
Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 1/14

AMICUS18®

www.protonbasic.co.uk

Powered by Proton Development Suite® Compiler of Crownhill Associates Limited©

A UNIVERSAL PDS BOOTLOADER

CONFIGURING USER & TEST CODES: PART2

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited©.

The project has been developed and written by Alberto Freixanet.

The document has been edited by John Drew.

INTRODUCTION:

The "AGV Bootloader" allows loading firmware via serial port (UART1, UART2 or more)

without the need for dedicated host software. The bootloader is written using the "Proton

Development Suite®". Modern microcontrollers have an interesting ability to write to their

own memory and this feature opens up an entirely different programming method. A special

program running on the microcontroller may communicate with an external device and

receive data containing the desired program, which it then writes to itself.

To configure the Bootloader Templates, read the Manual PDS Bootloader Part1.

General Features:

1. The bootloader has been written with the Proton Basic Compiler Version 3.6.0.3. All routines are

included in one BASIC file only.

2. It does not require a special download management PC application.

3. The Host computer program need only be simple RS232 communication software.

4. XON/XOFF handshaking is required.

5. The bootloader is as automatic as possible requiring little or no user coding.

6. Customized firmware for each user project.

7. Self-protects so that large user applications do not over-write the bootloader.

8. The bootloader code does not use the interrupt and so avoids some issues.

9. Successful downloads start user application automatically.

10. Only uses three wires for communication: TX, RX, ground and the Reset pin for starting.

11. All resources are released after download and available to the user application.

http://www.protonbasic.co.uk/

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 2/14

12. Highly adaptable/maintainable using the PDS® compiler.

13. Can be compiled for many combinations of crystal speeds and PIC® family members. (PIC18®

ROM >= 128KB)

14. Many controls have been introduced in the code making for a very secure bootloader.

15. Several additionals routines are available to debug the downloading file.

16. Several additional OPTIONS are available to the PDS® user.

17. Before downloading a Password access system is available to the user.

Specific Features:

 To Write programs to devices with up to 128KB ROM, minus the size of the bootloader.

 To Write discontinued (with jumps in the ROM memory) or plain user code.

 To Write to Program FLASH, ID Locations and Data EEPROM.

 Download user code by using the UART1 or UART2, at 115200, 57600, 38400 Baud adjusted

automatically to maximum speed according to the FOSC used.

 Wide range of usable FOSC: 64, 48, 40, 32, 25, 24, 20, 16, 14 (14.32MHz), 12, 10.

 FOSC = 80 MHz for the PIC18FxxK20 series.

 The internal oscillator of the PIC® is available for downloading to a maximum speed of 57600

Baud)

 The firmware uses a double UART buffer to increase speed and reliability.

 Self write the boot "Goto PIC#Loader#Boot" in position 0 of ROM. (HSM only)

 Can be compiled with all options of the Watch-dog Timer.

 To control the PIC® device ID before write.

 Writing the Config Fuses is not supported for security reasons.

How to configure the User Code:

A - Low Side of Memory Bootloader: (LSM)

The firmware is always positioned at the BOTTOM of the ROM in every compilation, like a

user program. Its code is automatically written in the boot section of the PIC® starting at the

address 0.

The header:

Copy the header code of the bootloader from [CONFIG01] section.

You have to choose the same options as the bootloader written in your firmware.

 '' The USER must copy this "Declare" in the user main project.

 Device = 18F25K22

 Declare Xtal = 64

 '' DEFINE THE PLL: On / OFF

 $define PLL_ConfigFuses On

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 3/14

 '' Enable the line to use the internal Oscillator.

 '' Uncomment the next line to enable the configuration.

 '$define _InternalOSC_

 '' Enable the Line to use the CLOCK OUT FUNCTION:

 '' If CLKOUT function is enabled, CLKOUT on RA6 & Port function On RA7

 otherwise Port function On RA6 & RA7.

 '$Define _CLKOUT_Function_

The UART define line is not necessary. Only write your code for the UART that has been

chosen. (HRSOut or HRSOut2)

The Declares:

 $define _EnableProtectBootBlock_

 Declare PROTON_START_ADDRESS = 2048

 Declare Optimiser_Level = 2 (or 3)

 Declare Dead_Code_Remove = On

 Declare Watchdog = On

 Declare Bootloader = OFF

Calculate the Baud Rate of the terminal:

The baud rate of the terminal is automatic and based on the [Declare Xtal]. Copy this code.

Of course the user Baud Rate could be different to the Bootloader Baud rate. In which case

the terminal will receive all characters as trash unless the terminal baud rate is changed.

The baud rate of the terminal could be chosen manually. Uncomment one line only,

otherwise the configuration is automatic.

' Declare the UART Baud Rate manually: enable ONE line ONLY.

' $define _BaudRate 9600

' $define _BaudRate 19200

' $define _BaudRate 38400

' $define _BaudRate 57600

' $define _BaudRate 115200

 $ifndef _BaudRate

 $if _xtal >= 40

 $ifdef _InternalOSC_

 $define _BaudRate 57600

 $else

 $define _BaudRate 115200

 $endif

 $endif

 $if (_xtal >= 16) And (_xtal < 40)

 $define _BaudRate 57600

 $endif

 $if _xtal < 16

 $define _BaudRate 38400

 $endif

 $endif

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 4/14

 Declare the Baud Rate of the terminal:

You can choose the [Hserial_Baud or Hserial2_Baud] according to your option.

$if _BaudRate = 9600

 Declare Hserial_Baud = 9600

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 19200

 Declare Hserial_Baud = 19200

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 38400

 Declare Hserial_Baud = 38400

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 57600

 Declare Hserial_Baud = 57600

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 115200

 Declare Hserial_Baud = 115200

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

Always Copy the Config Fuses from the Bootloader Code:

Config_Start

$if PLL_ConfigFuses = On

 $ifdef _InternalOSC_

 $if (_xtal = 16) Or (_xtal = 32) Or (_xtal = 64)

 $ifdef _CLKOUT_Function_

 FOSC = INTIO7 ;Internal oscillator block, CLKOUT in RA6,

 port function on RA7.

 $else

 FOSC = INTIO67 ;Internal oscillator block,

 port function on RA6 and RA7.

 $endif

 $else

 $error "Error in (Declare Xtal) with internal oscillator

 & PLL_ConfigFuses = On"

 $endif

 PRICLKEN = OFF ;Primary clock can be disabled by software.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 5/14

 $else

 $if (_xtal >= 10) And (_xtal <= 64)

 FOSC = HSMP ;HS oscillator, PLL enabled

 (Clock Frequency = 4 x FOSC1)(Xtal piece 2,5-16 MHz)

 $else

 $error "Error in (Declare Xtal) with external Xtal

 & PLL_ConfigFuses = On"

 $endif

 PRICLKEN = On ;Primary clock enabled.

 $endif

 PLLCFG = On ;Oscillator multiplied by 4

$endif

$if PLL_ConfigFuses = OFF

 $ifdef _InternalOSC_

 $if (_xtal = 16)

 $ifdef _CLKOUT_Function_

 FOSC = INTIO7 ;Internal oscillator block, CLKOUT in RA6,

 port function on RA7.

 $else

 FOSC = INTIO67 ;Internal oscillator block, port function on RA6

 and RA7.

 $endif

 $else

 $error "Error in (Declare Xtal) with internal oscillator

 & PLL_ConfigFuses = OFF"

 $endif

 PRICLKEN = OFF ;Primary clock can be disabled by software.

 $else

 $if (_xtal >= 10) And (_xtal <= 16)

 FOSC = HSMP ;HS oscillator (medium power 4-16 MHz)

 $else

 $if (_xtal > 16) And (_xtal <= 25)

 FOSC = HSHP ; HS oscillator (high power > 16 MHz)

 $else

 $if (_xtal > 25) And (_xtal <= 64)

 FOSC = ECHP ; EC oscillator, CLKOUT function on OSC2

 (high power, >16 MHz)

 $else

 $error "Error in (Declare Xtal) with external Xtal

 & PLL_ConfigFuses = OFF"

 $endif

 $endif

 $endif

 PRICLKEN = On ;Primary clock enabled.

 $endif

 PLLCFG = OFF ;Oscillator multiplied by 1

$endif

 FCMEN = OFF ;Fail-Safe Clock Monitor disabled

 IESO = OFF ;Oscillator Switchover mode disabled

 PWRTEN = On ;Power up timer enabled

 BOREN = SBORDIS ;Brown-out Reset enabled in hardware only

 and disabled in Sleep mode (SBOREN is disabled)

 BORV = 190 ;VBOR set to 1.90 V nominal

 WDTEN = SWON ;WDT is controllet by the SWDTEN bit of the WDTCON register.

 WDTPS = 1024 ;1:1024

 CCP2MX = PORTC1 ;CCP2 input/output is multiplexed with RC1

 PBADEN = Off ;PORTB<5:0> pins are configured as Ddigital on Reset

 CCP3MX = PORTC6 ;P3A/CCP3 input/output is mulitplexed with RC6

 HFOFST = OFF ;HFINTOSC output and ready status are delayed

 by the oscillator stable status

 T3CMX = PORTC0 ;T3CKI is on RC0

 P2BMX = PORTB5 ;P2B is on RB5

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 6/14

 MCLRE = EXTMCLR ;MCLR pin enabled, RE3 input pin disabled

 STVREN = OFF ;Stack full/underflow will not cause Reset

 LVP = OFF ;Single-Supply ICSP disabled

 XINST = OFF ;Instruction set extension and Indexed Addressing mode

 disabled (Legacy mode)

 Debug = OFF ;Disabled

 Cp0 = OFF ;Block 0 (000800-001FFFh) not code-protected

 CP1 = OFF ;Block 1 (002000-003FFFh) not code-protected

 CP2 = OFF ;Block 2 (004000-005FFFh) not code-protected

 CP3 = OFF ;Block 3 (006000-007FFFh) not code-protected

 $ifdef _EnableProtectBootBlock_

 CPB = On ;Boot block (000000-0007FFh) code-protected

 $else

 CPB = OFF ;Boot block (000000-0007FFh) not code-protected

 $endif

 CPD = On ;Data EEPROM code-protected

 WRT0 = OFF ;Block 0 (000800-001FFFh) not write-protected

 WRT1 = OFF ;Block 1 (002000-003FFFh) not write-protected

 WRT2 = OFF ;Block 2 (004000-005FFFh) not write-protected

 WRT3 = OFF ;Block 3 (006000-007FFFh) not write-protected

 WRTC = On ;Configuration registers (300000-3000FFh) write-protected

 $ifdef _EnableProtectBootBlock_

 WRTB = On ;Boot Block (000000-0007FFh) write-protected

 $else

 WRTB = OFF ;Boot Block (000000-0007FFh) not write-protected

 $endif

 WRTD = OFF ;Data EEPROM not write-protected

 EBTR0 = OFF ;Block 0 (000800-001FFFh) not protected from table reads

 executed in other blocks

 EBTR1 = OFF ;Block 1 (002000-003FFFh) not protected from table reads

 executed in other blocks

 EBTR2 = OFF ;Block 2 (004000-005FFFh) not protected from table reads

 executed in other blocks

 EBTR3 = OFF ;Block 3 (006000-007FFFh) not protected from table reads

 executed in other blocks

 $ifdef _EnableProtectBootBlock_

 EBTRB = On ;Boot Block (000000-0007FFh) protected from table reads

 executed in other blocks

 $else

 EBTRB = OFF ;Boot Block (000000-0007FFh) not protected from table reads

 executed in other blocks

 $endif

Config_End

Copy the Internal Oscillator Code (if used):

Copy the Internal Oscillator Code from the [CONFIG17]. Example for the PIC18F25K22.

$ifdef _InternalOSC_

INT_OSC:

 OSCCON2 = 0

 $if PLL_ConfigFuses = On

 $if _xtal = 64

 OSCCON = %01111000

 OSCTUNEBits_PLLEN = 1

 $endif

 $if _xtal = 32

 OSCCON = %01101000

 OSCTUNEBits_PLLEN = 1

 $endif

 $if _xtal = 16

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 7/14

 OSCCON = %01011000

 OSCTUNEBits_PLLEN = 1

 $endif

 $endif

 $if PLL_ConfigFuses = OFF

 $if _xtal = 16

 OSCCON = %01111000

 OSCTUNEBits_PLLEN = 0

 $endif

 $endif

 OSCTUNEBits_INTSRC = 1

 $ifdef OSCCONBits_IOFS

 While OSCCONBits_IOFS = 0

 #ifdef WatchDog_Req

 Clrwdt

 #endif

 Wend

 $else

 $ifdef OSCCONBits_HFIOFS

 While OSCCONBits_HFIOFS = 0

 #ifdef WatchDog_Req

 Clrwdt

 #endif

 Wend

 $endif

 $endif

$else

 OSCTUNEBits_INTSRC = 1

 OSCCON2 = 0

 OSCCON2bits_PRISD = 1

$endif

End of Configuration of the user code:

Now the user can insert the library files and write the main code.

B - High Side of Memory Bootloader: (HSM)

The firmware is always positioned dynamically at the TOP of the ROM in every compilation.

Its size and position (PIC#Loader#Boot = label) is automatically calculated according of the

choice of the number of user options. The firmware does not need an external program to

write or/and compile the boot.

The header:

Copy the header code of the bootloader from [CONFIG01] section.

You have to choose the same options as the bootloader as written in your firmware.

 '' The USER must copy this "Declare" in the user main project.

 Device = 18F25K22

 Declare Xtal = 64

 '' DEFINE THE PLL: On / OFF

 $define PLL_ConfigFuses On

 '' Enable the to use the internal Oscillator.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 8/14

 '' Uncomment the next line to enable the configuration.

 '$define _InternalOSC_

 '' Enable the Line to use the CLOCK OUT FUNCTION:

 '' If CLKOUT function is enabled, CLKOUT on RA6 & Port function On RA7

 otherwize Port function On RA6 & RA7.

 '$Define _CLKOUT_Function_

The UART define line is not necessary. Only write your code for the UART that has been

chosen. (HRSOut or HRSOut2)

The Declares:

 Declare Optimiser_Level = 2 (or 3)

 Declare Dead_Code_Remove = On

 Declare Watchdog = On

 Declare Bootloader = OFF

Calculate the Baud Rate of the terminal:

The baud rate of the terminal is automatic and calculated based on the [Declare Xtal]. Copy

this code. Of course the user Baud Rate could be different from the Bootloader Baud rate. .

In which case the terminal will receive all characters as trash unless the terminal baud rate is

changed.

The baud rate of the terminal could be chosen manually. Uncomment one line only,

otherwise the configuration is automatic.

' Declare the UART Baud Rate manually: enable ONE line ONLY.

' $define _BaudRate 9600

' $define _BaudRate 19200

' $define _BaudRate 38400

' $define _BaudRate 57600

' $define _BaudRate 115200

 $ifndef _BaudRate

 $if _xtal >= 40

 $ifdef _InternalOSC_

 $define _BaudRate 57600

 $else

 $define _BaudRate 115200

 $endif

 $endif

 $if (_xtal >= 16) And (_xtal < 40)

 $define _BaudRate 57600

 $endif

 $if _xtal < 16

 $define _BaudRate 38400

 $endif

 $endif

 Declare the Baud Rate of the terminal:

You can choose the [Hserial_Baud or Hserial2_Baud] according to your option.

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 9/14

$if _BaudRate = 9600

 Declare Hserial_Baud = 9600

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 19200

 Declare Hserial_Baud = 19200

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 38400

 Declare Hserial_Baud = 38400

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 57600

 Declare Hserial_Baud = 57600

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

'--

$if _BaudRate = 115200

 Declare Hserial_Baud = 115200

 Declare Hserial_TXSTA = 36

 Declare Hserial_RCSTA = 144

 Declare Hserial_Clear = On

$endif

Copy the Config Fuses from the Bootloader Code (always):

Config_Start

$if PLL_ConfigFuses = On

 $ifdef _InternalOSC_

 $if (_xtal = 16) Or (_xtal = 32) Or (_xtal = 64)

 $ifdef _CLKOUT_Function_

 FOSC = INTIO7 ;Internal oscillator block, CLKOUT in RA6,

 port function on RA7.

 $else

 FOSC = INTIO67 ;Internal oscillator block,

 port function on RA6 and RA7.

 $endif

 $else

 $error "Error in (Declare Xtal) with internal oscillator

 & PLL_ConfigFuses = On"

 $endif

 PRICLKEN = OFF ;Primary clock can be disabled by software.

 $else

 $if (_xtal >= 10) And (_xtal <= 64)

 FOSC = HSMP ;HS oscillator, PLL enabled

 (Clock Frequency = 4 x FOSC1)(Xtal piece 2,5-16 MHz)

 $else

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 10/14

 $error "Error in (Declare Xtal) with external Xtal & PLL_ConfigFuses =

On"

 $endif

 PRICLKEN = On ;Primary clock enabled.

 $endif

 PLLCFG = On ;Oscillator multiplied by 4

$endif

$if PLL_ConfigFuses = OFF

 $ifdef _InternalOSC_

 $if (_xtal = 16)

 $ifdef _CLKOUT_Function_

 FOSC = INTIO7 ;Internal oscillator block,

 CLKOUT in RA6, port function on RA7.

 $else

 FOSC = INTIO67 ;Internal oscillator block,

 port function on RA6 and RA7.

 $endif

 $else

 $error "Error in (Declare Xtal) with internal oscillator

 & PLL_ConfigFuses = OFF"

 $endif

 PRICLKEN = OFF ;Primary clock can be disabled by software.

 $else

 $if (_xtal >= 10) And (_xtal <= 16)

 FOSC = HSMP ;HS oscillator (medium power 4-16 MHz)

 $else

 $if (_xtal > 16) And (_xtal <= 25)

 FOSC = HSHP ; HS oscillator (high power > 16 MHz)

 $else

 $if (_xtal > 25) And (_xtal <= 64)

 FOSC = ECHP ; EC oscillator, CLKOUT function on OSC2

 (high power, >16 MHz)

 $else

 $error "Error in (Declare Xtal)

 with external Xtal & PLL_ConfigFuses = OFF"

 $endif

 $endif

 $endif

 PRICLKEN = On ;Primary clock enabled.

 $endif

 PLLCFG = OFF ;Oscillator multiplied by 1

$endif

 FCMEN = Off ;Fail-Safe Clock Monitor disabled

 IESO = OFF ;Oscillator Switchover mode disabled

 PWRTEN = On ;Power up timer enabled

 BOREN = On ;Brown-out Reset enabled and controlled by software

 (SBOREN is enabled)

 BORV = 190 ;VBOR set to 1.90 V nominal

 WDTEN = SWON ' WDT is controlled by SWDTEN Bit of the WDTCON register

 WDTPS = 1024 ;1:1024

 CCP2MX = PORTC1 ;CCP2 input/output is multiplexed with RC1

 PBADEN = On ' PORTB<4:0> pins are configured as analog I/O on Reset

 CCP3MX = PORTB5 ;P3A/CCP3 input/output is multiplexed with RB5

 HFOFST = OFF ;HFINTOSC output and ready status are delayed

 by the oscillator stable status

 T3CMX = PORTC0 ;T3CKI is on RC0

 P2BMX = PORTB5 ;P2B is on RB5

 MCLRE = EXTMCLR ;MCLR pin enabled, RE3 input pin disabled

 STVREN = On ;Stack full/underflow will cause Reset

 LVP = OFF ;Single-Supply ICSP disabled

 XINST = OFF ;Instruction set extension and Indexed Addressing

 mode disabled (Legacy mode)

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 11/14

 Debug = OFF ;Disabled

 Cp0 = OFF ;Block 0 (000800-001FFFh) not code-protected

 CP1 = OFF ;Block 1 (002000-003FFFh) not code-protected

 CPB = OFF ;Boot block (000000-0007FFh) not code-protected

 CPD = On ;Data EEPROM code-protected

 WRT0 = OFF ;Block 0 (000800-001FFFh) not write-protected

 WRT1 = OFF ;Block 1 (002000-003FFFh) not write-protected

 WRTC = On ;Configuration registers (300000-3000FFh) write-protected

 WRTB = OFF ;Boot Block (000000-0007FFh) not write-protected

 WRTD = OFF ;Data EEPROM not write-protected

 EBTR0 = OFF ;Block 0 (000800-001FFFh) not protected

 from table reads executed in other blocks

 EBTR1 = OFF ;Block 1 (002000-003FFFh) not protected

 from table reads executed in other blocks

 EBTRB = OFF ;Boot Block (000000-0007FFh) not protected

 from table reads executed in other blocks

Config_End

Copy the Internal Oscillator Code (if used):

Copy the Internal Oscillator Code from the [CONFIG17]. Example for the PIC18F25K22.

$ifdef _InternalOSC_

INT_OSC:

 OSCCON2 = 0

 $if PLL_ConfigFuses = On

 $if _xtal = 64

 OSCCON = %01111000

 OSCTUNEBits_PLLEN = 1

 $endif

 $if _xtal = 32

 OSCCON = %01101000

 OSCTUNEBits_PLLEN = 1

 $endif

 $if _xtal = 16

 OSCCON = %01011000

 OSCTUNEBits_PLLEN = 1

 $endif

 $endif

 $if PLL_ConfigFuses = OFF

 $if _xtal = 16

 OSCCON = %01111000

 OSCTUNEBits_PLLEN = 0

 $endif

 $endif

 OSCTUNEBits_INTSRC = 1

 $ifdef OSCCONBits_IOFS

 While OSCCONBits_IOFS = 0

 #ifdef WatchDog_Req

 Clrwdt

 #endif

 Wend

 $else

 $ifdef OSCCONBits_HFIOFS

 While OSCCONBits_HFIOFS = 0

 #ifdef WatchDog_Req

 Clrwdt

 #endif

 Wend

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 12/14

 $endif

 $endif

$else

 OSCTUNEBits_INTSRC = 1

 OSCCON2 = 0

 OSCCON2bits_PRISD = 1

$endif

End of Configuration of the user code:

Now the user can insert the library files and write the main code.

How to use the Test Code:

Some test codes are included in the Bootloader folders. These files correspond to PIC®s

whose bootloader code has been tested with a real part.

I have followed exactly the construction described in the previous chapters, which allows

changing the configuration of the test code according to the options of the bootloader that

the user has chosen.

What is the function of the test code?

Light a LED:

The test code must be simple but it must also give quality information about the operation of

the PIC®.

The test code blinks a LED. The user can choose any pin of his test board, according to the

following code.

'==

' Define the PORT & PIN of the test LED.

'

 $define _PORT PORTC

 $define _PIN 5

'==

The LED flashes at a rate defined by Timer0 and an interrupt [On_Low_Interrupt]. The

frequency may vary a bit depending on the FOSC chosen by the user.

Reading Edata Strings:

Some strings have been written in the eeprom memory to test the Eread command.

E2p_AddressString1 EData "Testing the PIC18 AGV Bootloader V5.0 written in

High Side of the ROM.",0

E2p_AddressString2 EData "New Universal PIC18 Bootloader by Alberto

Freixanet. ",0

E2p_AddressString3 EData "A 8 digits Password could be needed to download

the user code. ",0

The routine of reading these strings checks that the bootloader has correctly written this

data.

Reading parameters of the asm file:

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 13/14

There is no command in the PDS compiler to read some parameters of the asm file.

However, you can use code in ASM format, for example to read the WDT parameter in the

memory map configured by the Config Fuses.

' Read the WDT config in memory map from asm file.

 EECON1 = %10000000 ' Access Flash memory

 Set_Bank TBLPTRL

 Asm

 Movlw Low (Config2H)

 Movwf TBLPTRL

 Movlw High (Config2H)

 Movwf TBLPTRH

 Movlw upper (Config2H)

 Movwf TBLPTRU

 EndAsm

 Tblrd* ' Read one memory position.

 Temp1 = TABLAT

 EECON1 = 0 ' Disable Access to the Configuration registers

 TBLPTRU = 0 ' The HRSOut command of the compiler does not

 clear the "TBLPTRU = 0", then take care of that.

At the end you must delete the TBLPTRU register for the HRSOut command to work

correctly.

The Devicelist.inc library:

I have developed a library allowing a user to look up the name of the PIC® depending on the

DEVICE_ID read from the ROM. This code could be very useful for PDS® users.

Library piece of code:

 $if _device = _18F25K22

 $define __DEVICE_ID 682

 $define __DEVICE_NAME "PIC18F25K22"

 $endif

For new PICs, the user could add a new code.

How to use:

The DEVICE_ID of the ROM is read and compared with the list in the library, it is very

simple. But it can only be applied to very standard PICs. Some new PICs change the way to

read the DEVID1 parameter. In this case, a different calculation of the [PICPartNumber] and

[PICRevsion] must be performed. See the manual of each PIC® or an example of the

Bootloader for PIC18FxxK40.

 ' Read the DEVID1 (Device ID) from the asm file.

 EECON1 = %10000000 ' Access Flash memory

 Set_Bank TBLPTRL

 Asm

 Movlw Low (DEVID1)

 Movwf TBLPTRL

 Movlw High (DEVID1)

 Movwf TBLPTRH

 Movlw upper (DEVID1)

 Movwf TBLPTRU

 EndAsm

Universal Bootloader V5.0 Manual V1.0 Part2 By Alberto Freixanet (EA3AGV)

Dic 2017 - 14/14

 Tblrd*+ ' perform table read with post-increment

 DataWord.LowByte = TABLAT

 Tblrd*+ ' perform table read with post-increment

 DataWord.HighByte = TABLAT

 TBLPTRU = 0 ' Cleared for security

 EECON1 = 0 ' Disable Access Configuration registers

 '--

 ' Calculate the PIC Part Number & revision

 PICPartNumber = DataWord >> 5

 PICRevision = DataWord.LowByte & 31

 '--

 ' Print the Device Name to the Terminal.

 $ifndef __DEVICE_ID

 $error "The Devicelist.inc is missing!!"

 $endif

 Select PICPartNumber

 Case __DEVICE_ID

 HRSOut "Device = ", __DEVICE_NAME, CR,LF

 Case Else

 HRSOut CR,LF

 HRSOut "The PIC Device number read from the Board is not

 correct!",CR,LF

 HRSOut CR,LF

 EndSelect

The IDLOCS:

If the IDLOCS option of the Bootloader has been activated, some parameters could be

added to the end of the file.bas, for example.

Asm

__IDLOCS IDLOC0,"L"

__IDLOCS IDLOC1,"O"

__IDLOCS IDLOC2,"A"

__IDLOCS IDLOC3,"D"

__IDLOCS IDLOC4,"E"

__IDLOCS IDLOC5,"R"

__IDLOCS IDLOC6,"5"

__IDLOCS IDLOC7,"0"

EndAsm

CONCLUSION

I hope that these examples of unusual code can help you in your projects. Any comments

would be welcome to improve the PDS Bootloader.

PDS Bootloader version 5.0. 30 Dicember 2018

Alberto Freixanet

