Powered by Proton Development
Suite® Compiler of Crownhill
Associates Limited©

AM |CUS]_8® www.protonbasic.co.uk

STATE MACHINE PART2

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc®©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited®©.

The Project has been developed and written by Alberto Freixanet.
The document has been edited by John Drew.

Introduction:

| present an application to implement the State Machine system discussed in part 1 of the
tutorial, with a template written in Proton Basic language. This template is adapted for the
compiler for the PIC18F25K20 of the Amicus18 board and easily adapted to other PICs®.
Remember the principles of this State Machine:

1- The State Machine is a large loop that can never stop.

2- You cannot use the 'GoTo' command to a destination that is outside the main code area of
a module.

SOME DEFINITIONS AND CONVENTIONS

The following describes the conventions | use in the compiler. The programs are intended
to improve understanding of the code.

State Machine Commands

In addition to simplifying writing, these will improve the portability of our programs. The
commands of the library are highlighted in bold in the IDE and end with double
parentheses to assist recognition:

Statelnit(), StatelnitEnd(SyncOn), StartDelayMS(Value), StateOut(), StateOutEnd(),
ReturnSM(RSon), NextState(Value), IncState(), DecState(), SM_State(),
NextStateReturn(StateX,StateY), NextStateDelay(Delay,NewState), StartDelayMS(Delay),
InitStateMachine(), etc...

Global and Local Variables

Global variables are those that are available throughout a program. Alteration of one in a
routine or function will result in the new value being available everywhere else in a
program. Local variables are those that are only available within the procedure or function
within which they are defined. Once outside the subroutine they are destroyed and no
longer available. Languages such as Pascal and C use this approach.

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 1/15



http://www.protonbasic.co.uk/

Variables in programming languages are simply containers that contain values. Access to
the variables and the content of them is done through their names, also known as their
identifiers.

Variables are typed and created either at the beginning of a program or when first used.
Variables are filled with values generally as a result of a statement.

Local Variables

PDS does not support local variables. Even within the P24 version the 'local variables' are
not destroyed and may be accessed outside the routine using a simple strategy. Local
variables and parameters for procedures and functions use a significant amount of the
RAM and stack. 8 bit PIC micros have small amounts of RAM and stack, so
implementation of local variables is not always practical.

Some BASIC compilers support local variables in PIC micros but invariably their compiled
programs are larger and less efficient.

The variables located in bank A, whose access is the fastest, will be used in my
examples. They are called System Variables and must be used efficiently because their
quantity is very limited.

As the compiler does not handle local variables | constructed a trick that | have been
using for years and that works well. This system is used in all my libraries.

| have been able to determine that the best solution for me is to use blocks of 4 system
Byte variables, 2 system Word variables or 1 system Dword variable declared as needed.
$ifndef _LVBS_Block1_

$define _LVBS Blockl

Dim LVSBytel As Byte System ' Local Variable System Bytel

Dim LVSByte2 As Byte System ' Local Variable System Byte2

Dim LVSByte3 As Byte System ' Local Variable System Byte3

Dim LVSByte4 As Byte System ' Local Variable System Byte4
$endif
LVSBytel => Local Variable System Byte number 1

For a second block of local Bytes you can write.
$ifndef _LVBS _Block2_

$define _LVBS_Block2_

Dim LVSByte5 As Byte System ' Local Variable System Byte5

Dim LVSByte6 As Byte System ' Local Variable System Byte6

Dim LVSByte7 As Byte System ' Local Variable System Byte7

Dim LVSByte8 As Byte System ' Local Variable System Byte8
$endif

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 2/15




What does it mean?

The name of this block is _LVBS_Block1 . If this block doesn’t exist before ($ifndef) then
the following bytes are declared. If this block is written in several libraries then the
compiler will take the first declared block for the variables without a compilation error.

Then in a module you can declare these local variables like this.

Dim ADC_Result As LVSBytel
Dim CounterValue As LVSByte2
Dim Varl As LVSByte3
Dim UARTData As LVSByte4
For a Word local variable it will be written. (always 4 Bytes System)
$ifndef _LVWS_Block1
$define _LVWS_Block1
Dim LVSWord1l As Word System ' Local Variable System Word1
Dim LVSWord2 As Word System ' Local Variable System Word?2
$endif
Dim ADC_Result As LVSWordl
For a Dword local variable it will be written. (always 4 Bytes System)
$ifndef _LVDWS_Blockl_
$define _LVDWS_Block1_

Dim LVSWord1 As Dword System ' Local Variable System Dword1
$endif

For a local Bit it will be written.
$ifndef _LVSBits_Block1_

$define _LVSBits_Blockl

Dim LVSBItsA As Byte System ' Local Variable System Byte
$endif

Then declare the Local Bits.

Dim F_UART _Error As LVSBItsA.O
Dim F_ADC_Error As LVSBiItsA.1

Etc...

User Flags

Some flags will also be needed to perform some routines. So | can differentiate a variable
from a flag only by having an "F" in front: F_PushButton other than Pushbuttons (the
"Pushbuttons” variable could have several bits representing other pushbuttons).

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 3/15




STRUCTURE OF THE TEMPLATE

A template already designed according to the standards of the compiler where everything
is in its place will help the beginner in the realisation of its program.

Declare the device:

Device = 18F25K20

Compiler declares: (Only what is necessary)

Declare Eeprom_Address = $F00000 ‘Not necessary if standard value.
Declare Optimiser_Level =2

Declare Dead_Code_Remove = On

Declare Create_Coff = On

Declare Watchdog = On

‘Declare Float_Display Type = Fast
‘Declare Float_Rounding = Off
Declare Bootloader = Off

Declare Show_System_Variables = On
Declare MemWrite_Int_Control =1

$if 65537 < _code
Declare Access_Upper_64K = On
$endif

Declare the Config Fuses:

Config_Start
Etc...
Config_End

Declare the LCD: (Only if necessary)

Declare LCD_DTPin = PORTB.4 'LCD's Data lines (D4 to D7)

Declare LCD_ENPin = PORTB.3 'LCD's EN line

Declare LCD_RSPin = PORTB.2 'LCD's RS line

Declare LCD _Interface =4 ' 4-bit interface to LCD

Declare LCD Lines =2 ' LCD contains 2 lines

Declare LCD_DataUs =50 ' Time to wait after print a data To LCD

Declare LCD_CommandUs =2000 ' Time to wait after print a command to LCD
Declare LCD_Type = Alphanumeric ' LCD type is alphanumeric
Symbol __ LCD_CharsLenght = 16 ' For the AMI18 LCD Shield

Declare the local variables:

$ifndef _SMLVBS_Block1_
$define _SMLVBS_Block1_

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGV) April 2017 - 4/15




Dim SMLVSBytel As Byte System ' Local Variable System Bytel

Dim SMLVSByte2 As Byte System ' Local Variable System Byte2

Dim SMLVSByte3 As Byte System ' Local Variable System Byte3

Dim SMLVSByte4 As Byte System ' Local Variable System Byte4
$endif

The local variables for the main program (SM) have a different name so as not to destroy
the local variables of the library.

Declare the local variables for the user:

Declare the constants for the user:

Declare the language for the strings of the project and libraries: (one only)

$define _English_

$define _Spanish_

$define _French

The language is declared at compiler time.
All strings are written with a label at the end of the program in a file, in the upper part of
the ROM. In order to access these strings a special command of the library is used:

HRSLStrg(Label Name, Number of Chars to Send, Number of CR to send)
As you can see, this command is very powerful.

There is the same command for the LCD.

PrintStrg(Label Name, Line Number, Position, Number of Characters)
PrintStrg(TXTO, 1, 1, AliChars) '"STATES MACHINE"
Or simpler.

PrintStrg(TXTO, 1, 1) ""STATES MACHINE"
Declare the dummy Array: (if there is an array(s) in your main code or library)

An array placed between BankA and BankO could cause write/read errors. For this reason
an array of adjustable dimensions is built to occupy the upper part of BankA. It will not
affect the System variables that will always be placed in BankA.

A Dummy Byte is used to show the starting point of the new array. Once the program is
compiled the the position of the dummy byte is known. The value is set to: (for example)

$define AddressofMyDummyByte 52

It is recompiled to position the new array.

Bits definition file of the Device: (not mandatory)

For this project | have written the following file.

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 5/15




Include "SYS 18FXXK20.inc"

Many PIC® SFR (Special Function Register) configuration records can be read and / or
written by the user. The more peripherals the PIC® has, the more registers it will have to
configure. The use of the bits of the special registers are described in the manual of each
PIC®. For example, to configure the read or write in the EEPROM memory there is the bit
EEPGD that determines if you want access to the EEPROM or FLASH memory according
to what is written (0 or 1). In the case of Pic18F25K20 it is defined as EECON1.EEPGD.

To avoid searching and/or writing the corresponding register | only name the bit of the
function that interests me. | always forget which register it belongs to. Being a bit element
of a Byte variable, | can define it as a flag. For example the EECON1 bit. EEPGD is
always F_EEPGD. But the compiler needs to know where this definition comes from, what
record it is involved in. For that | have written some definitions for each Microchip
microcontroller | use, for example for our case SYS_18FXXK20.inc. By putting this file in
the beginning of the program the compiler will search for the appropriate register. | did the
hard work only once. Also consulting this file, you can know the functionsof each bit of a
particular record. This file is an adaptation of the internal registers defined in the PIC®
manual.

Sometimes in new PICs®, Microchip® changes the position and name of the source
register. With this system, when writing a new file, the references to these bits are not
changed in the user program. It is a great advantage.

State Variable Number:

It is better to Define every State with a Name.

In this way, each function of the different modules is recognised and if one or several
modules are changed in the editor, it will not be necessary to modify all the values of the
program's State Variables.

$define SM_Init 0 "STATEOQO
$define SM_ButtonsOff 7 ' STATEOQ7
$define SM_ReadButtons 8 ' STATEO08

$define SM_LEDO 9 "STATEOQ9
$define SM_LED1 10 "'STATE10
$define SM_LED2 11 'STATE11
$define SM_LED3 12 'STATE12
$define SM_LED4 13 'STATE1S
$define SM_LEDS 14 'STATE14
$define SM_LED6 15 "STATE1S5
$define SM_LED7 16 'STATE1L6

Same structure for the State Machine 2.

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 6/15




USER FUNCTIONS (only Meta Macro, no Subroutine)

With meta-macros written with the pre-processor you can configure some time functions
(not explained yet) with different timers. This code should be very short because these
lines are executed before each module. Avoid writing subroutines.

Enable the Library Commands included the STMachine00.Inc file

As | write the libraries, it does not occupy code space in the ROM if they are not called in
the main program. But in some cases, these libraries need many local or/and different
variables. Then many System variables would be consumed for no purpose. To avoid this
problem they are disabled.

Declare the Serial Communication for the State Machine Library

$define _EnableTerminal_

This definition allows you to use the HRSOut command in the library codes.

The following line establishes the Declare for Serial Communication.
$define _HSerialBaud_ 38400

It is not usual to use this form, but this allows me to manually modify the settings of each
speed in my way.

Choose the HSRSout command for the SM Library. (One only)

$define _HRSOut HRSOut
' $define _ HRSOut HRSOutl
' $define _HRSOut HRSOut2
$define _ HRSOut HRSOut3
$define _ HRSOut HRSOut4
$define _HRSOut HRSOut5

Depending on the UART number chosen by the user, all the HRSOut commands of all
libraries are modified without changing any code at compiler time.

Enable some State Machine Commands

Some functions are already prepared in the State Machine, the interrupt module, and
more. Sites: Timers, virtual Delays, State Machine2.

Include the Library for the States Machine System.

Include "STMachine00.inc"
Insert the High Interrupt Handler & Low Interrupt Handler if necessary

'Interrupt Handler.

Declare Reminders = OFF
Interrupt_Handler:

Context Save

If F_TMR2IF =1 Then ' Check if this is a timer2 interrupt?
$ifdef _SynchronizelmS_
F TimerlmS=1 ' Set a Flag every 1mS

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 7/15




$endif
F_ TMR2IF =0 ' Clear the Timer2 interrupt flag for next time.

$if _defined(_TimerlOmS_) Or _defined(_TimerlS_)
Inc TimerlOmS
If TimerlOmS =10 Then
TimerlOmS =0 ' 100Hz Timer
$ifdef _SynchronizelOmS_
F _TimerlOmS =1
$endif
$ifdef _TimerlS_
Inc Timer500mS
If Timer500mS =50 Then
Timer500mS =0
Toggle F_Timer500mS ' 1 Hz Timer, to toggle some leds.
EndIf
$endif
' Other Timers?
"Your code...
EndIf
$endif

$ifdef _SMVDelay_
' Delay 1mS for the States.

If F_SMVDelay = 1 Then ' The VDelay is started.
Dec SMDelayCounter ' Decrements the SMDelayCounter every 1mS.
If SMDelayCounter = 0 Then ' Check if delay counter reaches 0.
F_SMVDelay = 0 ' Delay END, clear the Vdelay FLAG.
EndIf
EndIf

$endif

$ifdef _SM2VDelay_
' Delay 1mS for the States2.

If F_SM2VDelay =1 Then ' The VDelay is started.
Dec SM2DelayCounter ' Decrements the SMDelayCounter every 1mS.
If SM2DelayCounter = 0 Then ' Check if delay counter reaches 0.
F_SM2VDelay =0 ' Delay END, clear the Vdelay FLAG.
EndIf
EndIf

$endif

$ifdef _Delayl_
' Count every 1mS.

If F_Delayl =1 Then ' The Delay is started.
Dec DelaylCounter ' Decrements the DelayCounter every 1mS.
If DelaylCounter = 0 Then ' Check if delay counter reaches 0.
F_Delayl =0 ' Delay End, clear the delay FLAG.
EndIf
EndIf

$endif

$ifdef _Delay2_
' Count every 1mS.

If F_Delay2 =1 Then ' The Delay is started.
Dec Delay2Counter ' Decrements the DelayCounter every 1mS.
If Delay2Counter = 0 Then ' Check if delay counter reaches 0.

F_Delay2 =0 ' Delay End, clear the delay FLAG.

EndlIf

Endlf

$endif

EndIf

' Here the another user interrupt handler code....

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 8/15




END_INT:

Context Restore ' Exit the interrupt handler and restore variables
Declare Reminders = On

The timer2 with PR2 are used to generate an interrupt every 1mS. It is the best system
because you do not have to recharge the Timers inside the interrupt handler; which
improves accuracy and simplifies code.

EEPROM Data

You write here the data or strings that you want to write in the EEPROM memory.

Library files
Insert the library files here.

The Main Code: STMAIN:

Here initialize all variables, PORTS, etc ... of the PIC®. Initialize the State Machine.

STATE MACHINE STARTS

The states machine really starts here.

StateMachinelnit: It is the label to reset the State Machine.

StateMachineStart: It is the input of the State Machine. Each cycle starts here.

User Functions:

The functions of the user could be activated or not by the pre-processor. This code must
be related to a type of timing and should be very short.

Running the Module Delay

If the virtual delay (SMVDelay) has been activated by its flag then the State Machine is
derived and does nothing. No principal module is executed. But the State Machine2
continues to run anyway. This system allows running some programs in the background
when the main loop is waiting.

State Machine Scheduler

Before arriving at the main scheduler, the value of the state variable of the second State
Machine is checked. If this value is greater than 0 then the path forks to a second SM that
we will study later.

The State Machine scheduler is responsible for making the jump to the corresponding
module. When a supplementary program module is added, the new label must be added
to the list.

' Update the LABELS when you add a new States Machine Module.
BranchL StateIndex, [STATEO0O,STATEO1l,STATEO2, STATEO3, STATEO4, STATEOS, STATEOG,
STATEQ7, STATE0S]

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 9/15




Debuq section. Statelndex is OUT of RANGE

The "BranchL" compiler command allows you to have control over a range error. If the
value of the variable "Statelndex" does not correspond to a LABEL then it is skipped in
this direction. In this case the programmer must write an error code and reset the system.

" Debug section. StatelIndex is OUT of RANGE.

$ifdef _SMVDelay _

F SMVDelay = 0

Sendif

$ifdef EnableTerminal

_HRSOut "STATES MACHINE1 OUT OF RANGE: ", Dec Statelndex,13,10
DelayMsS 1000

Sendif
" ERROR in States Machine Variable Range. Reset the States Machine.
GoTo StateMachinelInit ' Equivalent of Reset On stack overflow.

State Machine Module 00

Here begins the users’ code modules addressed by a structure that will ease the
programmer’s life.

STRUCTURE OF THE MODULES

The user of the PDS should study his project to decompose it into small parts (modules).
Each module will have to perform a single function or several more simple ones. In this
way the user will be able to take advantage of the possibilities offered by this State
Machine. The module of this SM tries to be an autonomous being.

Description of the module

Conventions:

A module a|Ways begins WITN @ [HN@: Y %5 5 %k ok ok sk ok ok & ok ok & ok ok & ok ok ok ok ok & ok ok & ok ok ok ok ok ok ok ok K ok ok Kk
A modu|e a|WayS ends W|th a |ine: Nk ok ok ok kA ARk hhkhk kA A ARk Kk kkk ok k ok k ok kkk k& &k Kk Kk kK kx

The code for the start section should be written between these 2 lines:

' Transitional State.

"##-INIT SECTION-#####A#H####FHAFHAHAFHAFAFHAFHAHAFEAFHARAFHAFAFEAFAARAFEAFAAS

"H#H#-END INIT-#H###HHFFFRFFRRFFRRRFFFRFFAFFFRIRF BRI FAFFFFFRFFAAFFARFFHHFFAAH
The code for the main section should be written between these 2 lines:

' Static State.

The code for the output section should be written between these 2 lines:

' Transitional State.

PSS EXIT SECTION- 5SS S8 8ssssssssSssssSsss8ss595s555555555

D D D D D D D D D S D D s 05555555555

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 10/15




Subroutines could be written after the Module.

The Module header:

LR b e b b e b b e b b b b b b e e b b b b b b b i b b b b g b b g b b b b b b e b b b b b b g b b b b b b b b b b b b b b b b b b b b e b b i b g

'* Name : STATE17 (SM _Toggle LEDS5)
"* Purpose : Toggle LED5 at 0,5 Hz

"* Input : None

"* Qutput : None

"* Notes

T ok 5k ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok b ok ok b ok ok ok ok ok ok ok ok ok ok o ok ok A ok ok A ok ok ok ok ok ok b ok ok b ok ok bk ok bk A bk A bk A bk A bk Ak

The data that is written in the header is important as it informs us about the purpose of the
code. This is very useful for maintenance reasons.

Declaration of variables:

" Define the Global variables used in this state:

Dim ReturnACK As Byte
" Define the Local variables used in this state:

Dim KEYn As SMLVSBytel

Dim KEY Result As SMLVSByte2

Dim KEYnOld As SMLVSByte3

Dim KEYCounter As SMLVSByte4
' Define the Symbols used:

Symbol BacklightTimeValue = 5 ' Backlight Set for 5 sec
It is not usual to do it this way but this system allows the user to control directly and
quickly the variables used in the particular module.
This system will only work if the code that will use these variables/constants is in the
descending lines. If these variables/constants are used in other higher modules then they
have to be written at the beginning of the file as usual whereas local variables will always

remain here.

Entry of the Module: LABEL.:

The Scheduler by a "GoTo" command will arrive at the module label.

Statelnit() Transitional state.
StateInit ()
"##-INIT SECTION-#######AFIHAIIAAIHRIFBAIIRAIIRAIIRAIRRIIHRIIRABIRAIIH I

This command is a switch that lets you run the code underneath once and copy the
Statelndex variable for future use.
StatelnitEnd()

"##-END INIT-#####H##AFHHAFHEAFFEAFFRAFFRAFFRAFFRAFHHAAFHAAFAAFHHAFFHAFHHA

StateInitEnd()
This command closes the start section.

Main Code: Static state.

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 11/15




" Write to the Config register: Enable signal output with frequency = 1 Hz.
DS1307_WriteControl (510010000, ReturnACK)
If ReturnACK = 1 Then

HRSLStrg (TXT16,1) ' "NACK DS1307 Write Control",1CR
NextStateDelay (1000,SM Error NACK) ' Waiting 1000mS before to go to
' SM Error NACK State.
Else B B
NextState (SM_ReadTime)
EndIf
—EXIT MAIN—-::::zc:crcrcsocsrsrsrrscssssrrrrsrrocssssrssrrrrsrrsrre:e

In the Main section the PDS user can write the code. If the Statelndex is not altered then
the code works like in an infinite loop.

STATE17: While 1 =1 : [Module Code] : Wend
NextStateDelay(1000,SM_Error_NACK)

It allows starting a delay in mS when the Module is closed by ordering the SM to change
state by (SM_Error_NACK), this Delay can be started before the execution of another
module begins. This Delay is virtual because the PIC program counter does not wait.
Codes continue to run without stopping. The Delay is running by interrupt and is another
concept.

STATE17: While 1 =1 : [Module Code, Change State =>] : Wend : Delay Y
StartDelayMS(50)

It allows starting a delay in mS every time the main program has been executed in a loop.
And the result is as follows. This Delay is virtual because the PIC program counter does
not wait. Codes continue to run without stopping. The Delay is running by interrupt.
STATE17: While 1 =1: Delay( X) : [Module Code] : Wend

If the value in parenthesis is equal to O then the code of the macro is not written,
accordingly the Delay does not exist.

StateOut() Transitional state.

This command verifies if the Statelndex variable has changed, if it is positive, the
following code is executed to exit this Module. Sometimes you need to reinitialise values
or send a message to the LCD for example.

Of course if Statelndex has not changed, the SM will only execute the main module code
again.

StateOutEnd()

This command closes the values used in this Module, in particular the virtual Delay if it
has been activated.

ReturnSM()

Return to the scheduler.

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 12/15




Subroutines:

Some subroutine(s) corresponding to this module will have to be written. In this case, it
will be written after the ReturnSM () command. See an example in the STMO00.bas file in

STATEOS.

Module Overview:

Due to its structure, all the codes included in the Module could be stored in a .bas file as a
library. All information is included to copy and paste into another project.

Example of Module: (Read a 4x4 Keypad)

Complex code made simple thanks to SM.

T ok Sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok b ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok

"* Name : STATE(O8 [SM ReadKeypad]

"* Purpose : Read all Buttons with InkeyX(50) with debounce code.
"* Input : None

"* Qutput : None

"* Notes : The InkeyX(50) returns a "0" if NO Key pressed.

' Define the Global variables used 1in this state:

Dim KEYCounter As Byte
Dim KEYnOld As Byte

' Define the Local variables used in this state:

Dim KEYn As SMLVSBytel
Dim KEY Result As SMLVSByte2

" Define the Symbols used:
Symbol DebounceReadings = 4

StateInit ()

"##-INIT SECTION-#####A#H####FHAFHAHAFHAFAFHAFHAHAFEAFHARAFHAFAFEAFHAHAFEAFAAS

HRSLStrg (TXT58, 1)

CLL

PrintStrg (TXT90,2,1)

KEYnOld = 0

KEYCounter = 0

NextState2 (SM2_PrintLCDLinel)

T

"Waiting a KEY pressed!"
' Clear the LCD
" "WAIT KEY pressed!"

" Initialize parameters for debouncing.

T

Start running the States Machine2 1in

" Background.
"##-END INIT-########AH#AHAARAARAARAARAARAARA AR AR AHA AR AR AR AR A A A
StateInitEnd ()
! “MAIN CODE—=:::::ccr sl
KEYn = InkeyX(50) ' Read the Keypad with 50uS delay for filtering.

If KEYn > 0 Then
If KEYnOld = KEYn Then
Inc KEYCounter

' Some debounce system

If KEYCounter = DebounceReadings Then ' 4 + 1 reading necessary.

KEYCounter = 0

KEY Result = LookUp KEYn,[0,"7","8","9",
|'l",|'2","3","_","C","O",":

Select KEY Result

'"KEYn = 0 1 2 3 4 5 6

r

11 12 13 14 15 16

7 8 9 10

H/H,H4H,H5H,H6H,H*H,

H, H+HJ

Amicus18 Tutorial State Machine V1.0 Part2

By Alberto Freixanet (EA3AGYV)

April 2017 - 13/15




Case "O"

NextState (SM_Set_ LEDO)
Case "1"

NextState (SM_Clear LEDO)
Case "2"

NextState (SM_Set LEDI1)

Case "3"

NextState (SM_Clear LED1)
Case "4"

NextState (SM_Set LED2)
Case "5O"

NextState (SM_Clear LED2)
Case "o"

NextState (SM_Set LED3)
Case "7"

NextState (SM_Clear LED3)
Case "8"

HRSOut CR, LF

HRSLStrg (TXT77,1)

NextState (SM_ButtonsOff)
Case "9"

HRSOut CR, LF

HRSLStrg (TXT79,1)

NextState (SM_ButtonsOff)
Case "/"

HRSOut CR, LF

HRSLStrg (TXT82,1)

NextState (SM_ButtonsOff)
Case "*"

HRSOut CR,LF

HRSLStrg (TXT83,1)

NextState (SM_ButtonsOff)
Case "-"

HRSOut CR,LF

HRSLStrg (TXT84,1)

NextState (SM_ButtonsOff)
Case "+"

HRSOut CR, LF

HRSLStrg (TXT85,1)

NextState (SM_ButtonsOff)
Case "="

HRSOut CR, LF

HRSLStrg (TXT89,1)

NextState (SM_ButtonsOff)
Case "C"

NextState (SM_Toggle_ LEDS)

Case Else
NextState (SM_ButtonsOff)

EndSelect

EndIf
Else

T

T

"KEY 8 pressed!"

"KEY 9 pressed!"

"KEY / pressed!"

"KEY * pressed!"

"KEY - pressed!"

"KEY + pressed!"

"KEY = pressed!"

"START Toggle LED5", "STOP

Toggle LED5"

Come back reading buttons

KEYCounter = 0 " If another KEY is pressed then clear the counter.

EndIf

KEYnOld = KEYn
Else

KEYCounter = 0
EndIf

" KEY depressed Then Clear the Counter.

Amicus18 Tutorial State Machine V1.0 Part2

By Alberto Freixanet (EA3AGYV)

April 2017 - 14/15




StateOut ()
S EXIT SECTION- 58888888888 s sssss555555

StartBeep () " Generate a pulse (Beep) of 0,250 second for every
' Button pressed.

NextState2 (SM2_Init) ' Stop running the States Machine? in Background.

D S S S S S S SSs558555555555

StateOutEnd ()

ReturnSM ()

T ok o ok 5k ok ok ok ok b ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok b ok ok ok b ok ok b ok ok ok b sk ok ok ok ok ok ok ok ok ok ok ok ok b ok ok b ok ok ok b ok ok o kb A b

What is this doing?

Some local variable have been declared and a constant for debouncing.

In the start section a message is sent to the terminal.
The LCD is cleared ready for another message.
Some variables are initialised.

A special command is made to start the States Machine2 to perform some background
jobs (*).

In main code, a 4x4 keyboard is read with the modified InKeyX(y) command from my
library. (EMI compliant)

When reading a pressed key, count 5 readings (debounce) before continuing.

If the key is correct the SM will go to the different modules to handle the management of
each function.

A delay is started to read the Keypad every 40 mS to perform the debouncing.

When the Module exits, corresponding to a pressed key, a beep sounds from the buzzer
(running in Background).

Stop the function that the State Machine2 was doing in the background.

(*) The background job prints the string "STATE MACHINE2A" to the LCD line 1.

CONCLUSION

| have tried to explain the structure of my State Machine. We will see in the next tutorial
the advanced functions.

Alberto Freixanet
04 April 2017

Amicus18 Tutorial State Machine V1.0 Part2 By Alberto Freixanet (EA3AGYV) April 2017 - 15/15




