
Amicus18 Tutorial State Machine V1.0 Part1 By Alberto Freixanet (EA3AGV)

April 2017 - 1/3

Powered by Proton Development

Suite® Compiler of Crownhill

Associates Limited©

AMICUS18®

www.protonbasic.co.uk

STATE MACHINE PART1

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited©.

The Project has been developed and written by Alberto Freixanet.

The document has been edited by John Drew.

Introduction:

"State Machine" is a term used to describe a method for controlling a software controlled

process.

References to read:

Application note DS40051c (c) 2003 of Microchip© Technology Inc.

An Introduction to ‘State Machine’ by Tim Box December 2003, read more.

Using State Machines In Your Designs, read more.

Finite State Machines for PICs, read more.

A Simple State Machine, read more.

State machines ease programming microcontrollers, read more.

Finite-state machine, read more.

Finite state machines, read more.

And more…

Doing a web search would be a good start.

WHAT IS A STATE MACHINE?

According to Wikipedia: "State machine is called a behavior model of a system with inputs

and outputs, where the outputs depend not only on the current input signals but also on

the previous ones. The state machines are defined as a set of states that serves as an

intermediary in this relation of inputs and outputs, causing the input signal history to

determine, for each instant, a state for the machine, so that the output depends only state

and current entries.”

 ADVANTAGES OF THE STATE MACHINE

State machines are an integral part of software programming. State machines make the

code more efficient, easier to debug and help organise the flow of the program

http://www.protonbasic.co.uk/
http://www.protonbasic.co.uk/content.php/778-Introduction-To-State-Machines
http://aqdi.com/articles/using-state-machines-in-your-designs-3/
https://docs.google.com/presentation/d/1moLt0jpzETeaVZI667QJW4cY8uGPv7Lf8qc302SaWDM/edit#slide=id.g261c8219e_05
https://www.eevblog.com/forum/microcontrollers/a-simple-state-machine/
http://www.edn.com/design/systems-design/4416049/State-machines-ease-programming-microcontrollers
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Theory_of_computation/Finite_state_machines

Amicus18 Tutorial State Machine V1.0 Part1 By Alberto Freixanet (EA3AGV)

April 2017 - 2/3

1. The first advantage of using state machines is that it promotes good firmware

design techniques.

2. Improvements and special features can be easily added to the code in later

revisions or according to the evolution of the product.

3. Modules can be cut and pasted into other applications quickly and easily.

4. Other developers will be able to understand the code in order to maintain it. The

jump number, well commented, can be an index for each of the software

modules.

5. Another benefit of state machines is that built-in firmware naturally promotes the

writing of modular type code.

STANDARD STATE MACHINE

State machines require a State Variable (SV). The state variable is a pointer that

maintains control of the microcontroller’s state and directs the flow of the program to

the corresponding software module. With the state machine the 'GoTo' instruction has

almost ceased to exist.

The State Variable can be modified in software modules (or states) by itself or by an

external function.

GENERAL IDEA OF THE PROCESS

When you start deploying an application, think about what states are required for the

application to work.

Once this is done, the first state must be identified

Then we must answer the following question:

What condition is needed to get out of this state and what state is next?

Depending on what happens in a particular state, the State Variable is modified with the

goal of passing or jumping to the next state.

The implementation of a flow chart is suggested.

Finally you have to create the software modules for each state according to your flow

diagram.

Blocking Code issue

If an application is a long/complex one, all the code inside the main loop is delayed, it is

very likely that code may overflow, or repeat obsolete data or stop synchronizing with

events.

Amicus18 Tutorial State Machine V1.0 Part1 By Alberto Freixanet (EA3AGV)

April 2017 - 3/3

Even if the code is interrupt-driven, it must still work out of the time that is supplied by an

application or other module that executes in the polled loop.

The interrupt code must work within a very short period to ensure module execution can

be completed within the interrupt to avoid interfering with the Delays in the main program.

Interrupt code must be kept very short.

The main code must be broken down into smaller sub-tasks that can be performed from

start-to-finish in an acceptable amount of time. Any sub-task should not block the rest of

the system. To do this requires breaking up the application’s tasks into smaller sub-tasks.

Consequently, the programmer should carefully use the appropriate libraries that do not

delay the operation of the SM. In any case, the code of new libraries should be written

according to the State Machine.

I propose a State Machine Model that does not use an automatic methodology like Time

System Based as RTOS. The division of tasks and sub-tasks must be designed by the

programmer. This model could be called a Static State Machine. The structure of a

Module may be divided into Transitional Input State, Static State and Transitional Output

State.

COMPILER HELP

In a State Machine there may be repetitive code that can be simplified, as a result the

user does not have to write them repeatedly, thus avoiding wasted time and causing

possible typographical errors when the code is compiled.

For example, using macros, I can replace the code "Task_State = 1" with "NextState (1)"

which translated is equal to "Go to New State 1". The compiler would insert the code for

you. In the same way "Goto StateMachineInit" could be written in the form "ReturnSM ()"

which returns to the SM. This approach is shorter and easier to remember. Inside these

macros you can also add special commands that allow you to make indirect jumps, thus

adding new possibilities. (Part2)

Macros allow you to update/modify the SM code without having to retype the master code

or the template again.

In Part2, 3 and 4 of this article we will see templates prepared for a simple and a complex

State Machine that will facilitate the work of the beginning programmer. We will make

them evolve according to our needs.

CONCLUSION

Incorporating this method to your programming style will improve the structure of your code.

We will see some examples with templates that can be downloaded from the web for use

with the Proton Development Suite® compiler for the Amicus18 board.

Alberto Freixanet

04 April 2017

