELETE BUFFER TASK

BN

/ -
/ POINTER= ™
BUFFER LENGHT?

YES

\ 4

\ 4

A 4

> SM1 SCHEDULER SM2 SCHEDULER

Task Switcher :

The system of tasks that | have designed is not the most sophisticated but it seems very
robust, resisting interruptions every 1 ms.

Each time the Task Switcher goes into operation it starts loading TaskO if it is available
and then executing the other tasks.

All tasks can be inhibited at once. You can not inhibit a task individually, you can only
delete it.

Tasks should be written in a predetermined order for highest efficiency.

The most repetitive task would be the first in the list, followed by its associated tasks.
Then the tasks are written according to the urgency and in the order of execution. (very
important)

The Task Switcher is very simple and controls only 1 parameter viz Task valid. When the
task is loaded in the SM1 Scheduler it is deleted from the buffer, thus simplifying the
general operation. See the SM2 code

Definition of a Task:

A task is a code that runs on state machine 2. This task should be as short as possible.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV) June 2017 - 4/40

A task will only work once and the Task Switcher deletes it from the task lists once
assigned.

MAIN CODE TASKS

STATEN

=
-~

- \\
< LoadTask(State10) > TASK4

SM2_STATE10

F

/ Y
{ SM2_LoadTask(Statell) |g——

A4

STATEN
OR »
STATE N+1

TASKS
SM2_STATE M11

—

/, T~
{ SM2_LoadTask{State12) /\(—
.

——

h 4

STATEN
OR
STATE N+2

TASK6
SM2_STATE M12

h 4

STATE N
OR <

STATE N+3 FIGURE 1

Figure 1: A background program divided into 3 tasks
Tasks are always intertwined with the main program (SM1).

To load a task, the SM2_LoadTask(State #M) command is used. Then all tasks will
also be defined by their number and /or name:

$Define Task4 4 ‘SM2_STATE10
$Define Task5 5 ‘SM2_STATE11
$Define Task6 6 ‘SM2_STATE12

The SM2_STATEL10 state will be called from the main program by the command:
LoadTask(State10)

The SM2_STATE10 state will call the next task by the command:
SM2_lLoadTask(Statell)

The SM2_STATE11 state will call the next task with the command:
SM2_LoadTask (Statel2)

And the SM2_STATE12 state ends the job.
All tasks always end without any order because they are executed only once.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 5/40

MAIN CODE TASKS

STATEN

TASK4
SM2_STATE10

A 4

()
LoadTask(SM_State10)
N J

STATEN
OR
STATE N+1

A

TASKS
SM2_STATE11

A 4

'KLoadTask(SM_Statell)

STATEN
OR
STATE N+2

A

TASK6
SM2_STATE12

A 4

L,

QLoadTask(SM_Sta(eIZ)

STATEN
OR <

STATE N+3 FIGURE 2

Example of a call to individual tasks.

These tasks are called individually from the main program (SM1).

Each SM2 state will be assigned a fixed task that will not be changed during the entire
program, in the case of Task 0O the highest priority is assigned to the first state. The
code should be simple and fast to execute. Good task organisation is very important.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 6/40

A lower number task can be executed before a higher number task.

MAIN CODE TASKS

STATE N

TASKO4
SM2_STATE10

— LoadTask{SM2_State10) >

bas

Y

STATE N
OR
STATE N+1

TASKO5
SM2_STATE11

Y

STATE N
OR
STATE N+2

TASKO

LoadTask(SM2_ADCaverage) SM2_ADCaverage

Y

D

\ SM2_LoadTask(SM2_ADCState)

\ 4

STATE N

OR TASK06

e ~ \
{ SM2_LoadTask{SM2_State11) >
* QMZ_LoadTask(SMZ_StatelzD]

Y

St SM2_STATE12

STATE N
OR <

STATE N+4

FIGURE 3

Distribution of Tasks:

States of Machine # 2

Sdefine
Sdefine
Sdefine
$define
$define
$define
$define
$define
$define
$define
Sdefine
Sdefine
Sdefine

SM2 ReadTime 0

SM2 PrintLCDLinel 1

SM2 PrintLCDLine2 2
SM2_ CheckAlarmState 3
SM2_ADCaverage 4

SM2 TC74SetNormalMode 5
SM2_ TC74Read 6

SM2_ TC74Close 7

SM2 ReadDate 8

SM2 DatalToTerminal 9
SM2 Data2ToTerminal 10
SM2_ TC74TempToTerminal 11
SM2 StateMax 12

The states (or Modules) of the SM1 or SM2 are not sorted in the order of execution,
because it is the scheduler with the variable "state" that organises the order of
execution.

Amicus18 Tutorial-State Machine V1.0 Part5

By Alberto Freixanet (EA3AGYV)

June 2017 - 7/40

This means that modules may be transferable between programs.

| have written Module 4 (SM2_ADCaverage) in fifth position, but it works first in the
task list. The programmer will have to organize all tasks.

' Update the LABELS when you add a new State Machine 2 Module.
$define SM2_ LABELS LIST '
BranchL SM2Statelndex, [SM2 STATE0O,SM2 STATEO1l,SM2 STATE02, '
SM2 STATEO3,SM2 STATE(04,SM2 STATEOS5,SM2 STATE06, '
SM2 STATEO7,SM2 STATE(08,SM2 STATE09,SM2 STATELO, '
SM2 STATE11]
It is very useful to assign a name to each state of SM2. To change the order of states,
only the assigned numbers need to be routed.
For example, the value "SM2_PrintDateState" is loaded into the variable "SM2Statelndex"
so that the "BranchL" command directs the Program Counter to the corresponding label.
The "SM2_LABELS_LIST" macro allows you to update the new states without looking for
lines of code in the entire file.

Organization of SM2 tasks:

Each SM2 state will be assigned a fixed task that will not be changed throughout the
program.
This list is a reminder to compose the address commands of the different states.
' Define the Tasks Buffer length
$define SM2TasksBufferLenght SM2 StateMax + 2

' Define the Number of tasks & the corresponding starting state.
' The position of the Task defines the priority.
' All SM2 states must to have a Task numer. (not the SM2 STATEQ0O)

' User Tasks.

Sdefine TaskO 0 ' SM2 ADCaverage (04) : (Higher priority)
$define Taskl 1 ' SM2 ReadTime (0)

$define Task2 2 ' SM2 PrintLCDLine2 (2)
$define Task3 3 ' SM2 ReadDate (8)

Sdefine Task4 4 ' SM2 PrintLCDLinel (1)
Sdefine Task5 5 ' SM2 CheckAlarmState (3)
$define Task6 6 ' SM2 DatalToTerminal (9)
$define Task7 7 ' SM2 DataZToTerminal (10)
$define Task8 8 ' SM2 TC74SetNormalMode (5)
$define Task9 9 ' SM2 TC74Read (6)

Sdefine Taskl0 10 ' SM2 TC74Close (7)

Sdefine Taskll 11 ' SM2 TC74TempToTerminal (11)

' State Machine Tasks.
Sdefine Taskl2 12 ' SM2 Virtual Delay
Sdefine Task1l3 13 ' SM2 Delayed Task : (Lower priority)

LoadDelayedTask (30000, SM2_TC74SetNormalMode)

This command, used basically in the main program (SM1), loads the state number (5) of
the SM2 into the task buffer position (13) because it is a late task. Its position is
predefined in the buffer as (13) by:

$define SM2DefDelayedState Taskl3 ' SM2 Delayed Task

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 8/40

SM2 NextStateDelay (250, SM2_TC74Read)
This command, used only in the task program (SM2), the status number (6) of the SM2 in
the task buffer, has an already defined position (12). Its position in the buffer is (12) by:

$define SM2DefVDelayState Taskl2 ' SM2 Virtual Delay

Very important:

Tasks should be organized in order of priority and execution with associated tasks. For
example:

$Sdefine Taskl 1 ' SM2 ReadTime (0)
Sdefine Task2 2 ' SM2 PrintLCDLine2 (2)

Task 1 and Task?2 will be executed.

In the main program (SM1) you would write:
LoadTask (SM2_ReadTime)

In the program of tasks (SM2) would write:
SM2_STATEOO: SM2_LoadTask(SM2_PrintLCDLine2)
SM2_STATEO2: Nothing, the Task finished automatically. (SM2_PrintLCDLine2)

Task load command:

Once the task table is defined, the user will not have to remember the interleaving of
Tasks and States of SM2. The command will do it all automatically if the PDS user has
written all the tables correctly.

If you write to the state machine 1.:

LoadTask(SM2_ ReadTime)

If you write to the state machine 2:

SM2_LoadTask(SM2_ ReadTime)

The correspondence is made with the following table.

$define LoadStateTable (pNewState) '
$if pNewState = 0

r

SM2Task[Taskl] = 0 '
$Selseif pNewState =1 !
SM2Task[Task4] = 1 '
Selseif pNewState = 2 !
SM2Task[Task2] = 2 '
$elseif pNewState = 3 !
SM2Task[Task5] = 3 '
$elseif pNewState = 4 !
SM2Task[Task0] = 4 '
$Selseif pNewState = 5 !
SM2Task[Task8] = 5 '
Selseif pNewState = 6 !
SM2Task[Task9] = 6 '
Selseif pNewState = 7 '
SM2Task [Taskl0] = 7 '

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGYV) June 2017 - 9/40

$elseif pNewState = 8 '

SM2Task[Task3] = 8 !
Selseif pNewState = 9 '
SM2Task[Task6] = 9 '
Selseif pNewState = 10 '
SM2Task[Task7] = 10 '
Selseif pNewState = 11 '
SM2Task[Taskll] = 11 '
Selse !

Serror "NO SUCH STATE IN SM2" '
Sendif

The equivalent macro is:

Sdefine SM2 LoadTask (pNewState) LoadStateTable (pNewState)

LoadTask(SM2_ ReadTime)

LoadTask(State number#00) => SM2Task[Task1] = 0, writes the value 0 in the Task

array in position 1.

In the same way:

DeleteTask(SM2_ ReadTime) => SM2Task[Taskl] = 255, writes the value 255 in the
Task array in the position 1. The value 255 means a deleted task.

$define DeleteTask (pNewState) DeleteStateTable (pNewState)

The correspondence is made in the following table:

$define DeleteStateTable (pNewState) '

$if pNewState = 0

SM2Task [Taskl] = 255 '
Selseif pNewState = 1 !
SM2Task [Task4] = 255 '
Selseif pNewState = 2 !
SM2Task[Task2] = 255 '
$elseif pNewState = 3 !
SM2Task [Task5] = 255 '
$elseif pNewState = 4 !
SM2Task[Task0] = 255 '
Selseif pNewState = 5 !
SM2Task[Task8] = 255 '
Selseif pNewState = 6 '
SM2Task[Task9] = 255 '

Selseif pNewState = 7
SM2Task[Taskl0] = 255 '
Selseif pNewState = 8

SM2Task [Task3] = 255 !
$elseif pNewState = 9 '
SM2Task[Task6] = 255 !
$elseif pNewState = 10 '
SM2Task[Task7] = 255 !
$elseif pNewState = 11 '
SM2Task[Taskll] = 255 '
Selse '

Serror "NO SUCH STATE IN SMm2" '
Sendif

Amicus18 Tutorial-State Machine V1.0 Part5

By Alberto Freixanet (EA3AGYV)

June 2017 - 10/40

Organization of the program:

The program has been reorganized so that the state machine is in separate files. The user
program will be in 2 files (one code for SM1 and one for SM2). To update the System, you
only have to enter the new files without modifying the main program.
SM_PIC18F25K20.Inc

This file contains the data of the PIC and its compilation.

STMO7.bas

The source file written by the user. Contains all the program corresponding to the machine
of states # 1.

STMachine02.Inc

The library of commands specific to the SM other commands. This is very useful for the
user, version 2.

STMO07 SM2Code.bas

The source file written by the user. It contains all the program corresponding to the
machine of states # 2 (Tasks). See my article in the WIKI.

Amicus ADCbeta.Inc

Library for all commands corresponding to the Digitial Analog Converter for the
PIC18F25K20 and PIC18F25K22 for the Amicus18 board. | fixed some errors in macros.

DS1307-H.Inc / DS1307-S.Inc

Library for all the commands corresponding to the time/calendar circuit 1°C of the DS1307.
See my article in the WIKI.

LCD ST7036.Inc

Library for all commands corresponding to the AMI18 LCD Shield (GEVO) compatible with
the Amicus18 board. See my article in the WIKI.

HRSOut K40.Inc

Library to add 2 stop bits to the HRSOut compiler command to be compatible with the
CoolTerm_0 terminal used for my bootloader. It would not be necessary for another
bootloader or programmer. Remove or disable this file if not using the CoolTerm_0.

ORG SyncBlock K20.Inc

Library to synchronize the ORG command of the compiler with the ERASE blocks. Not
used at the moment.

TC74-H beta.Inc/ TC74-S beta.Inc

Library for all commands corresponding to the temperature sensor 1°C TC74, adapted to
the state machine. See my article in the WIKI.

SM1 Scheduler0l.Inc

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 11/40

Code corresponding to the Scheduler of the machine of states # 1, version 1.

SM2_Scheduler01.Inc
Code corresponding to the Scheduler of the machine of states # 2, version 1.

STM Strings07.Inc

File corresponding to the texts used for this development for indicative purposes. You may
find this of value.

Characteristics of the project:

Hardware:

Amicus18 (PIC18F25K20) development board.

Clock Calendar clock device with DS1307 I°C.

Temperature system device with the TC74 I1°C.

Amil8 LCD COG shield by EVO (ST7036) with White backlight LED.
4 pushbuttons for configuration settings.

1 Buzzer.

1 LED red or relay for alarm.

1 LED red for configuration.

My interface shield for buzzer and analog system for ADC.
Software:

Driver I°C for the DS1307 device, Bus speed 100 kHz.

Driver I12C for the TC74 device, Bus speed 100 kHz.

Driver for the LCD ST7036 bus 4 bits.

Contrast setting by software

Setting the clock: date, hour, minute.

Setting Alarm 1 daily: hour, minute.

Setting Alarm 2: date, hour, minute.

Output for Buzzer (pulsed for alarm, single pulse for button pressed).
Output for BackLight LED by PWM.

Output for Alarm (relay for example)

Output LED for configuration state (pulsed).

TimeOut for all configuration states.

Reading Time and ADC result every second and print to the LCD.

Checking the alarms every minute

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 12/40

Reading Date and Temperature every minute to the LCD and Terminal.

Reading ADC with configurable counter from 4ms started by interrupt.
Average for 2, 4, 8, 16, 32, 64 ADC samples.
Optimised average and maths calculations for ADC readings.

Debug:
All number states of SM1 of the user program.

ADC system, checking if there is a lost sample.

Configuration of the Amicus18 board:

Bootloader:

| am using the AGV Bootloader LSM V4.1 for the PIC18F25K20 for 64MHz and 80MHz. It
is a very reliable and protected bootloader in the Boot Sector of the PIC. When choosing
this bootloader the PROTON_START_ADDRESS is automatically changed. The
Bootloader is available in the WIKI. You can find a copy in the "Bootloader” folder.

You can use the Amicus18 bootloader available in the IDE as well.

ICSP:

To use another bootloader you need to program the firmware in the PIC using the ICSP
bus. The board has some problems that need to be solved first.
- Place a 1N4148 diode in series with resistor R3 (1K or 2K7) (anode towards +
VDD) of the PIC reset input.
- Insert a wire between the pin 20 (VDD) of the PIC and the pin VDD of the ICSP
connector. Otherwise the PICkit3 / ICD3 will not see the PIC.
It would be possible to place a multilayer type 100nF ceramic capacitor between pins 20
and 8 of the PIC.

RB1:
The RB1 Bridge in position RB1.

XTAL:

The mounted xtal (16MHz) allows work up to 64MHz with the PLL.

If you need to work at a frequency of 80MHz, change the xtal to another of 20MHz and
use the PLL.

See Les's article in the WIKI. To use the PIC with FOSC> 64MHz, | advise not to charge
the outputs, preferably use a current less than 0.5mA.

12C Clock for SOMHz:

There is an issue with the HBus_Bitrate Declare. When the Xtal = 80 is used the Rate is
divided by 4.
For Xtal 64MHz:

Declare HBus_Bitrate = 100
For Xtal 80MHz:
Declare HBus_Bitrate = 400

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 13/40

To have a 100 kHz result.
The Formula is: FClock = 1/ ((SSPADD + 1) x 4) /| FOSC

Program settings:

Declare the Xtal:
For the simulation in Proteus | am using: Declare Xtal = 16

For the Amicus18 board | am using: Declare Xtal = 64

For the Amicus18 plate with Declare Portal = 80 MHz | am using the option:
$Define _Amicus18_ 80MHz_ at the beginning of the main program. This line will change
all the parameters.

Declare the Watchdog:
The compiler Watchdog must be disabled.
Declare Watchdog = OFF

The Watchdog settings in the Config Fuses are confusing. With WDTEN = OFF, it does
not mean that the WDT is disabled or rather it depends on the SWDTEN bit.

Although the watchdog is set in operation by the Config Fuses and the SWDTEN = 1 bit
for the states machine, a single Clrwdt instruction is really needed.

As the programmer must follow rule 1 (This State Machine is a large loop that can never
stop), the SM always returns to the same site where the Clrwdt instruction is placed. It is
the best watchdog system, the most reliable and allows you to save many lines of code. If
the state machine is too slow or stopped, the watchdog will be triggered.

Only at the start of the program are several instructions placed.

Initialization of the program:

When initializing the program it would be very opportune to know the reason for the start.
For that | have written a series of controls to know the reason for the System reset. It

would be useful for all programs
' At Power up control the state of the PIC.
" Check the Reset Flag bit
If RCONBits RI = 0 Then
RCONBits RI = 1
HRSOut "RESET",CR,LF
F Reset =1 ' To see the error in the LCD display.
EndIf
" Check the Watchdog Time-out Flag bit
If RCONBitS_TO = 0 Then
HRSOut "WATCHDOG",CR, LF
F Watchdog =1 ' To see the error in the LCD display.
EndIf
" Check the Brown-out Reset Status bit
If RCONBits POR = 1 Then
If RCONBits BOR = 0 Then
RCONBitS_BOR =1
HRSOut "BROWN-OUT",CR,LF
F BrownOut = 1 ' To see the error in the LCD display.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV) June 2017 - 14/40

EndIf
EndIf
" Check the Power-on Reset Status bit
If RCONBits POR = 0 Then
RCONBits POR = 1
HRSOut "POWER-ON",CR,LF
EndIf
' Check the Stack pointer register
If STKPTRBits STKFUL = 1 Then
STKPTRBits STKFUL = 0
HRSOut "STACK FULL",CR,LF
F StackFull =1 ' To see the error in the LCD display.
EndIf
If STKPTRBits STKUNF = 1 Then
STKPTRBits STKUNF = 0
HRSOut "STACK UNDERFLOW",CR,LF
F StackUnderflow = 1 " To see the error in the LCD display.
EndIf

COMMANDS:

SM1 Commands:

The commands of the machine of states #1 are still valid, see the manuals Part2, Part3
and Part4.
SM1_State() — User command

Equivalent to the Statelndex value.

NextState(NewState) — User command

SM1 is informed of a new status change, equivalent to "Goto New State".

NextStateOverride(NewState) — User command

The SML1 is informed of the status change, replacing an equivalent command. It is used
with the "Return State" function.

NextStateReturn(Next State,Return State) — User command

Indirect addressing:

The SML1 is informed of the state change (Next State) and has to return to the "Return
State" state. It is used with the "Return State" function.

NextindState(Next State,Return State) — User command

Indirect addressing:

The SM1 is informed of the state change (Next State) and has to return to the "Return

State" state. It is used with the "ReturnindState (Delay)" command.

DisableReturnState() — User command

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 15/40

Indirect addressing:

Disable the Return State command deleting all flag parameters.

IncState() — User command

Increments the variable "Statelndex" to change of state. It occupies fewer bytes than the
(NextState (NewState) command.

DecState() — User command

Decrements the variable "Statelndex” to change of state. It occupies fewer bytes than the
Sync1lmS() — User command

Synchronize the following code to the 1ms interrupt. It can be used in the middle of a
program. This command can delay the user code of a maximum of 0.99 ms.
StartTimeOut(NextState, Delay) — User command

This command works in conjunction with "NextState (NewState). It informs the SM1 that
at the end of the TimeOut it will have to go to the state defined as NextState after a delay
of seconds. Example:

StartTimeOut(SM_AskForConfig,10) ' Start a Time Out for 10 seconds.
NextState (SM_ContrastSetup) ' Menu Configuration of the LCD contrast.

Statelnit() — State Machine Template

The "Transitional Input State" is initialized. SM and debug functions are incorporated if the
latter is activated.

StatelnitEnd() — State Machine Template

It can incorporate a SM function if activated.

StatelnitEnd(SyncOn) — State Machine Template

Synchronize the following code to the 1ms interrupt.

StateOut() — State Machine Template

Initializes the "Transitional Output State".

StateOutEnd() — State Machine Template

The "Transitional Output State" is initialized and debug functions are added if they are
activated.

SM_Return() — State Machine Template

Return to the SM1 scheduler. SM functions are added if activated.

SM_Return(RSOnN) — State Machine Template

Return to the SM1 scheduler, used with the Return State function.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 16/40

SMPulseOut(PorPin, Delay)

This new command replaces the old one for the Buzzer, it is a generic command for all
PIC output pins, only for those that have been defined in the [RunPulsePinCode_Sub]
subroutine.

LoadTask(New State)

This new command loads a status number (SM2 module) into the task list in a
predetermined position which will be executed according to its priority by the Task
Switcher.

LoadDelayedTask(Delay, New State)

This new command loads a new task defined by a status number (module) of the SM2
that will run only in a given time defined by a Delay.

DeleteDelayedTask()

It clears from the SM2 task list the status that was previously loaded.

DeleteTask(Numer of State)

This new command deletes a status number (module) already entered in the task memory
of the SM2; Only the name of the state is written, the command will automatically search
for the task number.

SuspendAllTasks()

This command suspends (does not erase) all the recorded tasks of the SM2.

ResumeAllTasks()

This command resumes all recorded tasks on the SM2. But it does not prevent the tasks
from being written to the buffer.

SM2 Commands:

The Module 0 is used now for coding.

It is very easy to execute the operation of an SM2 module, only write the code in the
space reserved for it.

Often it is necessary to place a delay between 2 states (Modules) for example to give time
to see a display. Then a Virtual Delay is introduced. This function is performed with the
command:

SM2_NextStateDelay (250, SM2_TC74Read)

This NextState command gives the order to load the “SM2_ TC74Read” go to another
module but with a delay of 250 ms. In this case corresponding to a case of the demo
program, activate a sensor and wait 250ms to be active.

SM2_LoadTask(New State)

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 17/40

This new command loads a status number (module) into the task list in a predetermined
position that will be executed according to its priority by the Task Switcher.

SM2_DeleteTask(Numer of State)

This new command deletes a status number (module) already entered in the task
memory; Only the name of the state is written, the command will automatically search for
the task number.

SM2_SuspendAllTasks()

This command suspends (does not erase) all the recorded tasks of the SM2.

SM2_ResumeAllTasks()

This command resumes all recorded tasks.

SM2_LoadTaskST(Number of Task, Number of State2)

This command loads a state of SM2 into a task that is not defined for this module. Itis a
special case, it can be used very carefully only after much experience in this state
machine. This command could delete a default task. The reason for using this command
would be to load a module in a position of highest priority. In this case you could set a
high priority task blank (no defined state).

| will describe the code in as much detail as | can so that the beginner can understand how
this project is very different to linear programming.

INTERRUPT HANDLER:

The Timer2 and PR2 are used to generate an interrupt every 1ms, because it is easy to
configure and does not need any code to reload the timer in the interrupt handler.
Several timings have been prepared to generate future functions. The interrupt handler
can only be used for timers, counters and information flag. No code can be written in this
space.

Some functions have been described in tutorial 4.
1 Hz interrupt: (by the DS1307)

Interruption generated by the 1Hz signal of the DS1307.

' The Timer0O interrupt is used at High to Low edge interrupt.
If INTCONBitS_TMROIF = 1 Then

TOCONBits TMROON = 0 ' Stop the Timer0.

Nop

TMROL = 255 ' Reload the Timer(O for next interrupt.
TOCONBits TMROON = 1 ' Restart the Timer0.

INTCONBits TMROIF = 0

F DS1307 1s =1 ' External flag for DS1307 interrupt.
EndIf

On the LCD board the 1 Hz signal is not connected to the PIC.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 18/40

There was no PORTB pin available to make an interrupt, but it could be connected to
PORT4 corresponding to timerO external input.

By correctly setting the TimerO with a preset value of 255, with falling edge of the input
pin, a direct interruption can be obtained at each pulse of the 1 Hz signal.

This signal is not used for the moment but the code is available for the PDS user.

New Timers:

The new Timers allow you to activate some flags for special functions, such as user
functions or the reading of an analog input by the ADC module.

ADC Reading: (from Timer4msS)

In every Timer the ADC is started when the flag “F DisableADCInt” is clear.

If F DisableADCInt = 0 Then
ADCONObits GO DONE = 1 <= Start the AD conversion
EndIf

Waiting the interrupt bit of the ADC instead of the WR bit could save more than 10 uS
time for the interrupt handler (very important).

Inc TaskADC Timer ' Increment every 1 mS.
If TaskADC Timer = TaskADC Interval Then
TaskADC Timer = 0
If F DisableADCInt = 0 Then
ADCONQObits GO DONE = 1 ' Start an AD conversion.
EndIf
EndIf

If PIRIBits ADIF = 1 Then
PIR1IBits ADIF = 0

LoadTask (SM2 ADCaverage)
EndIf

A special code for debugging the ADC between interrupt and the average routine to
control the possibility of a lost ADC value. The calculation routines must be
synchronized with the interrupt “PIR1Bits_ADIF” bit, checking the value of the
ADCCounter. When the code runs well, the ADC debugging code could be removed to
improve the speed a little.

Input Aliasing filter:

When using an ADC, you should not forget to place an anti-aliasing filter (ADC
sampling X 2) in the ADC input, rather than 4th order. The impedance of the signal
source should be as low as possible so as not to interfere with the ADC's holding
capacitor time.

The schematic of the filter is simply an indication. The values correspond to the 250Hz
frequency of the ADC.

To measure a DC voltage, only a good RC filter (C = high value) is required.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 19/40

PWM LCD Backlight Timer: (BackLightTimer)

Inc TaskBackLight Timer ' Increment every 1 mS.
If TaskBackLight Timer = TaskBackLight Interval Then
TaskBackLight Timer = O
High bLCD BackLight
Set F PWMBackLight
PWMBLCounter = PWMBLCounterValue
EndIf
" Count down the PWM BackLight.
" Do every mS.
If F PWMBackLight = 1 Then

Dec PWMBLCounter ' Decrements the DelayCounter every 1mS.
If PWMBLCounter = 0 Then ' Check if delay counter reaches 0.
F PWMBackLight = 0 " Delay End, clear the delay FLAG.
Low bLCD BackLight
EndIf
EndIf

TaskTogagleFlagl Timer: (TaskToqgagleFlagl Timer)

" Toggle a flag for Blinking LEds. Generic Timer.

Inc TaskToggleFlagl Timer ' Increment every 1 mS.

If TaskToggleFlagl Timer = TaskToggleFlagl Interval Then
TaskToggleFlagl Timer = 0

Toggle F ToggleSignall ' 1 Hz Timer, to toggle some leds.
EndIf

Taskl Second Timer: (Task1S_Timer)

' 1 Second flag to read the clock/calendar
Inc TasklS Timer " Increment every 1 mS.
If TasklS Timer = TasklS Interval Then

TasklS Timer = 0

F TaskTimerlS =1 ' For Main state(05
EndIf

Pulse Delay: (Library Pulse command delay)

" Count every ImS.

If F PulseDelay = 1 Then ' The Delay is started.
Dec PulseCounter ' Decrements the DelayCounter every 1mS.
If PulseCounter = 0 Then " Check if delay counter reaches 0.
F PulseDelay = 0 " Delay End, clear the delay FLAG.
EndIf
EndIf

A delay is included in the library to generate a pulse on a PIC pin. We will see this later.

SM2 Virtual Delay: (SM2VDelayCounter)

' Virtual Delay 1mS for the SM2 States.

If F SM2VirtualDelay = 1 Then ' The VDelay is started.
Dec SM2VDelayCounter ' Decrements the SMlVDelayCounter every 1mS.
If SM2VDelayCounter = 0 Then ' Check if delay counter reaches 0.
F SM2VirtualDelay = 0 " Delay END, clear the Vdelay FLAG.
SM2Task[SM2DefVDelayTask] = SM2VDelayStatelIndex ' Loading Task.
EndIf
EndIf

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 20/40

SM2 Delayed State: (SM2TaskDelayCounter)

' Delay counter for the Delayed task.
If F SM2 TaskDelay = 1 Then
Dec SM2TaskDelayCounter
If SM2TaskDelayCounter = 0 Then
F SM2 TaskDelay = 0
SM2Task[SM2DefDelayedTask] = SM2DelayedState
EndIf
EndIf

A new command allows you to execute a task after a programmed delay.

User Virtual Delay: (explained yet. Delay1,2,3)

' Generic User Delay
" Count every 1ImS.

If F Delayl = 1 Then ' The Delay is started.
Dec DelaylCounter ' Decrements the DelayCounter every 1mS.
If DelaylCounter = 0 Then ' Check if delay counter reaches 0.
F Delayl = 0 ' Delay End, clear the delay FLAG.
EndIf
EndIf

STATE MACHINE 1: (Scheduler: SM1 Scheduler00.inc)

The scheduler of the state machine 1 consists of 3 parts:
1- The Tasks Switcher reads the buffer tasks to send them to the state machine 2.
2- The SM1 Scheduler connects the addresses of the states according to the state

variable.
3 - The security control of the Scheduler, warns of a failure in the number of states.

(1) Tasks Switcher:
SM2_IasksSwitcher:

If F SM2 SuspendAllTasks = 0 Then

SM2TaskLoop = 0 ' Always read the Task(0 first (highest priority).

Repeat
SM2StateIndex = SM2Task[SM2TaskLoop] " Read any Task.
If SM2StateIndex < 255 Then " Did This Task suspended?
SM2Task[SM2TaskLoop] = 255 ' YES, this task is valid.
" Read Task done.
GoTo StartStateMachine?2 ' Go to SM2 Scheduler
Vo o o o e e e e e e e e e
EndIf

' There 1is not a task,
' Check next position of the buffer.
Inc SM2TaskLoop
Until SM2TaskLoop = SM2TasksBufferLenght
EndIf
" No Task in the Buffer.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 21/40

The Task Switcher always starts reading the last areas of Task0. This way the tasks of
higher priority will always work first. You cannot inhibit a task, you can only delete it by
typing the value 255 into the buffer.

The task value, corresponding to the SM2 status number, is loaded into the
SM2Statelndex variable used by the SM2 Scheduler to go to the corresponding state, and
this task is then deleted from the buffer.

The flag “F_sM2_SuspendAllTasks” allows to suspend all tasks.

(2) SM1 Scheduler:

The task value, corresponding to the status number of SM1, is loaded into the Statelndex
variable that the Scheduler uses to go to the corresponding state. State Machine 1 works
as described in previous tutorials.

(3) Security of Scheduler SM1:

In case the programmer enters states and does not update the SM1_LABELS_LIST, an
error will be generated in the terminal: "SM1 STATE OUT OF RANGE:" showing the
wrong state number during the execution of the program.

STATEOQQ: (Initialisation of parameters and/or Title or the project)

User command: OpenADCANA4(),

Configure the ADC of channel 4 of the PIC on pin PORTA.5. Note the reading is not yet
activated.

User command: SM_DisableADCInt(),

Interrupts for the ADC are overridden. The ADC System does not work yet.
Temperature = 99

It is transmitted to the print job that the temperature reading is not ready.

' Deleting all Tasks
DeleteLoop = 0
Repeat
SM2Task[DeleteLoop] = 255
Inc Deleteloop
Until Deleteloop = SM2TasksBufferLenght

To initialize the system, you must cancel all tasks at startup.

User command: SetBackLightTime(Max)

In this module some sentences are sent to the LCD that need to be illuminated. This
command activates the backlight without delay.

The AMI18 LCD Shield is a commercial product at www.picshop.nl, it is fully compatible
with the Amicus18 Board. However the pin used for this function is PORTB.1. It is a badly
chosen output because a PWM function cannot be used to vary the brightness of the
LCD.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 22/40

The function P1C could be used but the Timer2 is busy performing the timing of the

interruption of the SM. There is no other solution than to perform my own PWM function.

Two levels of brightness are really needed; One maximum and another one to set the
minimum brightness for the LCD.

Using the available means, it is possible to realise a PWM with a resolution of 10 steps
(between 3 and 4 bits of resolution). This is sufficient for our application.

Two codes are needed in the interrupt routine.
e Activate the backlight every 10mS (available in the SM)

e Set a value of a 1ms resolution delay to perform the PWM.

" Start the PWM BackLight every 10mS
High LCD BackLight

Set F PWMBackLight

PWMBLCounter = PWMBLCounterValue

" Count down the PWM BackLight.
If F PWMBackLight = 1 Then

Dec PWMBLCounter ' Decrements the DelayCounter every 1msS.
If PWMBLCounter = 0 Then ' Check if delay counter reaches 0.
F PWMBackLight = 0 " Delay End, clear the delay FLAG.
Low LCD BackLight
EndIf
EndIf

Normally the order of the routines should be reversed in the interrupt routine,
compensated by writing (BackLight Time = pTime + 1)

SetBackLightTime(Max) Macro:

$define SetBackLightTime (pTime) '
$if pTime = Max !
BackLightTime = pTime + 1 !
PWMBLCounterValue = 11 !
Selse !
PWMBLCounterValue = 11 !
Sendif

If (pTime) value is different from the word "Max" the code corresponding to the time is not

pasted in the code. This time value is no longer required to activate the backlight
continuously.

The command activates the BackLight counter to 11. Since the counter has 10 stages to

decrement, the PWMBLCounter could never reach 0 so the BackLight is always on.
SetBackLightTime(3)

The time counter is set to 3 seconds.

Library command: HRSLStrg(TXTO0,AllChars,1)

This command is from the library of the State Machine available to the user of PDS. All
project texts are written at the end of the .bas file with a Cdata table but the HRSOut
command writes its table at the beginning of the program.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 23/40

For this reason a specific macro has been written. Special functions have been added to
this occasion. Calling a LABEL can save many bytes of code if it is used more than once.

TXTO: Label of the String to print.
AllChars: Print all the characters of the String (1 to 255).
1: Carriage Return + Line Feed number is sent to the terminal (0 to 255)

Example:

HRSLStrg(TXTO,AllChars,1)

It may be written more simply as HRSLStrg(TXTO, 1) if it is assumed that all characters
are written.

But you cannot write more code on the same line as it would generate a compile error.

SM command: NextStateDelay(3000,IncState)

This command has been described in an earlier chapter. As there is no more code to
execute, the information is given to the SM to go to the next state with a delay of 3000 ms.

User command: LCD_CLear()

This macro corresponds to the following code. It is equivalent to Cls.
Print $FE,1

Library command: PrintStrg(TXTO0,1,1,AlIChrs)
This command performs the same function as above but applies to the Print command of

the PDS.
Some parameters are initialisated.

SM UserFunctionFlags = 0

SM UserSystemFlags = 0

AllButtonsBitsDefects = %$11110000 ' NO button fails. Reset value.
ButtonFail = 0

STATEOQL: (Information of the project: LCD, ...)

Library command: HRSE2PStrg(Address,AllChars,1)

This command sends to the terminal the strings written by the Edata command in the
EEPROM memory.

Reading the IDLOCS:

This code reads the contents of the USER ID in the PIC. In this case the version of this
program is sent to the terminal.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV) June 2017 - 24/40

User command: CheckAlarm1Avaible()

This command allows a user to check if the data of the Alarm1 has been written in the
EEPROM memory.

Sdefine CheckAlarmlAvaible () GoSub CheckAlarmlAvaible Sub

CheckAlarmlAvaible Sub:
ALAvaible = ERead EEADRI AlarmlAvaible
If ALAvaible = $5A Then
F AlarmlAvaible =1
Else
F AlarmlAvaible = 0
EndIf
Return

The macro is written with a subroutine because it will be used more than once.
It is the same code for Alarm2.

Sdefine CheckAlarm2Avaible ()

Reading the Config Fuses:

The CONFIG2H byte of the Config Fuses is read to set the status of the Watchdog and
BrownOut.
STATEO2: (Check the DS1307 ackknowledge)

A new global variable has been defined to be used in this module and later.

Dim ReturnACK As Byte

DSl307_Present(ReturnACK)
If ReturnACK = 1 Then

HRSLStrg (TXT14,1) " "NACK DS1307 RTC devicel”
NextState (SM_Error_ NACK) ' The program demo cannot run.
Else
HRSLStrg (TXT13,1) " "The DS1307 Device is ready!"
NextState (SM_EnablelHz)
EndIf

Before proceeding with the program, it is essential to know if the DS1307 circuit is working
or connected properly. This function is performed by a command from the library that |
wrote some time ago.

There are 2 possible answers.
If the acknowledge received is incorrect, the State Machine is sent to an error module.

NextState(SM_Error_NACK)
If not, it will execute the code in a new module

NextState(SM_Enable1lHz)

STATEQO3: (Config the DS1307 to Output the 1Hz signal)

DS1307_WriteControl ($10010000, ReturnACK)
If ReturnACK = 1 Then

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 25/40

HRSLStrg (TXT16,1) ' "NACK DS1307 Write Control"
NextState (SM_Error NACK) ' Go to SM Error NACK State.
Else
AllButtons = 0
StartTimeOut (SM_AskForConfig, 10) ' Start Time Out for 10Sec
NextState (SM _ContrastSetup) ' Configuration of LCD contrast.
EndIf

The DS1307 circuit is configured to obtain 1Hz at the corresponding output that is sent to
the PIC PORTA.4 to generate an interrupt. After that the SM is sent to a contrast
adjustment menu. The contrast of this LCD is adjusted by software.

NextState(SM_ContrastSetup)

SM command: StartTimeOut(ASK_ForConfig,10)

When entering any menu where a key or a keyboard is read, a timeout is necessary to
return to the execution of the main program after some time without typing. The timeout
value is 10 seconds in this example. The most interesting thing is that the SM could be
sent to any destination as it is not a simple subroutine. The target module would then be
"ASK_ForConfig" in case of a timeout after 10 seconds.

SM command: NextState(SM_ContrastSetup)

This command sends the SM to a new menu to adjust the contrast.

StateOut()

Depending on the case it is necessary to define the parameters before executing the next
code. It is not always possible in the next module and will depend on its construction,
especially when there is a loop.

STATEO4: (Update Time & Date for the DS1307)

This module is responsible for writing the Date and Time data in the DS1307 circuit.

It will be called when the date and time need to be updated. These macros have been
updated in the library to introduce the Byte variables as well.

Once the clock update is done, it will go to the main module (SM_ReadTimeDate).

DS1307_WriteDate (VDayOfWeek, VDay, VMonth, VYear, ReturnACK)
DS1307_WriteTime (VHour, VMinute, 0, ReturnACK)

The Minute parameter is always equal to 0 to write.

STATEOS5: (Running Time & Date)

It is in the main module of the program where everything happens.

a9-,84-2817 AFril
1@:23:58 Sundaa

a
>

VDD

=
[

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 26/40

Transitional Input State:

LoadTask(SM2_PrintLCDLinel)

Prints the data currently available on line 1 of the LCD to prevent this line from being
blanked.

StopToggleConfig()

The LED blinks when the System is in configuration mode. This LED is cleared when you
return to normal status (status 5).

The activation time of the BackLight is defined. The TimeOut is deactivated, it is not
necessary in this code.

SetBackLightTime(5)
DisableTimeOut()

SM_EnableADCInt()
The ADC control system is initialized and interrupts are activated.

Static State:

The NACK errors of the clock and temperature circuits are controlled.

If F ErrorNACK DS1307 = 1 Then
F ErrorNACK DS1307 = 0
NextState(SM_DSl307Error_NACK)
GoTo ERROROSEXIT

EndIf

If F ErrorNACK TC74 = 1 Then
F ErrorNACK TC74 = 0
NextState (SM_TC74Error_ NACK)
GoTo ERROROSEXIT

EndIf

Every Second:

The main function of this module is to know the time every second and the date every
minute. The 1 Hz timing is generated by the interrupts system which is better than the 1Hz
input from the DS1307 circuit via the PORTA4 pin because the Tasks Switcher can
manage better the timing.

LoadTask(SM2_ReadTime)

Loading a Task to read the Time of the DS1307. The time is reached with the command:
DS1307_ReadTime(ReturnACK) in the module (SM2_ReadTime), which always verifies
the validity of the 12C communication by checking "ReturnACK".

To print the results on the LCD and also on the terminal the command is given to the SM2
to run this job after the 1 second interrupt.

Every Minute:
LoadTask(SM2_ReadDate)

This task is responsible for reading the date.

LoadTask(SM2_ChackAlarmState)

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 27/40

A request is done to execute a task every minute, in this case to check the activation
status of the alarms.

LoadTask(SM2_DatalToTerminal)

This task is responsible for sending the date and time to the terminal.

LoadDelayedTask(30000, SM2_TC74SetNormalMode)

Do not load all tasks at the same time every minute, a new deferred task is loaded in 30
seconds. You will begin reading the task by communicating with the temperature sensor
TC74. As the sensor is to be activated and read, it will require 3 states of the machine of
states # 2. Operation will be described below.

The activation time of the BackLight is set to 5 seconds:SetBackLightTime(5)

Next and every second, the time of the BackLight is decremented until deactivated. In this
case, to make the LCD slightly visible, a PWM of 30% is set to illuminate the LCD:
“PWMBLCounterValue = 3”.

Checking the pushbuttons:

This is a function that we will see in module 8. Each minute the fault is reset to re-check
the buttons.

AllButtonsBitsDefects = %$11110000
ButtonFail = 0

Reading the pushbuttons:

This device has 4 pushbuttons to perform the main tasks of the calendar. The reading of
these pushbuttons cannot be executed at the same time as the date and time readings. It
is important not to delay the SM. The reading is chosen at a time when no main task is
performed. In this way the tasks are divided over time.

PushButton 1:

This button causes a jump to the LCD contrast adjustment module. A TimeOut of 10 sec
is set in case no key is pressed. If the TimeOut is finished, the SM would return to this
same destination.

StartTimeOut(SM_ReadTimeDate,10)

To avoid problems with the pressed keys that are difficult to control in a menu, the
command is given to check if the button has been raised before going to the destination.
(Indirect Addressing)

NextindState(SM_ButtonsOFF2,SM_ContrastSetup)
PushButton 2:

This button allows you to go to the date/time or alarms configuration module. A TimeOut
of 10 sec is set in case no key is pressed. If the TimeOut is finished, the SM returns to this
same destination.

PushButton 3:

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 28/40

This button lets you go to the alarm status check module and activate the daily alarm 2.

PushButton 4:

This button allows you to go to this module to disable the alarms.

Alarms:

The alarms are controlled. If one alarm is activated then the SM will go directly to the
alarm module (SM_Alarm).

Transitional Ouput State:

No code

STATEOQOG6: (NACK error Module)

A warning of this error is sent to the LCD and the terminal. Any pushbutton may be
pressed to interrogate the DS1307 circuit again. If it fails again then the SM would return
to this module.

STATEOQY: (Configuration Time/Date or Alarms)

This menu allows you to choose the way to configure the calendar or alarms. It is a
somewhat peculiar system to make the most of SM.

When calling this module you have to define: AllButtons = 0
This value is recognized as reading the keyboard with a TimeOut of 10 seconds.

StartTimeOut(SM_ReadTimeDate,10)
NextindState(SM_ButtonsOFF,CallerState)

If the TimeOut is activated, it will return to the main module (5). The indirect address
command is used to read the pushbuttons.

CallerState
It is the generic information to inform the SM that it must return to this same module after
having read a pushbutton like a Gosub command.

STATEOQS8: (Check if all Buttons are OFF)

The system of reading the pushbuttons or of a keyboard behaves in 3 parts.

1- Check if the push buttons are open to follow.
2- Read any tight buttons.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 29/40

3- Wait until the push buttons are open to follow.
In this way a reading of a pushbutton or a keyboard will never fail.

Step 1: Check that the push buttons are open to follow.
GoSub ReadButtonsPORT_Sub ' Init & Read All Buttons.

The code written in a subroutine will be read twice. In this first reading all the inputs of the
pushbuttons are configured previously and then the value of all the bits input are read for
module SW_ButtonsOFF.

In the second reading in Step 3, the inputs are only read for module SW_ButtonsOFF2.

It is a very safe way to read a few inputs.

Then their values are controlled. According to the schematic of the LCD shield all the
pushbuttons hold a resistor to VDD. If all the buttons are open the corresponding value
will be %11111111 or 255 in decimal.

If ButtonsVirtualPORT = 255 Then
NextStateDelay(30,IncState) 'Delay 30mS to exit the state.
EndIf

It verifies the value of the virtual port containing all the input bits. If all the pushbuttons are
up, it goes to the next state with a delay of 30 ms. The other option, that is never
contemplated, is to have a broken button stuck. In this case the program would be locked
within an infinite loop in the SM.

To avoid this problem, and as an example every SM loop is counted and after passing 5
seconds a fault is generated. For that we need a little delay between readings.

StartDelayMS(30)
It is the code that will be used in 2 different modules.

CheckButtonsFail Sub:
Inc ButtonsOffCounter
If ButtonsOffCounter = 167 Then ' <= 167 x 30mS = 5 Seconds
ButtonsOffCounter = 0
CLL (2)
If ButtonsVirtualPORT.0 = 0 Then
ButtonsFail = 1
ElseIf ButtonsVirtualPORT.1
ButtonsFail = 2
ElseIf ButtonsVirtualPORT.2 = 0 Then
ButtonsFail = 3

0 Then

ElseIf ButtonsVirtualPORT.3 = 0 Then
ButtonsFail = 4
EndIf
NextState (SM _ReadTimeDate) ' Come back to Main Module.
EndIf
Return

Button 3 FAILS

@261 18 Sunday
e

1
(]
4
T

-1 RS

g B
| [) |

- D1

o @
[sf=]
T T

-| D4
- D5
- D&
- D7

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 30/40

STATEQ9: (Read all Buttons)

Step 2: Read the pushbuttons

With the help of a counter (KEYCounter), a debounce system is built; Count 4 equal
readings to generate a correct answer. Pressing a key loads a specific value into the
"AllButtons" variable.

If F_SW1=0Then ' Check Button 1.
AllButtons = 1
IncState()

After reading a key, it goes to the next state.

Reading & checking the Buttons.

ReadButtonsPORT Sub:
ANSEL = 0 " PORTA digital
TRISA = TRISA | %00001111 " SWO0 to F SW3 for input.
ReadButtons2PORT Sub:
If ButtonFail > 0 Then
SetBit AllButtonsBitsDefects,ButtonFail - 1 'Disable PushButton
EndIf
' All Buttons failed are saved in the AllButtonsBitsDefects buffer.
ButtonsVirtualPORT = PORTA | AllButtonsBitsDefects 'Read PushButtons
Return

SM command: CheckTimeOut()

This SM command checks if the Delay Time Out is finished and loads the new destination
for the SM.

STATE10: (Check if all Buttons are OFF2)

Step 3: Wait for all push buttons to be open.

It is the same routine as step 1 with a small difference. Once the key has been lifted and
given as valid, the SM is sent to a generic destination.

ReturnindState(0) 'Load the Return State defined by the caller.

The SM is sent to the module that requested execute state 8 (Step 1). It could be any
program module. Indirect addressing is used. The O means that there is not a delay.
The same code controls the fault of the pushbutton (pushbutton always pressed).

STATE11: (Get the value of Day of Week for calendar)

This is a menu to determine the day of the week.
Depending on the key pressed, a specific function is executed, incrementing,
decrementing, validating the value or reading the keyboard.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 31/40

In order to display a value at the beginning of the routine, it is necessary to send some
parameters compatible with the format, for example:

AllButtons = 3 ' Like the Button 3 pressed (+)

VDayOfWeek = 0 " Initialise parameter.
StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out for 10 seconds
NextState(SM_GetWeek) ' Start configuration.

And you can read the word "Sunday" on the LCD.
When you go to another menu, you have to start a 10-second TimeOut with the

command:
StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out for 10 seconds

STATE12: (Get the value of Day)

It is exactly the same structure as the previous one for Day.

STATE13: (Get the value of Month)

It is exactly the same structure as the previous one for Month.

STATE14: (Get the value of Year)

It is exactly the same structure as the previous one for Year.

STATE15: (Get the value of Hour)

It is exactly the same structure as the previous one for Hour.

STATE16: (Get the value of Minute)

It is exactly the same structure as the previous one for Minute.

As previously determined, the date and time or an alarm will be written.

STATEL7: (Contrast Setup)

oo

a
>

VDD

H o= Nt 0O~
S CXw BO0OOOAAEG

This is the main menu for adjusting the contrast of the ST7036 LCD. You can see that
there is a response different from the TimeOut as it comes from the Reset or the main
menu. If key 1 has been pressed it goes to the setting menu.

If F_MenuContrastFromReset = 1 Then
StartTimeOut(SM_AskForConfig,10) ' Start a Time Out
Else
StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out
EndIf

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 32/40

STATE18: (Adjust the Contrast)

Adjust the contrast value in real time by writing the value on the LCD to see the contrast

variation.

goll vz, gzazzsss

VDD

And at the end you press key 2 and go to another menu to record the value in the
EEPROM.

STATE19: (Save the Contrast to eeprom)

In this new menu you can choose whether or not to record the contrast value in the
EEPROM.

STATE?Z20: (General Alarm Menu)

Y 02, s5383585

2 e e e e e e e

4 vss
- vDD

This menu allows for enabling alarm 1 or 2 and to go to the corresponding module to set
the parameters.

STATEZ21: (Save Alarm parameters)

This menu allows a user to save the alarm parameters to the EEPROM memory.

STATE?22: (Alarm Warning)

When an alarm is triggered from the SM2 in the background it goes directly to this
module. To reset this alarm pressing any button is enough. As the alarms are routed
twice, a subroutine has been generated.

ClearAlarms Sub:
AllButtons = 0
If F Alarml = 1 Then
F Alarml = 0
EWrite EEADR1 AlarmlAvaible, [SFF] ' Erase the Alarml (Not avaible)
F AlarmlAvaible = 0
F EnableAlarml = O
EndIf
If F Alarm2 = 1 Then

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 33/40

F Alarm2 = 0

F EnableAlarm2z = 0
EndIf
StopToggleBuzzer ()
Low bAlarmlOut
Return

STATE?23: (Display Alarm 2)

The status of the alarm 2 is displayed and the daily alarm is activated.

' Clear the Alarm output

It is done by pressing push button number 3 in the main state “SM_ReadTimeDate”.

STATE?24: (Display Alarm 1)

The status of the alarm 1 is displayed and the general alarm is activated.

It is done by pressing push button number 3 in the main state “SM_ReadTimeDate”.

STATE?25: (Disable the Alarms)

This menu is called by the pushbutton 4 from the “SM_ReadTimeDate” and allows a user

to disable alarms 1 or 2 individually.

STATEZ26: (Check the TC74)

This code read the status of the TC74 temperature sensor.

STATEZ27: (TC74 NACK)

This code organizes the NACK error of the TC74 sensor. Press any button to check the

system again.

STATE MACHINE 2: (Scheduler: SM2 Scheduler00.inc)

SM2 Scheduler:

Amicus18 Tutorial-State Machine V1.0 Part5

By Alberto Freixanet (EA3AGYV)

June 2017 - 34/40

The task value, corresponding to the SM2 status number, is loaded in the SM2Statelndex
variable that the Scheduler uses to go to the corresponding state.

Security of Scheduler SM2:

In case the programmer enters new states and does not update the SM2_LABELS_LIST,
an error will be generated in the terminal: "SM2 STATE OUT OF RANGE:" and the status
number, during the execution of the program.

All states of the State Machine number 2 are running the Tasks.

SM2 STATEOQO: (Read Time of the DS1307 calendar/Clock) [SM2 ReadTime]

The time is read, if the communication is correct, the next task [SM2_PrintLCDLine2] is
loaded, otherwise an error is indicated by a flag (F_ErrorNACK_DS1307).

SM2 STATEOQO1: (Print Strings on the LCD line 1) [SM2 PrintLCDLinel]

This task sends the LCD some information as they arrive:
- Failure of a button.
- Day, Month, Year.
- Alarm enabled.
- Month name or temperature.

The date and temperature are printed every minute.

Alarms, if activated, are controlled every minute

The error message of a fault is printed if it is necessary.

The programmed alarm indication is printed on the right side of the LCD.

SM2 STATEOQOZ: (Print Strings on the LCD line 2) [SM2 PrintLCDLine2]

This task sends the LCD some information as it arrives:
- Hour, Minute, Second.
- Day of the Week or ADC result in Volts.

The line is printed every second.
The ADC result is printed on the right side of the line 2.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 35/40

SM2 STATEOQO3: (Check the Alarms) [SM2 CheckAlarmState]

This task checks the status of alarms every minute and resends a flag to the main
program if an alarm has been detected.

SM2 STATEOQO4: (Calculate the ADC values) [SM2 ADCaverage]

Checks if the synchronization with the ADC reading is correct, otherwise the new value is

rejected.
Inc ADCCounterOld
If ADCCounter <> ADCCounterOld Then
HRSLStrg (TXT2, 1) ' Send "ADC ERROR!" to the Terminal.
ADCCounter = 0
ADCCounterOld = 0
GoTo SM2 STATEO4EXIT ' Don't calculate/print the erroneous value.
EndIf
ADCCounterOld

ADCCounter

Send the DS1307 signal frequency

Saturday 27/05/2017 08:14:28

<= Error from SM2_STATEQ9
because the code execution time
is too long for the ADC timing.

Proteus simulation terminal

This task receives the read value of the ADC (ADC_ResultW) which is the equivalent of
ADRESH / ADRESL. This value is inserted into a circular array of Word variables
(NumberADCavesages. Then in each ADC reading a new value is added to the array.
And then the average of all values is calculated. This system needs more calculation but it
is the best one that | have been able to prove.

To reduce the calculation time | have removed a few lines of repeated code.

Circular Buffer:

ADC TrueAverage [TrueAverageHead] = ADC ResultW ' Load the ADC value

Inc TrueAverageHead

TrueAverageHead = TrueAverageHead & (NumberADCaverages - 1)
Averages:

| have tried several moving average system but | have always obtained some variations in
the results (imprecision). The best system is to record each value in a circular array and
perform the average at each reading. In this case you need to use the Maths32 compiler
that takes a lot of time. The number of averages must be a power of 2 to simplify the
circular buffer, 2, 4, 8, 16, 32 & 64.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 36/40

AverageLoop = 0

ADCToPrint = 0

Repeat
ADC Average = ADC TrueAverage [AverageLoop]
ADCToPrint = ADCToPrint + ADC Average <= Averages
Inc Averageloop

Until Averageloop = NumberADCaverages

Using only a maximum of 64 averages you can use a variable Word (ADCToPrint) saving
calculation time. (example for 3,3V power supply Amicus18 board)

ADC DecimalResult = 1023 * NumberADCaverages <= Averages

ADCResult = (ADCToPrint * 3300) / ADC DecimalResult

ADC IntegerResult = ADCResult / 1000

ADC DecimalResult = ADCResult // 1000
Also by checking the asm code, | realized that | could save many bytes by removing lines
from the code in assembler. To perform this trick it is necessary that the compiler has
already generated the Maths32 code. This is the reason for the false calculation, see the
DUMMYCAL label. See the code tricks in SM2_State04.

SM2 STATEOQOS: (Set the TC74 to Normal Mode) [SM2 TC74SetNormalMode]

The temperature sensor [I2C TC74 is not an easy circuit to use, it has its difficulties. Once
your exact protocol is known, this sensor works very well.

Before reading the TC74 sensor temperature, the sensor needs to be reconnected. This
sensor usually switches to a standby state when there is noise on the 12C bus, it does not
recognize the bus protocol or if it has been given the command to disconnect. This is the
case because the I°C is also in dialog with the DS1307 clock chip. (See my article in the
WIKI). For that it is disconnected after reading. Then an order is sent to the TC74 to move
to a working state (Normal Mode). Note that the command is used:

SM2_NextStateDelay(250,SM2_TC74Read).

The TC74 sensor needs 240 ms to go from standby to read status. The state machine will
load this new task after a time of 250 ms. At this time, it would be better not to read
another sensor on the 12C bus that could alter the new status of the TC74.

This command from the TC74 library, which | wrote for the WIKI, has been modified to be
compatible with the state machine.

SM2 STATEOQG: (Read the Temperature Sensor) [SM2 TC74Read]

Then the sensor temperature and bus control (ReturnACK) are read. The temperature and
polarity have already been calculated by this command.

SM2 STATEOQY: (Put the Sensor in Standby Mode) [SM2 TC74Close]

The TC74 sensor is of the SMT type, and is mounted very close to the LCD whose
BackLight heats it. Also it has a calendar by itself (see the datatsheet). A disable
command is sent.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 37/40

SM2 STATEOQS8: (Read Date of the DS1307 calendar/Clock) [SM2 ReadDate]

The date is reached with the command: DS1307_ReadDate(ReturnACK) and again
always verifying the validity of the 12C communication with "ReturnACK". Since the code
is not in the first line of the module.

)
>

- vop ||

4 02, ss8333885
T T

SM2 STATEOQ9: (Send Time/Date to Terminal) [SM2 DatalToTerminal]

Every minute, the date is sent to the terminal. Sending messages takes a lot of time due
to UART communication. In this case so as not to retrace or lose the data of the ADC
reading, the data is divided into 3 parts, recharging the same task with the counter trick.
When this task is completed, an order is sent to the SM2_Data2ToTerminal task. Another
solution would be to send the data at the speed of 230400 Bauds. This solution has been
tested on the Amicus18 board and works well.

SM2 STATE10: (Send ADC to Terminal) [SM2 Data2ToTerminall

Each minute, the value of the ADC is sent to the terminal.

SM2 STATE11: (Send temperature to Terminal) [SM2 TC74TempToTerminall

Every minute + 30 seconds, the temperature is sent to the terminal. Sending messages
takes a lot of time due to UART communication. In this case not to delay or lose the data
of the reading of the ADC, the message is divided into 2 parts, recharging the same task
with the counter trick.

AMICUS18 Board running at 80MHz:

| have been able to run the program with the Amicus18 board and the PIC18F25K20 at
80MHz with ADC readings at 333Hz (every 3mS). The calculation of Maths is done faster
which allows more time for other tasks. It would be opportune to eliminate delay due to the
LCD with 4-bit bus and 12C (100KHz) communications. It would be much better to use an
8-bit LCD and SPI communications. You could also configure the UART for 230400 baud.
This way you could try to operate the ADC at higher frequencies. If you did not have to
use the terminal (UART), which has been made for the demo, the benefits would be
greater. It has not been tested.

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 38/40

The Amicus18 board prepared for 80 MHz with the guidelines given in a previous chapter
works wonderfully. It is the ideal configuration for this state machine. | recommend using
this configuration for the whole series PIC18FxxK20, using my bootloader LSM V4.1 for
Xtal of 80MHz. In the "Bootloader" folder you will find different bootloaders for 80MHz.

CONCLUSION

The multitasking states machine is very easy to use.

I have tried to explain all the tricks that can be done with my state machine to carry out a
project. Surely there will be more to discover, it will depend on you and your imagination. |
think it is easier to program with this system with projects that allow it, of course.

| wish you all the best in your projects.

Enjoy the State Machine Multitasking System!
State Machine Part5.

Alberto Freixanet
05 June 2017

% STATE MACHINE
/ / ERA3AGV @

o—’z_mmuou
(ZERaRGY AMICUS18® waorotonbasic co k O

Powered by Proton Development Suite® Compiler of Crownhill Associates Limited®

STATE MACHINE PARTS
A Clock Calendar full project with the DS1307 & the TC74

A simple multi-tasking System

PIC®, MPLAB®, PICKit3® and |Clrau
Proton Development Suite® or |

pd and written by Alberto Freixanet.
BNt has been edited by John Drew.

ks State Machine.
Efructured method.

S smBeEEEEsl 1 his article substantially
chine. We will study the new

eommands that wi

Amicus18 Tutorial-State Machine V1.0 Parts By Alberto Freixanet (EA3AGYV) June 2017 - 39/40

Powered by Proton D

= 5

A Clock Calend

vriven By Aberto Frewxanet.
f— peen edited BY Jonn Drew .

sks State Machne.
structured method.

r'n f;ad\ilﬁeezrter:/iously in'troduced a very simple ‘multi tasking system. This aric\e substantaly
i e operation of the pre’ \y described state machine. We wil\ study the new
mmands that will allow us to write the tasks very easily.
un small programs in the packground oy \'\ghxe“'\'(\g
ogram. The \dea

ultitasking system is reserved to r
the main program of repetitive tasks and to simplify the writing of the user Pr
is torun a maximum number of routines when the P\C has no external inputs of outputs or \©
delay the less urgent in favor of the urgent code.
It is not an RTOS system, pecause the tasks are simple and short. A task started cannot be
mmer to obtain a

TaskSwitcher. This very strict structure allows 2 progral
ime Slicing system when the trming

interrupted by the
very fast system. It could approach the speed of 2 0
such as reading to the ADC every Ams.

h-- requirements aré very important

The m

Amicus18 Tutorial-S
-State Machine
V1.0 Parts By Alberto Freixanet (EA3AGYV)
June 2017 - 40/40

