
Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 1/40

AMICUS18®

www.protonbasic.co.uk

Powered by Proton Development Suite® Compiler of Crownhill Associates Limited©

STATE MACHINE PART5

A Clock Calendar full project with the DS1307 & the TC74

A simple multi-tasking System

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited©.

The project has been developed and written by Alberto Freixanet.

The document has been edited by John Drew.

Introduction:

We are going to study a full project demo made with my Multi-Tasks State Machine.

It is essential to move from a linear programming approach to a structured method.

Multi-Tasking System:

I have previously introduced a very simple multi tasking system. This article substantially

modifies the operation of the previously described state machine. We will study the new

commands that will allow us to write the tasks very easily.

The multitasking system is reserved to run small programs in the background by lightening

the main program of repetitive tasks and to simplify the writing of the user program. The idea

is to run a maximum number of routines when the PIC has no external inputs or outputs or to

delay the less urgent in favor of the urgent code.

It is not an RTOS system, because the tasks are simple and short. A task started cannot be

interrupted by the TaskSwitcher. This very strict structure allows a programmer to obtain a

very fast system. It could approach the speed of a Time Slicing system when the timing

requirements are very important such as reading to the ADC every 4ms.

Note:

The program has been specially designed to work with ADC reading at 250Hz (every 4ms)

so I have had to strictly comply with rules 1, 2, 3, 4, 6, 7, 10 and 11. You will see that the

tasks are as short as possible. I've had to optimize all the codes, using a few tricks. For less

demanding applications the task code could be longer and more standard.

http://www.protonbasic.co.uk/

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 2/40

The mulititasks system is reserved for the machine of states # 2. For that new rules have

been defined.

New Rules:

1- This State Machine is a large loop that can never stop.

2- It is forbidden to use the DelayMS compiler command or some loops to follow rule # 1.

3- Timing rule: (Time Main SM1 State + Time Task max) = (ADC Timing – 1ms). The ADC

result could be lost.

4- The State Machine must run at maximum speed to ensure the timing is correct. Take this

into account when writing the code.

5- You cannot use the 'GoTo' command to a destination that is outside the static code area

of a module.

6- The SM allows separation of the whole program into small autonomous modules. If a

single-module code fails, it could be either a single problem with this same code or badly

initialised parameters.

7- Do not delay the main code by inserting other long codes, better to use the Tasks System

in the background or/and split the code into several modules.

8- If the ADC timing of the chosen ADC is fast, the tasks will have to run faster as well.

9- The Tasks Switcher distributes the tasks according to their priority.

10- Tasks are automatically deleted from the buffer after they are assigned.

11- A task (JOB) could run in one state only or could be split into several states.

12- Tasks are always interspersed within the main program loop. This way you will not miss

the information that would be passed from a state to a task or back.

13- The SM would work better if the peripherals connected to the PIC will use the SPI bus. If

using an LCD display, preferably use the full 8-bit bus.

14- The PDS user must organize all the tasks of the program.

I remind you that the greatest quality of the state machine is the ease in which the code may

be extended and/or maintained. The code may be considered as a set of separate mini-

programs.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 3/40

The State Machine Diagram:

In this way the tasks are always intertwined with the main program. Which means only

one task runs at any one time.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 4/40

The Tasks Switcher Diagram:

Task Switcher :

The system of tasks that I have designed is not the most sophisticated but it seems very

robust, resisting interruptions every 1 ms.

Each time the Task Switcher goes into operation it starts loading Task0 if it is available

and then executing the other tasks.

All tasks can be inhibited at once. You can not inhibit a task individually, you can only

delete it.

Tasks should be written in a predetermined order for highest efficiency.

The most repetitive task would be the first in the list, followed by its associated tasks.

Then the tasks are written according to the urgency and in the order of execution. (very

important)

The Task Switcher is very simple and controls only 1 parameter viz Task valid. When the

task is loaded in the SM1 Scheduler it is deleted from the buffer, thus simplifying the

general operation. See the SM2 code

Definition of a Task:

A task is a code that runs on state machine 2. This task should be as short as possible.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 5/40

 A task will only work once and the Task Switcher deletes it from the task lists once

assigned.

 MAIN CODE TASKS

Figure 1: A background program divided into 3 tasks

Tasks are always intertwined with the main program (SM1).

To load a task, the SM2_LoadTask(State #M) command is used. Then all tasks will

also be defined by their number and /or name:

$Define Task4 4 ‘ SM2_STATE10

$Define Task5 5 ‘ SM2_STATE11

$Define Task6 6 ‘ SM2_STATE12

The SM2_STATE10 state will be called from the main program by the command:
LoadTask(State10)

The SM2_STATE10 state will call the next task by the command:
SM2_LoadTask(State11)

The SM2_STATE11 state will call the next task with the command:
 SM2_LoadTask (State12)

 And the SM2_STATE12 state ends the job.

All tasks always end without any order because they are executed only once.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 6/40

 MAIN CODE TASKS

Example of a call to individual tasks.

These tasks are called individually from the main program (SM1).

Each SM2 state will be assigned a fixed task that will not be changed during the entire

program, in the case of Task 0 the highest priority is assigned to the first state. The

code should be simple and fast to execute. Good task organisation is very important.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 7/40

 MAIN CODE TASKS

A lower number task can be executed before a higher number task.

Distribution of Tasks:

States of Machine # 2

 $define SM2_ReadTime 0

 $define SM2_PrintLCDLine1 1

 $define SM2_PrintLCDLine2 2

 $define SM2_CheckAlarmState 3

 $define SM2_ADCaverage 4

 $define SM2_TC74SetNormalMode 5

 $define SM2_TC74Read 6

 $define SM2_TC74Close 7

 $define SM2_ReadDate 8

 $define SM2_Data1ToTerminal 9

 $define SM2_Data2ToTerminal 10

 $define SM2_TC74TempToTerminal 11

 $define SM2_StateMax 12

The states (or Modules) of the SM1 or SM2 are not sorted in the order of execution,
because it is the scheduler with the variable "state" that organises the order of
execution.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 8/40

This means that modules may be transferable between programs.

I have written Module 4 (SM2_ADCaverage) in fifth position, but it works first in the
task list. The programmer will have to organize all tasks.

' Update the LABELS when you add a new State Machine 2 Module.

$define SM2_LABELS_LIST '

BranchL SM2StateIndex,[SM2_STATE00,SM2_STATE01,SM2_STATE02,_ '

 SM2_STATE03,SM2_STATE04,SM2_STATE05,SM2_STATE06,_ '

 SM2_STATE07,SM2_STATE08,SM2_STATE09,SM2_STATE10,_ '

 SM2_STATE11]

It is very useful to assign a name to each state of SM2. To change the order of states,

only the assigned numbers need to be routed.

For example, the value "SM2_PrintDateState" is loaded into the variable "SM2StateIndex"

so that the "BranchL" command directs the Program Counter to the corresponding label.

The "SM2_LABELS_LIST" macro allows you to update the new states without looking for

lines of code in the entire file.

Organization of SM2 tasks:

Each SM2 state will be assigned a fixed task that will not be changed throughout the

program.

This list is a reminder to compose the address commands of the different states.

' Define the Tasks Buffer length

 $define SM2TasksBufferLenght SM2_StateMax + 2

' Define the Number of tasks & the corresponding starting state.

' The position of the Task defines the priority.

' All SM2 states must to have a Task numer. (not the SM2_STATE00)

 '---

 ' User Tasks.

 $define Task0 0 ' SM2_ADCaverage (04) : (Higher priority)

 $define Task1 1 ' SM2_ReadTime (0)

 $define Task2 2 ' SM2_PrintLCDLine2 (2)

 $define Task3 3 ' SM2_ReadDate (8)

 $define Task4 4 ' SM2_PrintLCDLine1 (1)

 $define Task5 5 ' SM2_CheckAlarmState (3)

 $define Task6 6 ' SM2_Data1ToTerminal (9)

 $define Task7 7 ' SM2_Data2ToTerminal (10)

 $define Task8 8 ' SM2_TC74SetNormalMode (5)

 $define Task9 9 ' SM2_TC74Read (6)

 $define Task10 10 ' SM2_TC74Close (7)

 $define Task11 11 ' SM2_TC74TempToTerminal (11)

 '---

 ' State Machine Tasks.

 $define Task12 12 ' SM2 Virtual Delay

 $define Task13 13 ' SM2 Delayed Task : (Lower priority)

LoadDelayedTask(30000,SM2_TC74SetNormalMode)

This command, used basically in the main program (SM1), loads the state number (5) of

the SM2 into the task buffer position (13) because it is a late task. Its position is

predefined in the buffer as (13) by:

$define SM2DefDelayedState Task13 ' SM2 Delayed Task

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 9/40

SM2_NextStateDelay(250,SM2_TC74Read)

This command, used only in the task program (SM2), the status number (6) of the SM2 in

the task buffer, has an already defined position (12). Its position in the buffer is (12) by:

$define SM2DefVDelayState Task12 ' SM2 Virtual Delay

Very important:

Tasks should be organized in order of priority and execution with associated tasks. For

example:

 $define Task1 1 ' SM2_ReadTime (0)

 $define Task2 2 ' SM2_PrintLCDLine2 (2)

Task 1 and Task2 will be executed.

In the main program (SM1) you would write:

LoadTask(SM2_ReadTime)

In the program of tasks (SM2) would write:

SM2_STATE00: SM2_LoadTask(SM2_PrintLCDLine2)

SM2_STATE02: Nothing, the Task finished automatically. (SM2_PrintLCDLine2)

Task load command:

Once the task table is defined, the user will not have to remember the interleaving of

Tasks and States of SM2. The command will do it all automatically if the PDS user has

written all the tables correctly.

If you write to the state machine 1:

LoadTask(SM2_ReadTime)

 If you write to the state machine 2:

SM2_LoadTask(SM2_ReadTime)

The correspondence is made with the following table.

$define LoadStateTable(pNewState) '

$if pNewState = 0 '

 SM2Task[Task1] = 0 '

$elseif pNewState = 1 '

 SM2Task[Task4] = 1 '

$elseif pNewState = 2 '

 SM2Task[Task2] = 2 '

$elseif pNewState = 3 '

 SM2Task[Task5] = 3 '

$elseif pNewState = 4 '

 SM2Task[Task0] = 4 '

$elseif pNewState = 5 '

 SM2Task[Task8] = 5 '

$elseif pNewState = 6 '

 SM2Task[Task9] = 6 '

$elseif pNewState = 7 '

 SM2Task[Task10] = 7 '

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 10/40

$elseif pNewState = 8 '

 SM2Task[Task3] = 8 '

$elseif pNewState = 9 '

 SM2Task[Task6] = 9 '

$elseif pNewState = 10 '

 SM2Task[Task7] = 10 '

$elseif pNewState = 11 '

 SM2Task[Task11] = 11 '

$else '

$error "NO SUCH STATE IN SM2" '

$endif

The equivalent macro is:

$define SM2_LoadTask(pNewState) LoadStateTable(pNewState)

LoadTask(SM2_ReadTime)

LoadTask(State number#00) => SM2Task[Task1] = 0, writes the value 0 in the Task

array in position 1.

In the same way:

DeleteTask(SM2_ReadTime) => SM2Task[Task1] = 255, writes the value 255 in the

Task array in the position 1. The value 255 means a deleted task.

$define DeleteTask(pNewState) DeleteStateTable(pNewState)

The correspondence is made in the following table:

$define DeleteStateTable(pNewState) '

$if pNewState = 0 '

 SM2Task[Task1] = 255 '

$elseif pNewState = 1 '

 SM2Task[Task4] = 255 '

$elseif pNewState = 2 '

 SM2Task[Task2] = 255 '

$elseif pNewState = 3 '

 SM2Task[Task5] = 255 '

$elseif pNewState = 4 '

 SM2Task[Task0] = 255 '

$elseif pNewState = 5 '

 SM2Task[Task8] = 255 '

$elseif pNewState = 6 '

 SM2Task[Task9] = 255 '

$elseif pNewState = 7 '

 SM2Task[Task10] = 255 '

$elseif pNewState = 8 '

 SM2Task[Task3] = 255 '

$elseif pNewState = 9 '

 SM2Task[Task6] = 255 '

$elseif pNewState = 10 '

 SM2Task[Task7] = 255 '

$elseif pNewState = 11 '

 SM2Task[Task11] = 255 '

$else '

$error "NO SUCH STATE IN SM2" '

$endif

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 11/40

Organization of the program:

The program has been reorganized so that the state machine is in separate files. The user

program will be in 2 files (one code for SM1 and one for SM2). To update the System, you

only have to enter the new files without modifying the main program.

SM_PIC18F25K20.Inc

This file contains the data of the PIC and its compilation.

STM07.bas

The source file written by the user. Contains all the program corresponding to the machine

of states # 1.

STMachine02.Inc

The library of commands specific to the SM other commands. This is very useful for the

user, version 2.

STM07_SM2Code.bas

The source file written by the user. It contains all the program corresponding to the

machine of states # 2 (Tasks). See my article in the WIKI.

Amicus_ADCbeta.Inc

Library for all commands corresponding to the Digitial Analog Converter for the

PIC18F25K20 and PIC18F25K22 for the Amicus18 board. I fixed some errors in macros.

DS1307-H.Inc / DS1307-S.Inc

Library for all the commands corresponding to the time/calendar circuit I2C of the DS1307.

See my article in the WIKI.

LCD_ST7036.Inc

Library for all commands corresponding to the AMI18 LCD Shield (GEVO) compatible with

the Amicus18 board. See my article in the WIKI.

HRSOut_K40.Inc

Library to add 2 stop bits to the HRSOut compiler command to be compatible with the

CoolTerm_0 terminal used for my bootloader. It would not be necessary for another

bootloader or programmer. Remove or disable this file if not using the CoolTerm_0.

ORG_SyncBlock_K20.Inc

Library to synchronize the ORG command of the compiler with the ERASE blocks. Not

used at the moment.

TC74-H_beta.Inc/ TC74-S_beta.Inc

Library for all commands corresponding to the temperature sensor I2C TC74, adapted to

the state machine. See my article in the WIKI.

SM1_Scheduler01.Inc

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 12/40

Code corresponding to the Scheduler of the machine of states # 1, version 1.

SM2_Scheduler01.Inc

Code corresponding to the Scheduler of the machine of states # 2, version 1.

STM_Strings07.Inc

File corresponding to the texts used for this development for indicative purposes. You may

find this of value.

Characteristics of the project:

Hardware:

Amicus18 (PIC18F25K20) development board.

Clock Calendar clock device with DS1307 I2C.

Temperature system device with the TC74 I2C.

Ami18 LCD COG shield by EVO (ST7036) with White backlight LED.

4 pushbuttons for configuration settings.

1 Buzzer.

1 LED red or relay for alarm.

1 LED red for configuration.

My interface shield for buzzer and analog system for ADC.

Software:

Driver I2C for the DS1307 device, Bus speed 100 kHz.

Driver I2C for the TC74 device, Bus speed 100 kHz.

Driver for the LCD ST7036 bus 4 bits.

Contrast setting by software

Setting the clock: date, hour, minute.

Setting Alarm 1 daily: hour, minute.

 Setting Alarm 2: date, hour, minute.

Output for Buzzer (pulsed for alarm, single pulse for button pressed).

Output for BackLight LED by PWM.

Output for Alarm (relay for example)

Output LED for configuration state (pulsed).

TimeOut for all configuration states.

Reading Time and ADC result every second and print to the LCD.

Checking the alarms every minute

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 13/40

Reading Date and Temperature every minute to the LCD and Terminal.

Reading ADC with configurable counter from 4ms started by interrupt.

Average for 2, 4, 8, 16, 32, 64 ADC samples.

Optimised average and maths calculations for ADC readings.

Debug:

All number states of SM1 of the user program.

ADC system, checking if there is a lost sample.

Configuration of the Amicus18 board:

Bootloader:

I am using the AGV Bootloader LSM V4.1 for the PIC18F25K20 for 64MHz and 80MHz. It

is a very reliable and protected bootloader in the Boot Sector of the PIC. When choosing

this bootloader the PROTON_START_ADDRESS is automatically changed. The

Bootloader is available in the WIKI. You can find a copy in the "Bootloader" folder.

You can use the Amicus18 bootloader available in the IDE as well.

ICSP:

To use another bootloader you need to program the firmware in the PIC using the ICSP

bus. The board has some problems that need to be solved first.

- Place a 1N4148 diode in series with resistor R3 (1K or 2K7) (anode towards +

VDD) of the PIC reset input.

- Insert a wire between the pin 20 (VDD) of the PIC and the pin VDD of the ICSP

connector. Otherwise the PICkit3 / ICD3 will not see the PIC.

It would be possible to place a multilayer type 100nF ceramic capacitor between pins 20

and 8 of the PIC.

RB1:

The RB1 Bridge in position RB1.

XTAL:

The mounted xtal (16MHz) allows work up to 64MHz with the PLL.

If you need to work at a frequency of 80MHz, change the xtal to another of 20MHz and

use the PLL.

See Les's article in the WIKI. To use the PIC with FOSC> 64MHz, I advise not to charge

the outputs, preferably use a current less than 0.5mA.

I2C Clock for 80MHz:

There is an issue with the HBus_Bitrate Declare. When the Xtal = 80 is used the Rate is

divided by 4.

For Xtal 64MHz:

Declare HBus_Bitrate = 100

For Xtal 80MHz:

Declare HBus_Bitrate = 400

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 14/40

To have a 100 kHz result.

The Formula is: FClock = 1 / ((SSPADD + 1) x 4) / FOSC

Program settings:

Declare the Xtal:

For the simulation in Proteus I am using: Declare Xtal = 16

For the Amicus18 board I am using: Declare Xtal = 64

For the Amicus18 plate with Declare Portal = 80 MHz I am using the option:

$Define _Amicus18_80MHz_ at the beginning of the main program. This line will change

all the parameters.

Declare the Watchdog:

The compiler Watchdog must be disabled.

Declare Watchdog = OFF

The Watchdog settings in the Config Fuses are confusing. With WDTEN = OFF, it does

not mean that the WDT is disabled or rather it depends on the SWDTEN bit.

Although the watchdog is set in operation by the Config Fuses and the SWDTEN = 1 bit

for the states machine, a single Clrwdt instruction is really needed.

As the programmer must follow rule 1 (This State Machine is a large loop that can never

stop), the SM always returns to the same site where the Clrwdt instruction is placed. It is

the best watchdog system, the most reliable and allows you to save many lines of code. If

the state machine is too slow or stopped, the watchdog will be triggered.

Only at the start of the program are several instructions placed.

Initialization of the program:

When initializing the program it would be very opportune to know the reason for the start.

For that I have written a series of controls to know the reason for the System reset. It

would be useful for all programs.
 ' At Power up control the state of the PIC.

 ' Check the Reset Flag bit

 If RCONBits_RI = 0 Then

 RCONBits_RI = 1

 HRSOut "RESET",CR,LF

 F_Reset = 1 ' To see the error in the LCD display.

 EndIf

 ' Check the Watchdog Time-out Flag bit

 If RCONBits_TO = 0 Then

 HRSOut "WATCHDOG",CR,LF

 F_Watchdog = 1 ' To see the error in the LCD display.

 EndIf

 ' Check the Brown-out Reset Status bit

 If RCONBits_POR = 1 Then

 If RCONBits_BOR = 0 Then

 RCONBits_BOR = 1

 HRSOut "BROWN-OUT",CR,LF

 F_BrownOut = 1 ' To see the error in the LCD display.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 15/40

 EndIf

 EndIf

 ' Check the Power-on Reset Status bit

 If RCONBits_POR = 0 Then

 RCONBits_POR = 1

 HRSOut "POWER-ON",CR,LF

 EndIf

 ' Check the Stack pointer register

 If STKPTRBits_STKFUL = 1 Then

 STKPTRBits_STKFUL = 0

 HRSOut "STACK FULL",CR,LF

 F_StackFull = 1 ' To see the error in the LCD display.

 EndIf

 If STKPTRBits_STKUNF = 1 Then

 STKPTRBits_STKUNF = 0

 HRSOut "STACK UNDERFLOW",CR,LF

 F_StackUnderflow = 1 ' To see the error in the LCD display.

 EndIf

COMMANDS:

SM1 Commands:

The commands of the machine of states #1 are still valid, see the manuals Part2, Part3

and Part4.

SM1_State() – User command

Equivalent to the StateIndex value.

NextState(NewState) – User command

SM1 is informed of a new status change, equivalent to "Goto New State".

NextStateOverride(NewState) – User command

The SM1 is informed of the status change, replacing an equivalent command. It is used

with the "Return State" function.

NextStateReturn(Next State,Return State) – User command

Indirect addressing:

The SM1 is informed of the state change (Next State) and has to return to the "Return

State" state. It is used with the "Return State" function.

NextIndState(Next State,Return State) – User command

Indirect addressing:

The SM1 is informed of the state change (Next State) and has to return to the "Return

State" state. It is used with the "ReturnIndState (Delay)" command.

DisableReturnState() – User command

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 16/40

Indirect addressing:

Disable the Return State command deleting all flag parameters.

IncState() – User command

Increments the variable "StateIndex" to change of state. It occupies fewer bytes than the

(NextState (NewState) command.

DecState() – User command

Decrements the variable "StateIndex" to change of state. It occupies fewer bytes than the

Sync1mS() – User command

Synchronize the following code to the 1ms interrupt. It can be used in the middle of a

program. This command can delay the user code of a maximum of 0.99 ms.

StartTimeOut(NextState, Delay) – User command

This command works in conjunction with "NextState (NewState). It informs the SM1 that

at the end of the TimeOut it will have to go to the state defined as NextState after a delay

of seconds. Example:

 StartTimeOut(SM_AskForConfig,10) ' Start a Time Out for 10 seconds.

 NextState(SM_ContrastSetup) ' Menu Configuration of the LCD contrast.

StateInit() – State Machine Template

The "Transitional Input State" is initialized. SM and debug functions are incorporated if the

latter is activated.

StateInitEnd() – State Machine Template

It can incorporate a SM function if activated.

StateInitEnd(SyncOn) – State Machine Template

Synchronize the following code to the 1ms interrupt.

StateOut() – State Machine Template

Initializes the "Transitional Output State".

StateOutEnd() – State Machine Template

The "Transitional Output State" is initialized and debug functions are added if they are

activated.

SM_Return() – State Machine Template

Return to the SM1 scheduler. SM functions are added if activated.

SM_Return(RSOn) – State Machine Template

Return to the SM1 scheduler, used with the Return State function.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 17/40

SMPulseOut(PorPin, Delay)

This new command replaces the old one for the Buzzer, it is a generic command for all

PIC output pins, only for those that have been defined in the [RunPulsePinCode_Sub]

subroutine.

LoadTask(New State)

This new command loads a status number (SM2 module) into the task list in a

predetermined position which will be executed according to its priority by the Task

Switcher.

LoadDelayedTask(Delay, New State)

This new command loads a new task defined by a status number (module) of the SM2

that will run only in a given time defined by a Delay.

DeleteDelayedTask()

 It clears from the SM2 task list the status that was previously loaded.

DeleteTask(Numer of State)

This new command deletes a status number (module) already entered in the task memory

of the SM2; Only the name of the state is written, the command will automatically search

for the task number.

SuspendAllTasks()

This command suspends (does not erase) all the recorded tasks of the SM2.

ResumeAllTasks()

This command resumes all recorded tasks on the SM2. But it does not prevent the tasks

from being written to the buffer.

SM2 Commands:

The Module 0 is used now for coding.

It is very easy to execute the operation of an SM2 module, only write the code in the

space reserved for it.

Often it is necessary to place a delay between 2 states (Modules) for example to give time

to see a display. Then a Virtual Delay is introduced. This function is performed with the

command:

SM2_NextStateDelay(250, SM2_TC74Read)

This NextState command gives the order to load the “SM2_ TC74Read” go to another

module but with a delay of 250 ms. In this case corresponding to a case of the demo

program, activate a sensor and wait 250ms to be active.

SM2_LoadTask(New State)

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 18/40

This new command loads a status number (module) into the task list in a predetermined

position that will be executed according to its priority by the Task Switcher.

SM2_DeleteTask(Numer of State)

This new command deletes a status number (module) already entered in the task

memory; Only the name of the state is written, the command will automatically search for

the task number.

SM2_SuspendAllTasks()

This command suspends (does not erase) all the recorded tasks of the SM2.

SM2_ResumeAllTasks()

This command resumes all recorded tasks.

SM2_LoadTaskST(Number of Task, Number of State2)

This command loads a state of SM2 into a task that is not defined for this module. It is a

special case, it can be used very carefully only after much experience in this state

machine. This command could delete a default task. The reason for using this command

would be to load a module in a position of highest priority. In this case you could set a

high priority task blank (no defined state).

I will describe the code in as much detail as I can so that the beginner can understand how

this project is very different to linear programming.

INTERRUPT HANDLER:

The Timer2 and PR2 are used to generate an interrupt every 1ms, because it is easy to

configure and does not need any code to reload the timer in the interrupt handler.

Several timings have been prepared to generate future functions. The interrupt handler

can only be used for timers, counters and information flag. No code can be written in this

space.

 Some functions have been described in tutorial 4.

1 Hz interrupt: (by the DS1307)

Interruption generated by the 1Hz signal of the DS1307.

 ' The Timer0 interrupt is used at High to Low edge interrupt.

 If INTCONBits_TMR0IF = 1 Then

 T0CONBits_TMR0ON = 0 ' Stop the Timer0.

 Nop

 TMR0L = 255 ' Reload the Timer0 for next interrupt.

 T0CONBits_TMR0ON = 1 ' Restart the Timer0.

 INTCONBits_TMR0IF = 0

 F_DS1307_1S = 1 ' External flag for DS1307 interrupt.

 EndIf

On the LCD board the 1 Hz signal is not connected to the PIC.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 19/40

There was no PORTB pin available to make an interrupt, but it could be connected to

PORT4 corresponding to timer0 external input.

By correctly setting the Timer0 with a preset value of 255, with falling edge of the input

pin, a direct interruption can be obtained at each pulse of the 1 Hz signal.

This signal is not used for the moment but the code is available for the PDS user.

New Timers:

The new Timers allow you to activate some flags for special functions, such as user

functions or the reading of an analog input by the ADC module.

ADC Reading: (from Timer4mS)

In every Timer the ADC is started when the flag “F_DisableADCInt” is clear.

 If F_DisableADCInt = 0 Then

 ADCON0bits_GO_DONE = 1 <= Start the AD conversion

 EndIf

Waiting the interrupt bit of the ADC instead of the WR bit could save more than 10 uS

time for the interrupt handler (very important).

 Inc TaskADC_Timer ' Increment every 1 mS.

 If TaskADC_Timer = TaskADC_Interval Then

 TaskADC_Timer = 0

 If F_DisableADCInt = 0 Then

 ADCON0bits_GO_DONE = 1 ' Start an AD conversion.

 EndIf

 EndIf

 If PIR1Bits_ADIF = 1 Then

 PIR1Bits_ADIF = 0

 LoadTask(SM2_ADCaverage)

 EndIf

A special code for debugging the ADC between interrupt and the average routine to

control the possibility of a lost ADC value. The calculation routines must be

synchronized with the interrupt “PIR1Bits_ADIF” bit, checking the value of the

ADCCounter. When the code runs well, the ADC debugging code could be removed to

improve the speed a little.

Input Aliasing filter:

When using an ADC, you should not forget to place an anti-aliasing filter (ADC

sampling X 2) in the ADC input, rather than 4th order. The impedance of the signal

source should be as low as possible so as not to interfere with the ADC's holding

capacitor time.

The schematic of the filter is simply an indication. The values correspond to the 250Hz

frequency of the ADC.

To measure a DC voltage, only a good RC filter (C = high value) is required.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 20/40

PWM LCD Backlight Timer: (BackLightTimer)

 Inc TaskBackLight_Timer ' Increment every 1 mS.

 If TaskBackLight_Timer = TaskBackLight_Interval Then

 TaskBackLight_Timer = 0

 High bLCD_BackLight

 Set F_PWMBackLight

 PWMBLCounter = PWMBLCounterValue

 EndIf

 ' Count down the PWM BackLight.

 ' Do every mS.

 If F_PWMBackLight = 1 Then

 Dec PWMBLCounter ' Decrements the DelayCounter every 1mS.

 If PWMBLCounter = 0 Then ' Check if delay counter reaches 0.

 F_PWMBackLight = 0 ' Delay End, clear the delay FLAG.

 Low bLCD_BackLight

 EndIf

 EndIf

TaskToggleFlag1 Timer: (TaskToggleFlag1_Timer)

 ' Toggle a flag for Blinking LEds. Generic Timer.

 Inc TaskToggleFlag1_Timer ' Increment every 1 mS.

 If TaskToggleFlag1_Timer = TaskToggleFlag1_Interval Then

 TaskToggleFlag1_Timer = 0

 Toggle F_ToggleSignal1 ' 1 Hz Timer, to toggle some leds.

 EndIf

Task1 Second Timer: (Task1S_Timer)

 ' 1 Second flag to read the clock/calendar

 Inc Task1S_Timer ' Increment every 1 mS.

 If Task1S_Timer = Task1S_Interval Then

 Task1S_Timer = 0

 F_TaskTimer1S = 1 ' For Main state05

 EndIf

Pulse Delay: (Library Pulse command delay)

 ' Count every 1mS.

 If F_PulseDelay = 1 Then ' The Delay is started.

 Dec PulseCounter ' Decrements the DelayCounter every 1mS.

 If PulseCounter = 0 Then ' Check if delay counter reaches 0.

 F_PulseDelay = 0 ' Delay End, clear the delay FLAG.

 EndIf

 EndIf

A delay is included in the library to generate a pulse on a PIC pin. We will see this later.

SM2 Virtual Delay: (SM2VDelayCounter)

 ' Virtual Delay 1mS for the SM2 States.

 If F_SM2VirtualDelay = 1 Then ' The VDelay is started.

 Dec SM2VDelayCounter ' Decrements the SM1VDelayCounter every 1mS.

 If SM2VDelayCounter = 0 Then ' Check if delay counter reaches 0.

 F_SM2VirtualDelay = 0 ' Delay END, clear the Vdelay FLAG.

 SM2Task[SM2DefVDelayTask] = SM2VDelayStateIndex ' Loading Task.

 EndIf

 EndIf

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 21/40

SM2 Delayed State: (SM2TaskDelayCounter)

 ' Delay counter for the Delayed task.

 If F_SM2_TaskDelay = 1 Then

 Dec SM2TaskDelayCounter

 If SM2TaskDelayCounter = 0 Then

 F_SM2_TaskDelay = 0

 SM2Task[SM2DefDelayedTask] = SM2DelayedState

 EndIf

 EndIf

A new command allows you to execute a task after a programmed delay.

User Virtual Delay: (explained yet. Delay1,2,3)

 ' Generic User Delay

 ' Count every 1mS.

 If F_Delay1 = 1 Then ' The Delay is started.

 Dec Delay1Counter ' Decrements the DelayCounter every 1mS.

 If Delay1Counter = 0 Then ' Check if delay counter reaches 0.

 F_Delay1 = 0 ' Delay End, clear the delay FLAG.

 EndIf

 EndIf

STATE MACHINE 1: (Scheduler: SM1_Scheduler00.inc)

The scheduler of the state machine 1 consists of 3 parts:

1- The Tasks Switcher reads the buffer tasks to send them to the state machine 2.

2- The SM1 Scheduler connects the addresses of the states according to the state

variable.

3 - The security control of the Scheduler, warns of a failure in the number of states.

(1) Tasks Switcher:

SM2_TasksSwitcher:

 If F_SM2_SuspendAllTasks = 0 Then

 '---

 SM2TaskLoop = 0 ' Always read the Task0 first (highest priority).

 Repeat

 SM2StateIndex = SM2Task[SM2TaskLoop] ' Read any Task.

 If SM2StateIndex < 255 Then ' Did This Task suspended?

 '---

 SM2Task[SM2TaskLoop] = 255 ' YES, this task is valid.

 ' Read Task done.

 GoTo StartStateMachine2 ' Go to SM2 Scheduler

 '---

 EndIf

 ' There is not a task,

 ' Check next position of the buffer.

 Inc SM2TaskLoop

 Until SM2TaskLoop = SM2TasksBufferLenght

 EndIf

 ' No Task in the Buffer.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 22/40

The Task Switcher always starts reading the last areas of Task0. This way the tasks of

higher priority will always work first. You cannot inhibit a task, you can only delete it by

typing the value 255 into the buffer.

The task value, corresponding to the SM2 status number, is loaded into the

SM2StateIndex variable used by the SM2 Scheduler to go to the corresponding state, and

this task is then deleted from the buffer.

The flag “F_SM2_SuspendAllTasks” allows to suspend all tasks.

 (2) SM1 Scheduler:

The task value, corresponding to the status number of SM1, is loaded into the StateIndex

variable that the Scheduler uses to go to the corresponding state. State Machine 1 works

as described in previous tutorials.

(3) Security of Scheduler SM1:

In case the programmer enters states and does not update the SM1_LABELS_LIST, an

error will be generated in the terminal: "SM1 STATE OUT OF RANGE:" showing the

wrong state number during the execution of the program.

STATE00: (Initialisation of parameters and/or Title or the project)

User command: OpenADCAN4(),

Configure the ADC of channel 4 of the PIC on pin PORTA.5. Note the reading is not yet

activated.

User command: SM_DisableADCInt(),

Interrupts for the ADC are overridden. The ADC System does not work yet.

Temperature = 99

It is transmitted to the print job that the temperature reading is not ready.

 ' Deleting all Tasks

 DeleteLoop = 0

 Repeat

 SM2Task[DeleteLoop] = 255

 Inc DeleteLoop

 Until DeleteLoop = SM2TasksBufferLenght

To initialize the system, you must cancel all tasks at startup.

User command: SetBackLightTime(Max)

In this module some sentences are sent to the LCD that need to be illuminated. This

command activates the backlight without delay.

The AMI18 LCD Shield is a commercial product at www.picshop.nl, it is fully compatible

with the Amicus18 Board. However the pin used for this function is PORTB.1. It is a badly

chosen output because a PWM function cannot be used to vary the brightness of the

LCD.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 23/40

The function P1C could be used but the Timer2 is busy performing the timing of the

interruption of the SM. There is no other solution than to perform my own PWM function.

Two levels of brightness are really needed; One maximum and another one to set the

minimum brightness for the LCD.

Using the available means, it is possible to realise a PWM with a resolution of 10 steps

(between 3 and 4 bits of resolution). This is sufficient for our application.

Two codes are needed in the interrupt routine.

 Activate the backlight every 10mS (available in the SM)

 Set a value of a 1ms resolution delay to perform the PWM.

 ' Start the PWM BackLight every 10mS

 High LCD_BackLight

 Set F_PWMBackLight

 PWMBLCounter = PWMBLCounterValue

 ' Count down the PWM BackLight.

 If F_PWMBackLight = 1 Then

 Dec PWMBLCounter ' Decrements the DelayCounter every 1mS.

 If PWMBLCounter = 0 Then ' Check if delay counter reaches 0.

 F_PWMBackLight = 0 ' Delay End, clear the delay FLAG.

 Low LCD_BackLight

 EndIf

 EndIf

Normally the order of the routines should be reversed in the interrupt routine,

compensated by writing (BackLight Time = pTime + 1)

SetBackLightTime(Max) Macro:

$define SetBackLightTime(pTime) '

 $if pTime = Max '

 BackLightTime = pTime + 1 '

 PWMBLCounterValue = 11 '

 $else '

 PWMBLCounterValue = 11 '

 $endif

If (pTime) value is different from the word "Max" the code corresponding to the time is not

pasted in the code. This time value is no longer required to activate the backlight

continuously.

The command activates the BackLight counter to 11. Since the counter has 10 stages to

decrement, the PWMBLCounter could never reach 0 so the BackLight is always on.

SetBackLightTime(3)

The time counter is set to 3 seconds.

Library command: HRSLStrg(TXT0,AllChars,1)

This command is from the library of the State Machine available to the user of PDS. All

project texts are written at the end of the .bas file with a Cdata table but the HRSOut

command writes its table at the beginning of the program.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 24/40

For this reason a specific macro has been written. Special functions have been added to

this occasion. Calling a LABEL can save many bytes of code if it is used more than once.

TXT0: Label of the String to print.

AllChars: Print all the characters of the String (1 to 255).

1: Carriage Return + Line Feed number is sent to the terminal (0 to 255)

Example:

HRSLStrg(TXT0,AllChars,1)

It may be written more simply as HRSLStrg(TXT0, 1) if it is assumed that all characters

are written.

But you cannot write more code on the same line as it would generate a compile error.

SM command: NextStateDelay(3000,IncState)

This command has been described in an earlier chapter. As there is no more code to

execute, the information is given to the SM to go to the next state with a delay of 3000 ms.

User command: LCD_CLear()

This macro corresponds to the following code. It is equivalent to Cls.

Print $FE,1

Library command: PrintStrg(TXT0,1,1,AllChrs)

This command performs the same function as above but applies to the Print command of

the PDS.

Some parameters are initialisated.

 SM_UserFunctionFlags = 0

 SM_UserSystemFlags = 0

 AllButtonsBitsDefects = %11110000 ' NO button fails. Reset value.

 ButtonFail = 0

STATE01: (Information of the project: LCD, …)

Library command: HRSE2PStrg(Address,AllChars,1)

This command sends to the terminal the strings written by the Edata command in the

EEPROM memory.

Reading the IDLOCS:

This code reads the contents of the USER ID in the PIC. In this case the version of this

program is sent to the terminal.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 25/40

User command: CheckAlarm1Avaible()

This command allows a user to check if the data of the Alarm1 has been written in the

EEPROM memory.

$define CheckAlarm1Avaible() GoSub CheckAlarm1Avaible_Sub

CheckAlarm1Avaible_Sub:

 ALAvaible = ERead EEADR1_Alarm1Avaible

 If ALAvaible = $5A Then

 F_Alarm1Avaible = 1

 Else

 F_Alarm1Avaible = 0

 EndIf

 Return

The macro is written with a subroutine because it will be used more than once.

It is the same code for Alarm2.

$define CheckAlarm2Avaible()

Reading the Config Fuses:

The CONFIG2H byte of the Config Fuses is read to set the status of the Watchdog and
BrownOut.

STATE02: (Check the DS1307 ackknowledge)

A new global variable has been defined to be used in this module and later.

Dim ReturnACK As Byte

 DS1307_Present(ReturnACK)

 If ReturnACK = 1 Then

 HRSLStrg(TXT14,1) ' "NACK DS1307 RTC device!"

 NextState(SM_Error_NACK) ' The program demo cannot run.

 Else

 HRSLStrg(TXT13,1) ' "The DS1307 Device is ready!"

 NextState(SM_Enable1Hz)

 EndIf

Before proceeding with the program, it is essential to know if the DS1307 circuit is working

or connected properly. This function is performed by a command from the library that I

wrote some time ago.

There are 2 possible answers.

If the acknowledge received is incorrect, the State Machine is sent to an error module.

NextState(SM_Error_NACK)

If not, it will execute the code in a new module

NextState(SM_Enable1Hz)

STATE03: (Config the DS1307 to Output the 1Hz signal)

 DS1307_WriteControl(%10010000,ReturnACK)

 If ReturnACK = 1 Then

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 26/40

 HRSLStrg(TXT16,1) ' "NACK DS1307 Write Control"

 NextState(SM_Error_NACK)' Go to SM_Error_NACK State.

 Else

 AllButtons = 0

 StartTimeOut(SM_AskForConfig,10) ' Start Time Out for 10Sec

 NextState(SM_ContrastSetup)' Configuration of LCD contrast.

 EndIf

The DS1307 circuit is configured to obtain 1Hz at the corresponding output that is sent to

the PIC PORTA.4 to generate an interrupt. After that the SM is sent to a contrast

adjustment menu. The contrast of this LCD is adjusted by software.

NextState(SM_ContrastSetup)

SM command: StartTimeOut(ASK_ForConfig,10)

When entering any menu where a key or a keyboard is read, a timeout is necessary to

return to the execution of the main program after some time without typing. The timeout

value is 10 seconds in this example. The most interesting thing is that the SM could be

sent to any destination as it is not a simple subroutine. The target module would then be

"ASK_ForConfig" in case of a timeout after 10 seconds.

SM command: NextState(SM_ContrastSetup)

This command sends the SM to a new menu to adjust the contrast.

StateOut()

Depending on the case it is necessary to define the parameters before executing the next

code. It is not always possible in the next module and will depend on its construction,

especially when there is a loop.

STATE04: (Update Time & Date for the DS1307)

This module is responsible for writing the Date and Time data in the DS1307 circuit.

It will be called when the date and time need to be updated. These macros have been

updated in the library to introduce the Byte variables as well.

Once the clock update is done, it will go to the main module (SM_ReadTimeDate).

DS1307_WriteDate(VDayOfWeek, VDay, VMonth, VYear, ReturnACK)

DS1307_WriteTime(VHour, VMinute, 0, ReturnACK)

The Minute parameter is always equal to 0 to write.

STATE05: (Running Time & Date)

It is in the main module of the program where everything happens.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 27/40

Transitional Input State:

LoadTask(SM2_PrintLCDLine1)

Prints the data currently available on line 1 of the LCD to prevent this line from being
blanked.

StopToggleConfig()

The LED blinks when the System is in configuration mode. This LED is cleared when you
return to normal status (status 5).

The activation time of the BackLight is defined. The TimeOut is deactivated, it is not

necessary in this code.

SetBackLightTime(5)

DisableTimeOut()

SM_EnableADCInt()

The ADC control system is initialized and interrupts are activated.

Static State:

The NACK errors of the clock and temperature circuits are controlled.
 If F_ErrorNACK_DS1307 = 1 Then

 F_ErrorNACK_DS1307 = 0

 NextState(SM_DS1307Error_NACK)

 GoTo ERROR05EXIT

 EndIf

 If F_ErrorNACK_TC74 = 1 Then

 F_ErrorNACK_TC74 = 0

 NextState(SM_TC74Error_NACK)

 GoTo ERROR05EXIT

 EndIf

Every Second:

The main function of this module is to know the time every second and the date every

minute. The 1 Hz timing is generated by the interrupts system which is better than the 1Hz

input from the DS1307 circuit via the PORTA4 pin because the Tasks Switcher can

manage better the timing.

LoadTask(SM2_ReadTime)

Loading a Task to read the Time of the DS1307. The time is reached with the command:

DS1307_ReadTime(ReturnACK) in the module (SM2_ReadTime), which always verifies

the validity of the I2C communication by checking "ReturnACK".

To print the results on the LCD and also on the terminal the command is given to the SM2

to run this job after the 1 second interrupt.

Every Minute:

LoadTask(SM2_ReadDate)

This task is responsible for reading the date.

LoadTask(SM2_ChackAlarmState)

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 28/40

A request is done to execute a task every minute, in this case to check the activation

status of the alarms.

LoadTask(SM2_Data1ToTerminal)

This task is responsible for sending the date and time to the terminal.

LoadDelayedTask(30000, SM2_TC74SetNormalMode)

Do not load all tasks at the same time every minute, a new deferred task is loaded in 30

seconds. You will begin reading the task by communicating with the temperature sensor

TC74. As the sensor is to be activated and read, it will require 3 states of the machine of

states # 2. Operation will be described below.

The activation time of the BackLight is set to 5 seconds:SetBackLightTime(5)

Next and every second, the time of the BackLight is decremented until deactivated. In this

case, to make the LCD slightly visible, a PWM of 30% is set to illuminate the LCD:

“PWMBLCounterValue = 3”.

Checking the pushbuttons:

This is a function that we will see in module 8. Each minute the fault is reset to re-check

the buttons.

 AllButtonsBitsDefects = %11110000

 ButtonFail = 0

Reading the pushbuttons:

This device has 4 pushbuttons to perform the main tasks of the calendar. The reading of

these pushbuttons cannot be executed at the same time as the date and time readings. It

is important not to delay the SM. The reading is chosen at a time when no main task is

performed. In this way the tasks are divided over time.

PushButton 1:

This button causes a jump to the LCD contrast adjustment module. A TimeOut of 10 sec

is set in case no key is pressed. If the TimeOut is finished, the SM would return to this

same destination.

StartTimeOut(SM_ReadTimeDate,10)

To avoid problems with the pressed keys that are difficult to control in a menu, the

command is given to check if the button has been raised before going to the destination.

(Indirect Addressing)

NextIndState(SM_ButtonsOFF2,SM_ContrastSetup)

PushButton 2:

This button allows you to go to the date/time or alarms configuration module. A TimeOut

of 10 sec is set in case no key is pressed. If the TimeOut is finished, the SM returns to this

same destination.

PushButton 3:

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 29/40

This button lets you go to the alarm status check module and activate the daily alarm 2.

PushButton 4:

This button allows you to go to this module to disable the alarms.

Alarms:

The alarms are controlled. If one alarm is activated then the SM will go directly to the

alarm module (SM_Alarm).

Transitional Ouput State:

No code

STATE06: (NACK error Module)

A warning of this error is sent to the LCD and the terminal. Any pushbutton may be

pressed to interrogate the DS1307 circuit again. If it fails again then the SM would return

to this module.

STATE07: (Configuration Time/Date or Alarms)

This menu allows you to choose the way to configure the calendar or alarms. It is a

somewhat peculiar system to make the most of SM.

When calling this module you have to define: AllButtons = 0

This value is recognized as reading the keyboard with a TimeOut of 10 seconds.

StartTimeOut(SM_ReadTimeDate,10)

NextIndState(SM_ButtonsOFF,CallerState)

If the TimeOut is activated, it will return to the main module (5). The indirect address

command is used to read the pushbuttons.

CallerState

It is the generic information to inform the SM that it must return to this same module after

having read a pushbutton like a Gosub command.

STATE08: (Check if all Buttons are OFF)

The system of reading the pushbuttons or of a keyboard behaves in 3 parts.

1- Check if the push buttons are open to follow.

2- Read any tight buttons.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 30/40

3- Wait until the push buttons are open to follow.

In this way a reading of a pushbutton or a keyboard will never fail.

Step 1: Check that the push buttons are open to follow.

GoSub ReadButtonsPORT_Sub ' Init & Read All Buttons.

The code written in a subroutine will be read twice. In this first reading all the inputs of the

pushbuttons are configured previously and then the value of all the bits input are read for

module SW_ButtonsOFF.

In the second reading in Step 3, the inputs are only read for module SW_ButtonsOFF2.

It is a very safe way to read a few inputs.

Then their values are controlled. According to the schematic of the LCD shield all the

pushbuttons hold a resistor to VDD. If all the buttons are open the corresponding value

will be %11111111 or 255 in decimal.

 If ButtonsVirtualPORT = 255 Then

 NextStateDelay(30,IncState) ' Delay 30mS to exit the state.

 EndIf

It verifies the value of the virtual port containing all the input bits. If all the pushbuttons are

up, it goes to the next state with a delay of 30 ms. The other option, that is never

contemplated, is to have a broken button stuck. In this case the program would be locked

within an infinite loop in the SM.

To avoid this problem, and as an example every SM loop is counted and after passing 5

seconds a fault is generated. For that we need a little delay between readings.

StartDelayMS(30)

It is the code that will be used in 2 different modules.

CheckButtonsFail_Sub:

 Inc ButtonsOffCounter

 If ButtonsOffCounter = 167 Then ' <= 167 x 30mS = 5 Seconds

 ButtonsOffCounter = 0

 CLL(2)

 If ButtonsVirtualPORT.0 = 0 Then

 ButtonsFail = 1

 ElseIf ButtonsVirtualPORT.1 = 0 Then

 ButtonsFail = 2

 ElseIf ButtonsVirtualPORT.2 = 0 Then

 ButtonsFail = 3

 ElseIf ButtonsVirtualPORT.3 = 0 Then

 ButtonsFail = 4

 EndIf

 NextState(SM_ReadTimeDate) ' Come back to Main Module.

 EndIf

 Return

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 31/40

STATE09: (Read all Buttons)

Step 2: Read the pushbuttons

With the help of a counter (KEYCounter), a debounce system is built; Count 4 equal

readings to generate a correct answer. Pressing a key loads a specific value into the

"AllButtons" variable.

If F_SW1 = 0 Then ' Check Button 1.
 AllButtons = 1
 IncState()

After reading a key, it goes to the next state.

Reading & checking the Buttons.

ReadButtonsPORT_Sub:

 ANSEL = 0 ' PORTA digital

 TRISA = TRISA | %00001111 ' SW0 to F_SW3 for input.

ReadButtons2PORT_Sub:

 If ButtonFail > 0 Then

 SetBit AllButtonsBitsDefects,ButtonFail - 1 'Disable PushButton

 EndIf

 ' All Buttons failed are saved in the AllButtonsBitsDefects buffer.

 ButtonsVirtualPORT = PORTA | AllButtonsBitsDefects 'Read PushButtons

 Return

SM command: CheckTimeOut()

This SM command checks if the Delay Time Out is finished and loads the new destination

for the SM.

STATE10: (Check if all Buttons are OFF2)

Step 3: Wait for all push buttons to be open.

It is the same routine as step 1 with a small difference. Once the key has been lifted and

given as valid, the SM is sent to a generic destination.

ReturnIndState(0) ' Load the Return State defined by the caller.

The SM is sent to the module that requested execute state 8 (Step 1). It could be any

program module. Indirect addressing is used. The 0 means that there is not a delay.

The same code controls the fault of the pushbutton (pushbutton always pressed).

STATE11: (Get the value of Day of Week for calendar)

This is a menu to determine the day of the week.

Depending on the key pressed, a specific function is executed, incrementing,

decrementing, validating the value or reading the keyboard.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 32/40

In order to display a value at the beginning of the routine, it is necessary to send some

parameters compatible with the format, for example:

 AllButtons = 3 ' Like the Button 3 pressed (+)

 VDayOfWeek = 0 ' Initialise parameter.

 StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out for 10 seconds

 NextState(SM_GetWeek) ' Start configuration.

And you can read the word "Sunday" on the LCD.

When you go to another menu, you have to start a 10-second TimeOut with the

command:

 StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out for 10 seconds

STATE12: (Get the value of Day)

It is exactly the same structure as the previous one for Day.

STATE13: (Get the value of Month)

It is exactly the same structure as the previous one for Month.

STATE14: (Get the value of Year)

It is exactly the same structure as the previous one for Year.

STATE15: (Get the value of Hour)

It is exactly the same structure as the previous one for Hour.

STATE16: (Get the value of Minute)

It is exactly the same structure as the previous one for Minute.

As previously determined, the date and time or an alarm will be written.

STATE17: (Contrast Setup)

This is the main menu for adjusting the contrast of the ST7036 LCD. You can see that

there is a response different from the TimeOut as it comes from the Reset or the main

menu. If key 1 has been pressed it goes to the setting menu.

 If F_MenuContrastFromReset = 1 Then

 StartTimeOut(SM_AskForConfig,10) ' Start a Time Out

 Else

 StartTimeOut(SM_ReadTimeDate,10) ' Start a Time Out

 EndIf

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 33/40

STATE18: (Adjust the Contrast)

Adjust the contrast value in real time by writing the value on the LCD to see the contrast

variation.

And at the end you press key 2 and go to another menu to record the value in the

EEPROM.

STATE19: (Save the Contrast to eeprom)

In this new menu you can choose whether or not to record the contrast value in the

EEPROM.

STATE20: (General Alarm Menu)

This menu allows for enabling alarm 1 or 2 and to go to the corresponding module to set

the parameters.

STATE21: (Save Alarm parameters)

This menu allows a user to save the alarm parameters to the EEPROM memory.

STATE22: (Alarm Warning)

When an alarm is triggered from the SM2 in the background it goes directly to this

module. To reset this alarm pressing any button is enough. As the alarms are routed

twice, a subroutine has been generated.

 ClearAlarms_Sub:

 AllButtons = 0

 If F_Alarm1 = 1 Then

 F_Alarm1 = 0

 EWrite EEADR1_Alarm1Avaible,[$FF] ' Erase the Alarm1(Not avaible)

 F_Alarm1Avaible = 0

 F_EnableAlarm1 = 0

 EndIf

 If F_Alarm2 = 1 Then

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 34/40

 F_Alarm2 = 0

 F_EnableAlarm2 = 0

 EndIf

 StopToggleBuzzer()

 Low bAlarm1Out ' Clear the Alarm output

 Return

STATE23: (Display Alarm 2)

The status of the alarm 2 is displayed and the daily alarm is activated.

It is done by pressing push button number 3 in the main state “SM_ReadTimeDate”.

STATE24: (Display Alarm 1)

The status of the alarm 1 is displayed and the general alarm is activated.

It is done by pressing push button number 3 in the main state “SM_ReadTimeDate”.

STATE25: (Disable the Alarms)

This menu is called by the pushbutton 4 from the “SM_ReadTimeDate” and allows a user

to disable alarms 1 or 2 individually.

STATE26: (Check the TC74)

This code read the status of the TC74 temperature sensor.

STATE27: (TC74 NACK)

This code organizes the NACK error of the TC74 sensor. Press any button to check the

system again.

STATE MACHINE 2: (Scheduler: SM2_Scheduler00.inc)

SM2 Scheduler:

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 35/40

The task value, corresponding to the SM2 status number, is loaded in the SM2StateIndex

variable that the Scheduler uses to go to the corresponding state.

Security of Scheduler SM2:

In case the programmer enters new states and does not update the SM2_LABELS_LIST,

an error will be generated in the terminal: "SM2 STATE OUT OF RANGE:" and the status

number, during the execution of the program.

 All states of the State Machine number 2 are running the Tasks.

SM2_STATE00: (Read Time of the DS1307 calendar/Clock) [SM2_ReadTime]

The time is read, if the communication is correct, the next task [SM2_PrintLCDLine2] is

loaded, otherwise an error is indicated by a flag (F_ErrorNACK_DS1307).

SM2_STATE01: (Print Strings on the LCD line 1) [SM2_PrintLCDLine1]

This task sends the LCD some information as they arrive:

- Failure of a button.

- Day, Month, Year.

- Alarm enabled.

- Month name or temperature.

The date and temperature are printed every minute.

Alarms, if activated, are controlled every minute

The error message of a fault is printed if it is necessary.

The programmed alarm indication is printed on the right side of the LCD.

SM2_STATE02: (Print Strings on the LCD line 2) [SM2_PrintLCDLine2]

This task sends the LCD some information as it arrives:

- Hour, Minute, Second.

- Day of the Week or ADC result in Volts.

The line is printed every second.

The ADC result is printed on the right side of the line 2.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 36/40

SM2_STATE03: (Check the Alarms) [SM2_CheckAlarmState]

This task checks the status of alarms every minute and resends a flag to the main

program if an alarm has been detected.

SM2_STATE04: (Calculate the ADC values) [SM2_ADCaverage]

Checks if the synchronization with the ADC reading is correct, otherwise the new value is

rejected.
 Inc ADCCounterOld

 If ADCCounter <> ADCCounterOld Then

 HRSLStrg(TXT2,1) ' Send "ADC ERROR!" to the Terminal.

 ADCCounter = 0

 ADCCounterOld = 0

 GoTo SM2_STATE04EXIT ' Don't calculate/print the erroneous value.

 EndIf

 ADCCounterOld = ADCCounter

<= Error from SM2_STATE09
because the code execution time
is too long for the ADC timing.

Proteus simulation terminal

This task receives the read value of the ADC (ADC_ResultW) which is the equivalent of

ADRESH / ADRESL. This value is inserted into a circular array of Word variables

(NumberADCavesages. Then in each ADC reading a new value is added to the array.

And then the average of all values is calculated. This system needs more calculation but it

is the best one that I have been able to prove.

To reduce the calculation time I have removed a few lines of repeated code.

Circular Buffer:

 ADC_TrueAverage[TrueAverageHead] = ADC_ResultW ' Load the ADC value

 Inc TrueAverageHead

 TrueAverageHead = TrueAverageHead & (NumberADCaverages - 1)

Averages:

I have tried several moving average system but I have always obtained some variations in

the results (imprecision). The best system is to record each value in a circular array and

perform the average at each reading. In this case you need to use the Maths32 compiler

that takes a lot of time. The number of averages must be a power of 2 to simplify the

circular buffer, 2, 4, 8, 16, 32 & 64.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 37/40

 AverageLoop = 0

 ADCToPrint = 0

 Repeat

 ADC_Average = ADC_TrueAverage[AverageLoop]

 ADCToPrint = ADCToPrint + ADC_Average <= Averages

 Inc AverageLoop

 Until AverageLoop = NumberADCaverages

Using only a maximum of 64 averages you can use a variable Word (ADCToPrint) saving

calculation time. (example for 3,3V power supply Amicus18 board)

 ADC_DecimalResult = 1023 * NumberADCaverages <= Averages

 ADCResult = (ADCToPrint * 3300) / ADC_DecimalResult

 ADC_IntegerResult = ADCResult / 1000

 ADC_DecimalResult = ADCResult // 1000

Also by checking the asm code, I realized that I could save many bytes by removing lines

from the code in assembler. To perform this trick it is necessary that the compiler has

already generated the Maths32 code. This is the reason for the false calculation, see the

DUMMYCAL label. See the code tricks in SM2_State04.

SM2_STATE05: (Set the TC74 to Normal Mode) [SM2_TC74SetNormalMode]

The temperature sensor I2C TC74 is not an easy circuit to use, it has its difficulties. Once

your exact protocol is known, this sensor works very well.

Before reading the TC74 sensor temperature, the sensor needs to be reconnected. This

sensor usually switches to a standby state when there is noise on the I2C bus, it does not

recognize the bus protocol or if it has been given the command to disconnect. This is the

case because the I2C is also in dialog with the DS1307 clock chip. (See my article in the

WIKI). For that it is disconnected after reading. Then an order is sent to the TC74 to move

to a working state (Normal Mode). Note that the command is used:

SM2_NextStateDelay(250,SM2_TC74Read).

The TC74 sensor needs 240 ms to go from standby to read status. The state machine will

load this new task after a time of 250 ms. At this time, it would be better not to read

another sensor on the I2C bus that could alter the new status of the TC74.

This command from the TC74 library, which I wrote for the WIKI, has been modified to be

compatible with the state machine.

SM2_STATE06: (Read the Temperature Sensor) [SM2_TC74Read]

Then the sensor temperature and bus control (ReturnACK) are read. The temperature and

polarity have already been calculated by this command.

SM2_STATE07: (Put the Sensor in Standby Mode) [SM2_TC74Close]

The TC74 sensor is of the SMT type, and is mounted very close to the LCD whose

BackLight heats it. Also it has a calendar by itself (see the datatsheet). A disable

command is sent.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 38/40

SM2_STATE08: (Read Date of the DS1307 calendar/Clock) [SM2_ReadDate]

The date is reached with the command: DS1307_ReadDate(ReturnACK) and again

always verifying the validity of the I2C communication with "ReturnACK". Since the code

is not in the first line of the module.

SM2_STATE09: (Send Time/Date to Terminal) [SM2_Data1ToTerminal]

Every minute, the date is sent to the terminal. Sending messages takes a lot of time due

to UART communication. In this case so as not to retrace or lose the data of the ADC

reading, the data is divided into 3 parts, recharging the same task with the counter trick.

When this task is completed, an order is sent to the SM2_Data2ToTerminal task. Another

solution would be to send the data at the speed of 230400 Bauds. This solution has been

tested on the Amicus18 board and works well.

SM2_STATE10: (Send ADC to Terminal) [SM2_Data2ToTerminal]

Each minute, the value of the ADC is sent to the terminal.

SM2_STATE11: (Send temperature to Terminal) [SM2_TC74TempToTerminal]

Every minute + 30 seconds, the temperature is sent to the terminal. Sending messages

takes a lot of time due to UART communication. In this case not to delay or lose the data

of the reading of the ADC, the message is divided into 2 parts, recharging the same task

with the counter trick.

AMICUS18 Board running at 80MHz:

I have been able to run the program with the Amicus18 board and the PIC18F25K20 at

80MHz with ADC readings at 333Hz (every 3mS). The calculation of Maths is done faster

which allows more time for other tasks. It would be opportune to eliminate delay due to the

LCD with 4-bit bus and I2C (100KHz) communications. It would be much better to use an

8-bit LCD and SPI communications. You could also configure the UART for 230400 baud.

This way you could try to operate the ADC at higher frequencies. If you did not have to

use the terminal (UART), which has been made for the demo, the benefits would be

greater. It has not been tested.

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 39/40

The Amicus18 board prepared for 80 MHz with the guidelines given in a previous chapter

works wonderfully. It is the ideal configuration for this state machine. I recommend using

this configuration for the whole series PIC18FxxK20, using my bootloader LSM V4.1 for

Xtal of 80MHz. In the "Bootloader" folder you will find different bootloaders for 80MHz.

CONCLUSION

The multitasking states machine is very easy to use.

I have tried to explain all the tricks that can be done with my state machine to carry out a

project. Surely there will be more to discover, it will depend on you and your imagination. I

think it is easier to program with this system with projects that allow it, of course.

I wish you all the best in your projects.

Enjoy the State Machine Multitasking System!

State Machine Part5.

Alberto Freixanet

05 June 2017

Amicus18 Tutorial-State Machine V1.0 Part5 By Alberto Freixanet (EA3AGV)

June 2017 - 40/40

