STATE MACHINE

/ o_f@ STATE MACHINE
El:lEil:l GV (4 E i) AMICUS18® www.protonbasic.co.uk

BY PROTON

BY PROTON

Powered by Proton Development Suite® Compiler of Crownhill Associates Limited©

A UNIVERSAL PDS BOOTLOADER

CONFIGURING USER & TEST CODES: PART2

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc®©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited®©.

The project has been developed and written by Alberto Freixanet.
The document has been edited by John Drew.

INTRODUCTION:

The "AGV Bootloader" allows loading firmware via serial port (UART1, UART2 or more)
without the need for dedicated host software. The bootloader is written using the "Proton
Development Suite®". Modern microcontrollers have an interesting ability to write to their
own memory and this feature opens up an entirely different programming method. A special
program running on the microcontroller may communicate with an external device and
receive data containing the desired program, which it then writes to itself.

To configure the Bootloader Templates, read the Manual PDS Bootloader Partl.

General Features:

1. The bootloader has been written with the Proton Basic Compiler Version 3.6.0.3. All routines are
included in one BASIC file only.

It does not require a special download management PC application.

The Host computer program need only be simple RS232 communication software.
XON/XOFF handshaking is required.

The bootloader is as automatic as possible requiring little or no user coding.
Customized firmware for each user project.

Self-protects so that large user applications do not over-write the bootloader.

The bootloader code does not use the interrupt and so avoids some issues.

© © N o g bk~ WD

Successful downloads start user application automatically.
10. Only uses three wires for communication: TX, RX, ground and the Reset pin for starting.

11. All resources are released after download and available to the user application.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 1/14

http://www.protonbasic.co.uk/

12. Highly adaptable/maintainable using the PDS® compiler.

13. Can be compiled for many combinations of crystal speeds and PIC® family members. (PIC18®
ROM >= 128KB)

14. Many controls have been introduced in the code making for a very secure bootloader.
15. Several additionals routines are available to debug the downloading file.
16. Several additional OPTIONS are available to the PDS® user.

17. Before downloading a Password access system is available to the user.

Specific Features:

e To Write programs to devices with up to 128KB ROM, minus the size of the bootloader.

e To Write discontinued (with jumps in the ROM memory) or plain user code.
e To Write to Program FLASH, ID Locations and Data EEPROM.

¢ Download user code by using the UART1 or UART2, at 115200, 57600, 38400 Baud adjusted
automatically to maximum speed according to the FOSC used.

e Wide range of usable FOSC: 64, 48, 40, 32, 25, 24, 20, 16, 14 (14.32MHz), 12, 10.
e FOSC =80 MHz for the PIC18FxxK20 series.

e The internal oscillator of the PIC® is available for downloading to a maximum speed of 57600
Baud)

e The firmware uses a double UART buffer to increase speed and reliability.

e Self write the boot "Goto PIC#Loader#Boot" in position 0 of ROM. (HSM only)
¢ Can be compiled with all options of the Watch-dog Timer.

e To control the PIC® device ID before write.

e Writing the Config Fuses is not supported for security reasons.

How to configure the User Code:
A - Low Side of Memory Bootloader: (LSM)

The firmware is always positioned at the BOTTOM of the ROM in every compilation, like a
user program. Its code is automatically written in the boot section of the PIC® starting at the
address 0.

The header:
Copy the header code of the bootloader from [CONFIGO01] section.

You have to choose the same options as the bootloader written in your firmware.

"' The USER must copy this "Declare" in the user main project.
Device = 18F25K22
Declare Xtal = 64

"' DEFINE THE PLL: On / OFF
$define PLL ConfigFuses On

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 2/14

"' Enable the line to use the internal Oscillator.
"' Uncomment the next line to enable the configuration.
'sdefine InternalOSC _

'"!" Enable the Line to use the CLOCK OUT FUNCTION:

"' If CLKOUT function is enabled, CLKOUT on RA6 & Port function On RA7
otherwise Port function On RA6 & RA7.

'SDefine CLKOUT Function

The UART define line is not necessary. Only write your code for the UART that has been
chosen. (HRSOut or HRSOut2)

The Declares:

Sdefine _EnableProtectBootBlock _
Declare PROTON_ START ADDRESS = 2048
Declare Optimiser Level = 2 (or 3)
Declare Dead Code Remove = On
Declare Watchdog = On

Declare Bootloader = OFF

Calculate the Baud Rate of the terminal:

The baud rate of the terminal is automatic and based on the [Declare Xtal]. Copy this code.
Of course the user Baud Rate could be different to the Bootloader Baud rate. In which case
the terminal will receive all characters as trash unless the terminal baud rate is changed.

The baud rate of the terminal could be chosen manually. Uncomment one line only,
otherwise the configuration is automatic.

' Declare the UART Baud Rate manually: enable ONE line ONLY.
' sdefine BaudRate 9600

' sdefine BaudRate 19200

' sdefine BaudRate 38400

' sdefine BaudRate 57600

' sdefine BaudRate 115200

$ifndef BaudRate
$if xtal >= 40
$ifdef InternalOSC
$define _BaudRate 57600
Selse
$define BaudRate 115200
$endif
Sendif
$if (_xtal >= 16) And (_xtal < 40)
$define BaudRate 57600
Sendif
$if xtal < 16
$define BaudRate 38400
Sendif
$endif

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 3/14

Declare the Baud Rate of the terminal:

You can choose the [Hserial_Baud or Hserial2_Baud] according to your option.

$if BaudRate = 9600
Declare Hserial Baud = 9600
Declare Hserial TXSTA 36
Declare Hserial RCSTA = 144
Declare Hserial Clear = On

$if BaudRate = 19200
Declare Hserial Baud = 19200
Declare Hserial TXSTA = 36
Declare Hserial RCSTA = 144
Declare Hserial Clear = On

$if BaudRate = 38400
Declare Hserial Baud = 38400
Declare Hserial TXSTA = 36
Declare Hserial RCSTA = 144
Declare Hserial Clear On

Sendif

$if BaudRate = 57600
Declare Hserial Baud = 57600
Declare Hserial TXSTA = 36
Declare Hserial RCSTA = 144
Declare Hserial Clear On

$if BaudRate = 115200
Declare Hserial Baud = 115200
Declare Hserial TXSTA = 36
Declare Hserial RCSTA = 144
Declare Hserial Clear On
Sendif

Always Copy the Config Fuses from the Bootloader Code:

Config_Start
$if PLL ConfigFuses = On
$ifdef InternalOSC_
$if (_xtal = 16) Or (_xtal = 32) Or (_xtal = 64)
$ifdef CLKOUT Function
FOSC = INTIO7 ;Internal oscillator block, CLKOUT in RA6,
port function on RA7.

Selse
FOSC = INTIOG67 ;Internal oscillator block,
port function on RA6 and RA7.
Sendif
Selse

$error "Error in (Declare Xtal) with internal oscillator
& PLL ConfigFuses = On"
$endif
PRICLKEN = OFF ;Primary clock can be disabled by software.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 4/14

Selse
Sif (_xtal >= 10) And (_xtal <= 64)
FOSC = HSMP ;HS oscillator, PLL enabled
(Clock Frequency = 4 x FOSC1) (Xtal piece 2,5-16 MHz)
Selse
Serror "Error in (Declare Xtal) with external Xtal
& PLL ConfigFuses = On"

$endif

PRICLKEN = On ;Primary clock enabled.
Sendif
PLLCFG = On ;Oscillator multiplied by 4

Sendif
$if PLL_ConfigFuses = OFF
$ifdef InternalOSC_
$if (_xtal = 16)
$ifdef CLKOUT Function
FOSC = INTIO7 ;Internal oscillator block, CLKOUT in RA6,
port function on RA7.

Selse
FOSC = INTIOG67 ;Internal oscillator block, port function on RA6
and RA7.
$endif
Selse

Serror "Error in (Declare Xtal) with internal oscillator
& PLL ConfigFuses = OFF"

Sendif
PRICLKEN = OFF ;Primary clock can be disabled by software.
Selse
$if (_xtal >= 10) And (_xtal <= 16)
FOSC = HSMP ;HS oscillator (medium power 4-16 MHz)
Selse
$if (_xtal > 16) And (_xtal <= 25)
FOSC = HSHP ; HS oscillator (high power > 16 MHz)
Selse
$if (_xtal > 25) And (_xtal <= 64)
FOSC = ECHP , EC oscillator, CLKOUT function on 0SC2
(high power, >16 MHz)
Selse
Serror "Error in (Declare Xtal) with external Xtal
& PLL ConfigFuses = OFEF"
Sendif
Sendif
Sendif
PRICLKEN = On ;Primary clock enabled.
Sendif
PLLCFG = OFF ;Oscillator multiplied by 1
Sendif
FCMEN = OFF ;Fail-Safe Clock Monitor disabled
IESO = OFF ;Oscillator Switchover mode disabled
PWRTEN = On ;Power up timer enabled

BOREN = SBORDIS ,;Brown-out Reset enabled in hardware only
and disabled in Sleep mode (SBOREN is disabled)

BORV = 190 ;VBOR set to 1.90 V nominal

WDTEN = SWON ;WDT is controllet by the SWDTEN bit of the WDTCON register.
WDTPS = 1024 ;1:1024

CCP2MX = PORTC1 ;CCP2 input/output is multiplexed with RCI

PBADEN = Off [PORTB<5:0> pins are configured as Ddigital on Reset

CCP3MX = PORTC6 ;P3A/CCP3 input/output is mulitplexed with RC6

HFOFST = OFF ;JHFINTOSC output and ready status are delayed
by the oscillator stable status

T3CMX = PORTCO ;T3CKI is on RCO

P2BMX = PORTB5 ;P2B is on RB5

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 5/14

MCLRE = EXTMCLR ;MCLR pin enabled, RE3 input pin disabled

STVREN = OFF ;Stack full/underflow will not cause Reset

LVP = OFF ;Single-Supply ICSP disabled

XINST = OFF ;Instruction set extension and Indexed Addressing mode
disabled (Legacy mode)

Debug = OFF ;Disabled

Cp0 = OFF ;Block 0 (000800-001FFFh) not code-protected

CP1 = OFF ;Block 1 (002000-003FFFh) not code-protected

CP2 = OFF ;Block 2 (004000-005FFFh) not code-protected

CP3 = OFF ;Block 3 (006000-007FFFh) not code-protected

$ifdef _EnableProtectBootBlock_

CPB = On ;Boot block (000000-0007FFh) code-protected

Selse

CPB = OFF ;Boot block (000000-0007FFh) not code-protected

Sendif

CPD = On ;Data EEPROM code-protected

WRTO = OFF ;Block 0 (000800-001FFFh) not write-protected

WRT1 = OFF ;Block 1 (002000-003FFFh) not write-protected

WRT2 = OFF ;Block 2 (004000-005FFFh) not write-protected

WRT3 = OFF ;Block 3 (006000-007FFFh) not write-protected

WRTC = On ;Configuration registers (300000-3000FFh) write-protected

$ifdef _EnableProtectBootBlock

WRTB = On ;Boot Block (000000-0007FFh) write-protected

Selse

WRTB = OFF ;Boot Block (000000-0007FFh) not write-protected

$Sendif

WRTD = OFF ;Data EEPROM not write-protected

EBTRO = OFF ;Block 0 (000800-001FFFh) not protected from table reads
executed in other blocks
EBTR1 = OFF ;Block 1 (002000-003FFFh) not protected from table reads
executed in other blocks
OFF ;Block 2 (004000-005FFFh) not protected from table reads
executed in other blocks
EBTR3 = OFF ;Block 3 (006000-007FFFh) not protected from table reads
executed in other blocks
$ifdef _EnableProtectBootBlock
EBTRB = On ;Boot Block (000000-0007FFh) protected from table reads
executed in other blocks

EBTR2

Selse
EBTRB = OFF ;Boot Block (000000-0007FFh) not protected from table reads
executed in other blocks
Sendif
Config_ End

Copy the Internal Oscillator Code (if used):

Copy the Internal Oscillator Code from the [CONFIG17]. Example for the PIC18F25K22.

$ifdef InternalOSC
INT OSC:
OSCCON2 = 0
$if PLL ConfigFuses = On
$if xtal = 64
OSCCON = %01111000
OSCTUNEBits PLLEN = 1
$endif B
$if xtal = 32
OSCCON = %01101000
OSCTUNEBits PLLEN = 1
$endif B
$if xtal = 16

Universal Bootloader V5.0 Manual V1.0 Part2

By Alberto Freixanet (EA3AGYV)

Dic 2017 - 6/14

OSCCON = %01011000
OSCTUNEBits PLLEN = 1
$endif B

Sendif

$if PLL ConfigFuses = OFF
$if xtal = 16
OSCCON = %01111000
OSCTUNEBitS_PLLEN =0
Sendif

Sendif

OSCTUNEBitS_INTSRC =1

S$ifdef OSCCONBits IOFS

While OSCCONBits IOFS = 0
#ifdef WatchDog Req
Clrwdt
#endif

Wend

Selse
S$ifdef OSCCONBitS_HFIOFS
While OSCCONBitS_HFIOFS =0

#ifdef WatchDog Reg

Clrwdt
#endif
Wend
Sendif
Sendif
Selse

OSCTUNEBits INTSRC = 1

OSCCON2 = 0

OSCCON2bits PRISD = 1
Sendif

End of Configuration of the user code:
Now the user can insert the library files and write the main code.

B - High Side of Memory Bootloader: (HSM)

The firmware is always positioned dynamically at the TOP of the ROM in every compilation.
Its size and position (PIC#Loader#Boot = label) is automatically calculated according of the
choice of the number of user options. The firmware does not need an external program to
write or/and compile the boot.

The header:
Copy the header code of the bootloader from [CONFIGO01] section.

You have to choose the same options as the bootloader as written in your firmware.

"' The USER must copy this "Declare" in the user main project.
Device = 18F25K22
Declare Xtal = 64

"' DEFINE THE PLL: On / OFF
$define PLL ConfigFuses On

"' Enable the to use the internal Oscillator.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 7/14

"' Uncomment the next line to enable the configuration.
'sdefine InternalOSC_

'"!" Enable the Line to use the CLOCK OUT FUNCTION:

"' If CLKOUT function is enabled, CLKOUT on RA6 & Port function On RA7
otherwize Port function On RA6 & RA7.

'sDefine CLKOUT Function

The UART define line is not necessary. Only write your code for the UART that has been
chosen. (HRSOut or HRSOut2)

The Declares:

Declare Optimiser Level = 2 (or 3)
Declare Dead Code Remove = On
Declare Watchdog = On

Declare Bootloader = OFF

Calculate the Baud Rate of the terminal:

The baud rate of the terminal is automatic and calculated based on the [Declare Xtal]. Copy
this code. Of course the user Baud Rate could be different from the Bootloader Baud rate. .
In which case the terminal will receive all characters as trash unless the terminal baud rate is

changed.

The baud rate of the terminal could be chosen manually. Uncomment one line only,
otherwise the configuration is automatic.

' Declare the UART Baud Rate manually: enable ONE line ONLY.
' sdefine BaudRate 9600

' Sdefine BaudRate 19200

' sdefine BaudRate 38400

' sdefine BaudRate 57600

' sdefine BaudRate 115200

$ifndef BaudRate
$if xtal >= 40
$ifdef InternalOSC
$define _BaudRate 57600
Selse
$define BaudRate 115200
$endif
Sendif
$if (_xtal >= 16) And (_xtal < 40)
$define BaudRate 57600
Sendif
$if xtal < 16
$define BaudRate 38400
Sendif
$endif

Declare the Baud Rate of the terminal:

You can choose the [Hserial Baud or Hserial2_Baud] according to your option.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 8/14

$if BaudRa
Declare
Declare
Declare
Declare

te = 9600

Hserial Baud = 9600
Hserial TXSTA = 36
Hserial RCSTA = 144
Hserial Clear = On

$if BaudRa
Declare
Declare
Declare
Declare

te = 19200

Hserial Baud = 19200
Hserial TXSTA = 36
Hserial RCSTA = 144
Hserial Clear = On

$if BaudRa
Declare
Declare
Declare
Declare

Sendif

te = 38400

Hserial Baud = 38400
Hserial TXSTA = 36
Hserial RCSTA = 144
Hserial Clear = On

$if BaudRa
Declare
Declare
Declare
Declare

Sendif

te = 57600
Hserial Baud = 57600

$if BaudRa
Declare
Declare
Declare
Declare

Sendif

Hserial TXSTA = 36
Hserial RCSTA = 144
Hserial Clear = On
te = 115200
Hserial_Baud = 115200

Hserial_IXSTA = 36
Hserial_RCSTA = 144
Hserial_Clear On

Copy the Config Fuses from the Bootloader Code (always):

Config_Start
$if PLL Conf

igFuses = On

$ifdef InternalOSC_
$if (_xtal = 16) Or (_xtal = 32) Or (_xtal = 64)
$ifdef CLKOUT Function
FOSC = INTIO7 ;Internal oscillator block, CLRKOUT in RA6,
port function on RA7.
Selse
FOSC = INTIOG67 ;Internal oscillator block,
port function on RA6 and RA7.
$endif
Selse

$Send
PRIC
Selse
$if
FOSC

Serror "Error in (Declare Xtal) with internal oscillator
& PLL ConfigFuses = On"

if

LKEN = OFF ,;Primary clock can be disabled by software.

(_xtal >= 10) And (_xtal <= 64)
= HSMP ;HS oscillator, PLL enabled
(Clock Frequency = 4 x FOSCI1) (Xtal piece 2,5-16 MHz)

Selse

Universal Bootlo

ader V5.0 Manual V1.0 Part2

By Alberto Freixanet (EA3AGV) Dic 2017 - 9/14

Serror

(Declare Xtal) =

"Error in with external Xtal & PLL ConfigFuses

Oon"
Sendif
PRICLKEN = On ;Primary clock enabled.
Sendif
PLLCFG = On ;Oscillator multiplied by 4
Sendif
$if PLL_ConfigFuses = OFF
$ifdef InternalOSC_
$if (_xtal = 16)
$ifdef CLKOUT Function
FOSC = INTIO7 ;Internal oscillator block,
CLKOUT in RA6, port function on RA7.
Selse
FOSC = INTIO67 ;Internal oscillator block,
port function on RA6 and RA7.
$Sendif
Selse
Serror "Error in (Declare Xtal) with internal oscillator
& PLL ConfigFuses = OFF"
$Sendif
PRICLKEN = OFF ,Primary clock can be disabled by software.
Selse
$if (_xtal >= 10) And (_xtal <= 16)
FOSC = HSMP ;HS oscillator (medium power 4-16 MHz)
Selse
$if (_xtal > 16) And (_xtal <= 25)
FOSC = HSHP ; HS oscillator (high power > 16 MHz)
Selse
$if (_xtal > 25) And (_xtal <= 64)
FOSC = ECHP , EC oscillator, CLKOUT function on 0SC2
(high power, >16 MHz)
Selse
Serror "Error in (Declare Xtal)
with external Xtal & PLL ConfigFuses = OFF"
Sendif
Sendif
$Sendif
PRICLKEN = On ;Primary clock enabled.
Sendif
PLLCFG = OFF ;Oscillator multiplied by 1
$Sendif
FCMEN = Off ;Fail-Safe Clock Monitor disabled
IESO = OFF ;Oscillator Switchover mode disabled
PWRTEN = On ;Power up timer enabled
BOREN = On ;Brown-out Reset enabled and controlled by software
(SBOREN 1is enabled)
BORV = 190 ;VBOR set to 1.90 V nominal
WDTEN = SWON " WDT is controlled by SWDTEN Bit of the WDTCON register
WDTPS = 1024 ;1:1024
CCP2MX = PORTCL ;CCP2 input/output is multiplexed with RCI1
PBADEN = On ' PORTB<4:0> pins are configured as analog I/0 on Reset
CCP3MX = PORTB5 ;P3A/CCP3 input/output is multiplexed with RB5
HFOFST = OFF ;JHFINTOSC output and ready status are delayed
by the oscillator stable status
T3CMX = PORTCO ;T3CKI is on RCO
P2BMX = PORTB5 ;P2B is on RB5
MCLRE = EXTMCLR ;MCLR pin enabled, RE3 input pin disabled
STVREN = On ;Stack full/underflow will cause Reset
LVP = OFF ;Single-Supply ICSP disabled
XINST = OFF ;Instruction set extension and Indexed Addressing

mode disabled (Legacy mode)

Universal Bootloader V5.0

Manual V1.0 Part2 By Alberto Freixanet (EA3AGYV) Dic 2017 - 10/14

Debug = OFF ;Disabled

Cp0 = OFF ;Block 0 (000800-001FFFh) not code-protected
CP1 = OFF ;Block 1 (002000-003FFFh) not code-protected
CPB = OFF ;Boot block (000000-0007FFh) not code-protected
CPD = On ;Data EEPROM code-protected
WRTO = OFF ;Block 0 (000800-001FFFh) not write-protected
WRT1 = OFF ;Block 1 (002000-003FFFh) not write-protected
WRTC = On ;Configuration registers (300000-3000FFh) write-protected
WRTB = OFF ;Boot Block (000000-0007FFh) not write-protected
WRTD = OFF ;Data EEPROM not write-protected
EBTRO = OFF ;Block 0 (000800-001FFFh) not protected

from table reads executed in other blocks
EBTR1 = OFF ;Block 1 (002000-003FFFh) not protected

from table reads executed in other blocks
EBTRB = OFF ;Boot Block (000000-0007FFh) not protected

from table reads executed in other blocks
Config_ End

Copy the Internal Oscillator Code (if used):
Copy the Internal Oscillator Code from the [CONFIG17]. Example for the PIC18F25K22.

$ifdef InternalOSC
INT OSC:
OSCCON2 = 0
$if PLL ConfigFuses = On
$if xtal = 64
OSCCON = %01111000
OSCTUNEBitS_PLLEN =1
Sendif
$if xtal = 32
OSCCON = %01101000
OSCTUNEBitS_PLLEN =1
Sendif
$if xtal = 16
OSCCON = %01011000
OSCTUNEBits PLLEN = 1
$endif B
Sendif
$if PLL ConfigFuses = OFF
$if xtal = 16
OSCCON = %01111000
OSCTUNEBits PLLEN = 0
$endif B
Sendif
OSCTUNEBitS_INTSRC =1
S$ifdef OSCCONBitSiloFS
While OSCCONBitSiloFS =0
#ifdef WatchDog Req
Clrwdt
#tendif
Wend
Selse
$ifdef OSCCONBits HFIOFS
While OSCCONBitS_HFIOFS =0
#ifdef WatchDog Req
Clrwdt
#endif
Wend

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 11/14

Sendif
Sendif
Selse
OSCTUNEBits INTSRC = 1
OSCCON2 = 0
OSCCON2bits PRISD = 1
$endif B

End of Configuration of the user code:
Now the user can insert the library files and write the main code.

How to use the Test Code:

Some test codes are included in the Bootloader folders. These files correspond to PIC®s
whose bootloader code has been tested with a real part.

| have followed exactly the construction described in the previous chapters, which allows
changing the configuration of the test code according to the options of the bootloader that
the user has chosen.

What is the function of the test code?

Light a LED:

The test code must be simple but it must also give quality information about the operation of
the PIC®.

The test code blinks a LED. The user can choose any pin of his test board, according to the
following code.

' Define the PORT & PIN of the test LED.
1

$define _PORT PORTC

$define _PIN 5

The LED flashes at a rate defined by TimerO and an interrupt [On_Low_Interrupt]. The
frequency may vary a bit depending on the FOSC chosen by the user.

Reading Edata Strings:

Some strings have been written in the eeprom memory to test the Eread command.

E2p AddressStringl EData "Testing the PIC18 AGV Bootloader V5.0 written in
High Side of the ROM.",0

E2p AddressString2 EData "New Universal PIC18 Bootloader by Alberto
Freixanet. ",0

E2p AddressString3 EData "A 8 digits Password could be needed to download
the user code. ",0

The routine of reading these strings checks that the bootloader has correctly written this
data.

Reading parameters of the asm file:

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 12/14

There is no command in the PDS compiler to read some parameters of the asm file.

However, you can use code in ASM format, for example to read the WDT parameter in the
memory map configured by the Config Fuses.

' Read the WDT config in memory map from asm file.

EECON1 = %$10000000 ' Access Flash memory
Set_Bank TBLPTRL
Asm

Movlw Low (Config2H)
Movwf TBLPTRL

Movlw High (Config2H)
Movwf TBLPTRH

Movlw upper (Config2H)
Movwf TBLPTRU

EndAsm

Tblrd* ' Read one memory position.

Templ = TABLAT

EECON1 = 0 ' Disable Access to the Configuration registers
TBLPTRU = 0 ' The HRSOut command of the compiler does not

clear the "TBLPTRU = 0", then take care of that.

At the end you must delete the TBLPTRU register for the HRSOut command to work
correctly.

The Devicelist.inc library:

| have developed a library allowing a user to look up the name of the PIC® depending on the
DEVICE_ID read from the ROM. This code could be very useful for PDS® users.

$if device = 18F25K22

$define _ DEVICE_ID 682

Sdefine __DEVICE_NAME "PIC18F25K22"
Sendif

For new PICs, the user could add a new code.

How to use:

The DEVICE_ID of the ROM is read and compared with the list in the library, it is very
simple. But it can only be applied to very standard PICs. Some new PICs change the way to
read the DEVID1 parameter. In this case, a different calculation of the [PICPartNumber] and
[PICRevsion] must be performed. See the manual of each PIC® or an example of the
Bootloader for PIC18FxxK40.

' Read the DEVID1 (Device ID) from the asm file.

EECON1 = %10000000 ' Access Flash memory
Set_Bank TBLPTRL
Asm

Movlw Low (DEVID1)
Movwf TBLPTRL

Movlw High (DEVIDI1)
Movwf TBLPTRH

Movlw upper (DEVIDI1)
Movwf TBLPTRU
EndAsm

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 13/14

Tblrd*+ ' perform table read with post-increment
DataWord.LowByte = TABLAT

Tblrd*+ ' perform table read with post-increment
DataWord.HighByte = TABLAT

TBLPTRU = 0 " Cleared for security

EECON1 = 0 " Disable Access Configuration registers

' Calculate the PIC Part Number & revision
PICPartNumber = DataWord >> 5
PICRevision = DataWord.LowByte & 31
' Print the Device Name to the Terminal.
$ifndef _ DEVICE ID
$error "The Devicelist.inc is missing!!"
Sendif
Select PICPartNumber
Case _ DEVICE_ID
HRSOut "Device = ", _ DEVICE NAME, CR,LF
Case Else
HRSOut CR, LF
HRSOut "The PIC Device number read from the Board is not
correct!",CR,LF
HRSOut CR, LF
EndSelect

The IDLOCS:

If the IDLOCS option of the Bootloader has been activated, some parameters could be
added to the end of the file.bas, for example.

Asm
__IDLOCS IDLOCO,"L"
IDLOCS IDLOC1,"O"

IDLOCS IDLOC2,"A"

__IDLOCS IDLOC3,'"D"
IDLOCS IDLOC4,"E"

__IDLOCS IDLOCS,'"R"
__IDLOCS IDLOC6,"5"
IDLOCS IDLOC7,"0"

EHdAsm

CONCLUSION

| hope that these examples of unusual code can help you in your projects. Any comments
would be welcome to improve the PDS Bootloader.

PDS Bootloader version 5.0. 30 Dicember 2018

Alberto Freixanet

©y

‘/// E r:lca =2y Y

BY PROTON

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV) Dic 2017 - 14/14

