Powered by Proton Development
Suite® Compiler of Crownhill
Associates Limited©

AMICUS18® www.protonbasic.co.uk |\

STATE MACHINE PART3

PIC®, MPLAB®, PICkit3® and ICD3® are registered trademarks of Microchip Technology Inc®©.
Proton Development Suite® or PDS® are a registered trademark of Crownhill Associates Limited®©.

The project has been developed and written by Alberto Freixanet.
The document has been edited by John Drew.

Introduction:

We are going to study the different advanced functions that allow us to facilitate the code.
Please read carefully the pre-processor section in PDS manual.

THE VIRTUAL DELAY: (SMvDelay)

In a standard Delay command, the program flow is stopped completely until the time is
finished. With Virtual Delay the program flow does not stop and continues to execute the
code written by the programmer.

Everything starts, as in normal Delay, by loading the Delay value on a counter and setting
a delay flag too.

StartDelayMS(40)

$define StartDelayMS (pDelay)
Sifdef SMvDelay
$if pDelay > 0
If F NextStateVDelay = 0 Then
If StateIndex = StateIndexOld Then
SMDelayCounter = pDelay
F SMVDelay = 1
EndIf
EndIf
$Sendif
$Sendif

N N N N N SN SN SN S~ =

This delay will only be activated when a value greater than zero is written. The
“F_NextStateVDelay = 0” condition prevents the loss of a delay that may be set by
another priority. The same delay parameters are used for 2 different functions.

STATE17 : While 1 =1 : [Module Code - StartDelayMS(40)] : Wend

When the delay is activated it goes directly to the beginning of the SM.

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 1/16

http://www.protonbasic.co.uk/

Code to bypass the scheduler:

$ifdef SMVDelay
If F SMVDelay = 1 Then
GoTo StateMachineStart ' Waiting delay for the States Machinel.
EndIf
Sendif

Before the Scheduler the ‘F_SMVDelay’ flag is controlled. In this way the BranchL
command is not executed until the flag is zero.
Inside the interrupt handler the virtual delay counter is decremented every mS.

$ifdef SMVDelay
' Delay 1mS for the States.

If F SMVDelay = 1 Then ' The VDelay 1is started.
Dec SMDelayCounter ' Decrements the SMDelayCounter every 1ImS.
If SMDelayCounter = 0 Then ' Check if delay counter reaches 0.
F SMVDelay = 0 ' Delay END, clear the Vdelay FLAG.
EndIf
EndIf
$Sendif

Another Virtual Delay (Priority Delay)
STATEL17: While 1=1: [Module Code] : Wend : VDelay X : STATE18: While 1=1 : [Module Code] : Wend

Often it is necessary to place a delay between 2 states (Modules) for example to give time
to see a display. Then a Virtual Delay is introduced. This function is performed with the
command:

NextStateDelay(1000, SM_LED5)

The NextState command gives the order to go to another module "SM_LEDS5" but with a
delay of 1000 mS. It could be written in other ways.

NextStateDelay(1000, IncState) ‘Increment one State.
NextStateDelay (1000, DecState) ‘ Decrement one State.

As the same delay is used as the previous one it must be done in a way that avoids
mutual interference. This is done inside the “StateOutEnd ()” command, i.e. when leaving
the state. The corresponding macro is:

$define NextStateDelay (pDelay,pNewState) '
$if pDelay > 0 !
SMDelayCounter = pDelay !
F NextStateVDelay =1 !
F SMVDelay =1 !
$endif '
$if pNewState = IncState !
Inc Statelndex !
Selseif pNewState = DecState !
Dec StatelIndex !
Selse !
StateIndex = pNewState !
$endif

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 2/16

THE USER FUNCTION:

The user function is usually a code that works in the background using timing. Let's look
at example #1 of the template.
To perform these functions we will use the interrupts and the State Machine.

Purpose: Blink one LED every second.
To perform this function we will need:

- A start command written in a module.
- A stop command written in a module.
- Atimer running at 2 Hz by interrupt.

- Apply this Timing function to the LED.

e A start command.

The user must write the macros in the top of .bas file and the command will be inserted in
the module code.

$define StartFunctionl () F_UserFunctionl = 1

e A stop command.
$define StopFunctionl () F_UserFunctionl = 0 : LED5 = 0

e Atimer running at 2 Hz by interrupt.

Sif _defined(_TimerlOmS) Or _defined(_TimerlS)
Inc TimerlOmS
If TimerlOmS = 10 Then
TimerlOmS = 0 " 100Hz Timer
$ifdef TimerlsS
Inc Timer500mS
If Timer500mS = 50 Then
Timer500mS = 0
Toggle F_Timer500mS ' 1 Hz Timer, to toggle some leds.
EndIf
Sendif
' Other Timers?
' Your code...
EndIf
Sendif

Then this flag is created with the Toggle command.

Toggle F_Timer500mS

e Apply this Timer function to the LED.
Before the Scheduler, this code is written in the "User Functions" section.

' RUN User Functionl: Toggle the LED5 every 1/2 second.
If F UserFunctionl = 1 Then

LEDS = F_Timer500mS
EndIf

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 3/16

With this indirect construction the flag “F_Timer500mS” could be applied to several
outputs.
If F UserFunction3 = 1 Then
LEDY9 = F_Timer500mS
EndIf
Then this code is executed at every loop of the State Machine, (Very high speed). The
LED blinks (500mS = On, 500mS = OFF). See an example in the STM02.bas file.

GENERATE A PULSE:

Another user function has been written to be able to generate a pulse of predetermined
duration. This function requires a Virtual Delay2 generated by the interrupt handler. Let's
look at example #1 of the template STMO02.bas file.

Purpose: Generate a pulse.

To perform this function we will need:

- A start command written in a module.

- A stop command.

- A Virtual Delay by interrupt. (VDelay2)

- Apply this Timing function to a Buzzer or a LED9 for this case.

e A start command.

Create a Macro that starts the Delay2 and set the Buzzer or LED9. This macro must be
written by the user in the top of the .bas file.

r

$define StartBeep ()
F UserFunction2 = 1 '
LED9 = 1 '
StartDelay2MS (250)
The StartBeep () macro will run once only, be careful in its placement, see STM02.bas file
in module 8.

e A stop command.
The final end of the function is performed by Delay itself. As follows, this is the VDelay2
code in the interrupt handler.

$ifdef Delay2
" Count every 1ImS.

If F Delay2 = 1 Then ' The Delay is started.
Dec Delay2Counter " Decrements the DelayCounter every 1mS.
If Delay2Counter = 0 Then ' Check if delay counter reaches 0.
F Delay2 = 0 ' <= Delay End, clear the delay FLAG.
EndIf
EndIf
Sendif

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGV) April 2017 - 4/16

o Apply the final Delay2 to the function Buzzer.
Before the Scheduler, this code is written in the "User Functions" section.

" RUN User FunctionZ2: Clear LED9 after a delayZ2.
If F UserFunctionZ = 1 Then
If F Delay2 = 0 Then
LEDY9 = 0 ' <= Clear the LED9 when VDelay2 finished.
F UserFunction2 = 0
EndIf
EndIf

All user timing functions could have this same structure.

Conclusion of the User Functions

As you have seen, the code inside the interrupt handler must be generic. The applications
are done in the State Machine; but because the inside of an interrupt handler should be
brief the user functions are written outside the handler.

The User Functions must use special Virtual Delay only.

INDIRECT ADDRESSING:
The Return State Option

This application is complex to perform. You could try to use a module as a subroutine
when this module is in the normal flow of the SM. Normally this module has its own
destination and is still valid if it is normally called with the standard command
“‘NextState(StateX)”. See an example in file STMO5B.bas.

A special command has been built.
NextStateReturn(StateX, StateY)

$define NextStateReturn (pStatel,pState2)
StateIndex = pStatel
$ifdef CheckReturnStateM
ReturnStateIndex = pState?
F ReturnState =1
F EnableReturnState = 1
Sendif

~ N = S~ S~ =

First, write the destination module to be used as a subroutine (pSatel), then the “Return”
destination module (pSate2).

The module used as a subroutine must be validated by “RSOn”, thus avoiding writing
useless code in all modules.

ReturnSM(RSon)

$ifdef CheckReturnStateM
$define ReturnSM (pEnable) '
$if pEnable = RSOn '
GoSub mNewReturnState Sub '
Sendif '
GoTo StateMachineStart

mNewReturnState Sub:

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 5/16

If F StateOverride = 0 Then

If F ReturnState = 1 Then ' Option Return State enabled.
StateIndex = ReturnStatelndex ' Change the State
F ReturnState = 0
EndIf
EndIf
F StateOverride = 0
Return

Selse
" Nothing to do.
Sdefine ReturnSM() GoTo StateMachineStart

Sendif

In the subroutine module, in case of emergency, this linkage could be broken, for example,
after a communication error. See an example in file STMO5B.bas, in STATEOQS6.

NextStateOverride(StateN)

$define NextStateOverride (pNewState) '
$if pNewState = IncState !
Inc StatelIndex !
Selseif pNewState = DecState !
Dec StateIndex !
Selse !
StateIndex = pNewState !
Sendif !
$ifdef CheckReturnStateM '

F StateOverride =1 !

Sendif

Then the parameters are deleted and the “ReturnState” link is not executed being valid in
the new override destination.

The General Return State Option

You could try to use one or more modules as a subroutine. In this case these destination
modules are already prepared to receive different calls from any part of the program.

Like the previous system the return module is recorded in a special variable. This module
that could be the code of a keyboard, would be read by multiple calls from the main
program. See the STM05D.bas file.

Example: Checking if all Buttons are depressed.
STATE10:

StateInit ()
"##-INIT SECTION-#####HHHHHHHHHHAAAAAAAAAAAAHAAAAFFFFFFFFFFFHHHHAAAA

"##-END INIT-####H#HHHHHHAHAHHHAAAAAAAAAAAAAAAAARFAFFFFFFHFFFHFHHHHHAA
StateInitEnd ()

GoSub ReadButtons2PORT Sub ' Read all Buttons.

' Waiting All Buttons OFF (All Buttons have a Pull-up resistor).

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 6/16

If ButtonsVirtualPORT = 255 Then
ReturnIndState () ' <= Load the Return State from the caller.
EndIf

StateOut ()
S EXIT SECTION- 588 s 555555555555

S S80S0 5858085805855 0555585555555555555555555555555558
StateOutEnd ()

ReturnSM()

When all Buttons are depressed the State Machine goes to the module loaded in the
special variable by the ‘ReturntindState()’ command.

This switch State Mode is invoked by the command:

NextindState(Next Sate, Last State)
Example: NextindState(SM_ButtonsOFF, SourceState)

The state machine goes to the NextState [SM_ButtonsOFF] and then to the caller module.
In this example it is an equivalent of a “Gosub Module_SM_ButtonsOFF”.

In other case the “SourceState” could be any other state if the module destination code is
written for this.

This new indirect addressing will be studied in the next Tutorial Part 4.

THE DEBUG STATE OPTION:

Thanks to the modular construction, it is easy to perform a control of the state machine as
already mentioned in PART1.
This option is enabled at compile time with:

Existing macros are modified.

$ifdef EnableTerminal
Sdefine StateInit() !
StateIndexOld = Statelndex !
$ifdef SMvDelay '
F NextStateVDelay = 0 !
$endif '
$ifdef CheckReturnStateM !
F StateOverride = 0 !
$endif '
If F StateInitMade = 0 Then !
$ifdef DebugStates '
GoSub DebugStatelIn Sub !
Selse !
$ifndef DisableCRBeforeState '
_HRSOut 13,10 !
Sendif '

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 7/16

F StateInitMade = 1 !

Sendif

$ifdef DebugStates

DebugStateIn Sub:
F StateInitMade = 1
$ifndef DisableCRBeforeState
_HRSOut 13,10
Sendif
_HRSOut "ST",Dec StateIndex,"in",13,10
_HRSOut "From State",Dec StateIndexFrom,13,10
Return

Sendif

Selse

Sdefine StateInit () '
StateIndexOld = Statelndex !
$ifdef SMvDelay '
F NextStateVDelay = 0 !
$endif '
$ifdef CheckReturnStateM '
F StateOverride = 0 !
$endif '
If F StateInitMade = 0 Then '
F StateInitMade = 1

Sendif

This code is added in the standard macro.

_HRSOut "ST",Dec StateIndex,"in",13,10
_HRSOut "From State",Dec StateIndexFrom,13,10

When the module is executed for the first time, the current state number is sent to the
terminal and the state from which it comes.

In the same way when the module exits, the macro is modified.

' StateOut header End

$if _defined(CheckReturnStateM) Or _defined(DebugStates)
Sdefine StateOutEnd () '
GoSub DebugStateOut Sub '
EndIf

Selse
$define StateOutEnd () !
F StateInitMade = 0 !
EndIf

Sendif

Sif _defined(CheckReturnStateM) Or _defined(DebugStates)
DebugStateOut Sub:
Sifdef DebugStates
_HRSOut "Goto State",Dec StateIndex, 13,10
' There is the First pass.
$ifdef CheckReturnStateM
If F EnableReturnState = 1 Then
_HRSOut "Return State",Dec ReturnStateIndex,13,10 ' <=

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 8/16

EndIf

Sendif
_HRSOut "ST",Dec StateIndexOld,"Out",13,10 ' <=
StateIndexFrom = StateIndexOld V<=
Sendif

$ifdef CheckReturnStateM

F EnableReturnState = O ' First pass finished.

Sendif

F StateInitMade = 0
Return
$endif

This is a normal visualisation of the states in the terminal:

STATES MACHINE STM05
By A. Freixanet

Testl DS1307.bas file

Testing the DS1307 Clock Calendar

Using the library <DS1307-H.inc>

Sending Date & Time every minute To the terminal.
The Hserial is set for Proteus testing

Check the DS1307 acknowledge.

Check if the DS1307 Clock Calendar is connected?
The DS1307 Device is ready!

Enable DS1307 signal frequency [1Hz] to PORTB.O

Minutes Count: 01
Date = Friday 17/03/2017
Time = 09:49:58

Minutes Count: 01
Date = Friday 17/03/2017
Time = 09:49:58

An option allows separating information from all states with CR,LF.

Visualisation in the terminal with the "DebugStates” option enabled.

STOIn

From StateO

STATES MACHINE STMO05
By A. Freixanet

Goto Statel

STATOOut

ST1in

From State0O

Testl DS1307.bas file

Testing the DS1307 Clock Calendar

Using the library <DS1307-H.inc>

Sending Date & Time every minute To the terminal.
The Hserial is set for Proteus testing

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV)

April 2017 - 9/16

Goto State?2
ST10ut

ST2In

From Statel

Check the DS1307 acknowledge.

Check if the DS1307 Clock Calendar is connected?
The DS1307 Device is ready!

Goto State4

ST20ut

ST4In

From State2

Enable DS1307 signal frequency [1Hz] to PORTB.0
Goto State5

ST40ut

ST5In

From State4

Goto State6

Return State7 <= Return State
ST50ut

ST6In

From State5
Goto State9
ST60ut

ST7In

From State6
Goto State5
ST70ut

It indicates both the state from which it is leaving and the next state. If the option
"ReturnState" has been activated then ‘Return State’ or the new destination must be
State6 + State7. See the next State6.

The normal destination after the Modulo 6 is to go to the Module 9. But if the Return State
option is activated the new destination will be State6 + State7.

It is a very powerful option.

MAIN CODE SYNCRONIZED with INTERRUPT every 1ImS OPTION:

In very sensitive cases where the code cannot be disturbed by an interrupt, | have
provided an option to synchronize the main code to the 1mS interrupt.

StatelnitEnd(SyncOn)

Wait for the interrupt to end on the first line of the main code with a While/Wend loop. In
this case, the SM stops completely less than 1mS.

SyncimS()

This a special command with the same code waiting for the interrupt in the middle of the
Module Code.

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 10/16

Do not forget that in 1mS there are a little less than 16000 instructions with FOSC 64Mhz,
thus removing the necessary code for the SM.

$define StateInitEnd (pEnable) '

EndIf !

$ifdef SynchronizeBIlmS '

$if pEnable = SyncOn '

F SMMainlmS = 0 !

While F SMMainlmS = 0 '

Wend !

Sendif '
Sendif

A Module example: (STMO00.bas)

STATEOQ7:
StateInit ()
"##-INIT SECTION-###############AAAHHFFAAAAHFFHAAAAHAAFAAAAHAAAAAAA
HRSLStrg (TXT52,1) " "Waiting All Buttons depressed!"
"##-END INIT-##########H#AAAHHFFAAAAHHAHAAAAHAAAAAAAH A A AR A AAA
StateInitEnd (SyncOn) '<= Module synchronized with timing 1mS.

! “MAIN CODE—-::::::c:ciciiccirriisrrrsiossrroocssreoccccsrrooccsreoacss
GoSub ReadButtonsPORT Sub ' Init & Read all Buttons.

" Waiting All Buttons OFF (All Buttons have a Pull-up resistor).
If ButtonsVirtualPORT = 255 Then

NextStateDelay (30, SM_ReadButtons) " Delay 30mS.
NextState2 (SM2 Message2) ' Call the State MachineZ in Background
EndIf " when VDelay is running.
! —EXIT MAIN—:::::::oocccrsssssssssscocooorrrrcrcsssscsscccccccsssse
StartDelayMsS (30) ' 30 mS delay works like a debounce
f e —
StateOut ()

S EXTT SECTION- 58S S S S S S So SSs55555%

S S5 S 8588885588855 558555585555555555555555555555555555555555
StateOutEnd ()

ReturnSM()

STMO5A.bas example: (DS1307 I2C calendar)

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 11/16

Upper line of the Oscilloscope:

This is the signal 12C of the ‘DS1307_ReadTime(ReturnACK)’ of 6 bytes length every
second.

Lower line of the Oscilloscope:
Signal synchronization generated by toggling an output by interrupt every 1msS.

According to the number of bytes of the 12C frame, the speed will be 100Khz or 400Khz
for the 12C clock. In this example the clock is 400Khz so that the command
'DS1307_ReadTime (ReturnACK)' of 6 bytes long is executed between two interruptions.

Usually interruptions do not affect hardware communications. But this provides a
guarantee in case of software communications problems or another error.

Synchronize Time & Date code STMO5B.bas:

Line 2 (Blue colour) is the Interrupt Timing 1mS.

" Write the Date every minute only

If RTC Minute <> RTC Minute Old Then
##ifdef LCD#DTPORT
High LCD Backlight ' Set the Backlight to see the value on LCD.
BacklightTime = BacklightTimeValue ' Backlight Set Time

Inc MinuteCounter
If MinuteCounter = 60 Then
MinuteCounter = 0
EndIf
HRSLStrg (TXT24, 0) ' "Minutes Count: "
HRSOut Dec2 MinuteCounter,CR,LF
Synclms () ' <= (DS1307_ReadDate) Command synchronized
' with timing 1mS.
$ifdef PinsTest
High Test2
Sendif

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 12/16

' Write the Date to test only

DS1307_ReadDate (ReturnACK) ' Read the date from the DS1307
If ReturnACK = 1 Then
HRSLStrg (TXT19,1) " "NACK DS1307 Read Date"
NextState(SM_Error_NACK)
GoTo ERROROT7EXIT ' Bypass the code below.
EndIf

' Get the day's name into string RTC DayName
DS1307_Get_DayName (RTC DayOfWeek, RTC DayName)

' Get the months's name into string RTC MonthName
DS1307_Get_MonthName (RTC Month, RTC MonthName)

The synchronization of the Time & Date commands is perfect.

Synchronize Time & Date code STMO5A.bas:

The synchronization of the Time & Date commands is perfect.

SECOND STATE MACHINE OPTION:

It is possible to perform some jobs in the background when the state machine is in
standby caused by a Virtual Delay or busy state. This a programmer choice.

The construction is absolutely identical. The virtual delay is entered as an option only.
States are used from 100 and up. (STATE100)

Module 0 is not used for coding; it allows inhibiting the State Machine 2.

It is very easy to execute the operation of an SM2 module.
NextState2(SM2_Functionl)

This command positions the status indicator "SM2_Function1" to access the module that
will be executed after the calling module.

To stop, the execution of this module only places this command in an appropriate place.

NextState2(0)
Or write another indicator.

NextState2(SM2_Function2)

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 13/16

TIME COUNT OPTION:

As | said before, SM2 works in the same way as SM1. | have planned a new function,
hoping it will be useful. Once an SM2 module has been started, execution can be stopped
after running N times without main program intervention (SM1). See the STMO02.bas file in
module STATE101.

First we need to initialize a counter in the Init Section with this macro.
Statelnit2End()

$define StateInit2End () '
$ifdef TimeCounter2 '
SM2TimeCounter = 0 ' <=
Sendif '
F StateInit2Made =1 '
EndIf

The SM2TimeCounter is cleared once the module is executed for the first time.
A counter is added in the macro before exiting the main code. It is the best place.
This way, the code will run 5 times.

StateOut2(5, SM2_Init)

SM2TimeCounter = 5, Goto Module => SM2_Init

$define StateOut2 (pCount, pIndex) '

$ifdef TimeCounter '

$if pCount > 0 '

Inc SM2TimeCounter !

If SM2TimeCounter = pCount Then '

$if pIndex > 0 '

State2Index = pIndex !

Selse '

State2Index = 0 !

Sendif '

EndIf !

Sendif '

Sendif '
If State2Index <> State2Index0ld Then

RUNNING THE SM2 IN BACKGROUNG:

| am using the Amicus18 Board with the buttons and LEDs shield as | used in the
Bootloader project. (STMO0O.bas file)

e STATEOQO7 — [SM_ButtonsOff].

This code allows for no auto repeat keys, It waits for the key to be released. In this way a
single value of the pressed key is achieved. The key readings are performed every 30
mS.

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGV) April 2017 - 14/16

When all keys are released then the module exits to the next destination with a delay of
30 mS. At this point during the delay, the State Machine 2 sends a message in the
background.

STATEQ7:
StateInit ()
"##-INIT SECTION-#########FHHF#AAAFHHFFAAAARHFFAAAAHHAFAAAAAHAFAS
HRSLStrg (TXT52,1) " "Waiting All Buttons depressed!”
"##-END INIT-######HHFHFAAAAHHFFAAAAHHFFAAAAHHFFAAAAHHFFAAAAAHAFHA
StateInitEnd (SynclOn) ' <= Module synchronized with timing 1mS.
! “MAIN CODE—-::::c:c:ctcrcoossrrsosstrroosssrooccserroccsssreccccseeie
GoSub ReadButtonsPORT Sub ' Init & Read all Buttons.

' Waiting All Buttons OFF (All Buttons have a Pull-up resistor).
If ButtonsVirtualPORT = 255 Then

NextStateDelay (30, SM_ReadButtons) ' Delay 30mS.
NextState2 (SM2 Message2) ' <= Call the SM2 in Background
EndIf ' when VDelay 30 mS is running.
! —EXIT MAIN—-::::::: .2 i cccscooososrrrrrrscscecsccccccoces
StartDelayMs (30) " 30 mS delay works 1like a debounce
e ——
StateOut ()

S EXTT SECTION- 88 S S S SS9 5555555%

S S0 SS S 5 5055855585555 5555555555555555555555555555558
StateOutEnd ()

ReturnSM()

e STATEO09 - [SM_LEDO].

This module is used to activate or deactivate LEDO when the pushbutton SWO is pressed.
When the code ends and the module returns to the state 'SM_ButtonsOff' an order is sent
to the state machine 2 to execute a code in the background.

STATEQ9:
StateInit ()
"##-INIT SECTION-##############HH##AH#AAA#AAAAAEAARAFAEHAAEHAAEAAS
StartFunctionl () ' <= Blinking a LED (user function).
"##-END INIT-##############FHAAAAAAAHAAAAAARAAAEAARRAAEHAREH A A
StateInitEnd()
! —MAIN CODE—-::::zccsscrocsososssssossssssrssssrssrsssrsssrssssssesccrscsie
HRSLStrg (TXT59, 0) "' "SWO detected!"”
If LEDO = 0 Then
Set LEDO
HRSLStrg (TXT60, 0) rr, Set”
Else
Clear LEDO
HRSLStrg (TXT61,0) ", Clear"
EndIf
HRSLStrg (TXT62,1) " LEDO"

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 15/16

NextState (SM_ButtonsOff) " Come back reading buttons

StateOut ()

e~ EXIT SECTION- 58 s S S S S S S S S S50 555559
NextState2 (SM2 Messagel) ' <= Call the State Machine? when exits.

S S8 8 555508855555 55555555555555555555555555555555
StateOutEnd ()

ReturnSM()

CONCLUSION

| finish the description of this State Machine hoping that it will help you develop your
projects faster and with better program flow.

This system is designed for medium or large programs. A very high FOSC should be used
without notable delays in the code. There would be no point in using a 4Mhz Xtal. That's
why the PIC18FxxKxx series is the most interesting to use. Not forgetting that the K20
series can work at frequencies higher than 64Mhz. A State Machine running at 80Mhz
would be fantastic (*). This State Machine is ready for that.

(*) The STMO0O.bas file has been tested with the Amicus18 Board with Xtal 16 & 20 Mhz (FOSC =
64Mhz & 80 Mhz).

Alberto Freixanet
04 April 2017

Amicus18 Tutorial-State Machine V1.0 Part3 By Alberto Freixanet (EA3AGYV) April 2017 - 16/16

