
PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 1

Ultrasonic Range Finding.

First Principles.
Measurement of relatively short distances has traditionally been carried out
using a tape measure made of wood, metal or paper etc. However, in recent
years another method of measuring distances has become popular, that of
using sound, ultrasonic sound to be exact.

The word Ultrasonic means ‘above sound’, the above part referring to above
the human hearing range which is approx 300Hz to 14KHz. Therefore any
frequency that is above the human hearing wavelength and below the low
frequency RF wavelength may be considered as ultrasonic or ‘ultrasound’.

Nature has used sound as a method of distance sensing for tens of millions
of years without a single semiconductor. Bats, Dolphins and to a lesser ex-
tent, a few fish, use ultrasound as a form of sight, allowing them to see
where they’re going and to catch prey on the darkest night or in the muddi-
est water. And in the dolphins case, it can also increase the amplitude of its
ultrasonic transmitter, and use it as a form of stun gun. This has also re-
cently been found true for some breeds of Bat.

Even when ultrasound is not used as a sixth sense, many mammals have a
much higher upper limit to their hearing, so ultrasound to them could start
as high as 20KHz. This is the principle behind the dog whistle. When blown,
we humans do not hear the high frequency vibrations, but a dog hears it as if
it were a referee’s whistle. However, I’m straying from our objective a little, so
lets get back on track.

Ultrasonic ranging is performed by transmitting a pulse of high frequency
sound, then counting how long it takes for its echo to be detected. Because
sound through a given medium (liquid or air) is a known quantity, it can be
considered a constant, the length of time taken between the transmitted
pulse and the received echo can be converted into distance. This is called
Time of Flight (TOF).

The Speed of Sound.
For an ideal gas; the speed of sound is mainly a function of temperature.
Luckily for us on earth, the behaviour of air is very close to that of an ideal
gas unless the temperature or pressure is very high or very low compared to
standard sea level conditions, or my office.

Therefore the speed of sound c for an ideal gas, in our case air, is: -

 c = γ R T

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 2

where

c = Speed of sound in metres per second
γ = Ratio of specific heats. For dry air γ = 1.4 (non-dimensional)
R = Gas constant. For dry air, R = 286.9 N⋅m/(kg⋅K)
T = Absolute temperature (Kelvin), where 0°C = 273.16 K

For example, the speed of sound at room temperature (22°C, 71.6°F) is: -

 c = 1.4 * (22 + 273.16) * 286.9 = 344.31 metres per second

The speed of sound also depends on the type of gas. Suppose we want to op-
erate a sonar range finder on Mars! How can we determine the speed of
sound there?

The atmosphere on Mars is approximately 95.3 % carbon dioxide (CO2). For
CO2, the ratio of specific heat γ equals 1.29, and the gas constant R equals
188.9 N⋅m/(kg⋅K). Assuming a pure CO2 atmosphere, the speed of sound at
room temperature, which on Mars is considered a hot day, is as follows: -

 c = 1.29 * (295.16) * 188.9 = 268 metres per second

Notice that neither pressure nor density appear in this equation. Even
though surface pressure on Mars is only a tiny fraction of that on Earth, the
low pressure has essentially no effect on the speed of sound in a gas.

Aptly named ‘Echo Ranging’ or SONAR does not exclusively require ultra-
sound, ‘during the war’, submarine detection was carried out by transmitting
a relatively low frequency, but high amplitude ‘ping’ in the order of 2KHz.
Any submarines in the proximity of the sound wave will reflect a portion of
the sound back to the receiver. By moving the transmit/receive device named
a transducer, the submarine’s bearing and approximate distance could be
ascertained. However, as electronics gained more sophistication, it became
possible to transmit and receive higher frequency sound. Coupled to that, the
discovery that higher frequency sound had more directional properties and
was able to carry more energy, produced the now very sophisticated fish find-
ing SONAR carried by virtually all fishing vessels. And allows sunken ship
wrecks to be pinpointed with impressive accuracy.

Uses for ultrasonic sound are constantly increasing and now number in their
hundreds; ranging from medical to metallurgic, but even though the technol-
ogy has moved forward, the principle stays the same.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 3

Practical Circuit Design.
Of course, we cannot possibly hope to create anything as sophisticated as a
side scan SONAR used for wreck location, but using a handful of common
components and a little BASIC code, we can add object detection and dis-
tance measurement to a future project simply and efficiently.

For all our experiments, we’ll be using readily avail-
able 40KHz ultrasonic transducers. These come as a
pair with one being optimised for transmission and
the other for reception. An illustration of the trans-
ducers used in the experiments is shown to the
right.

It is important to iden-
tify which is which as
any subsequent results may suffer. The trans-
ducers used were clearly marked on the under-
side, but I am unsure if this is a common prac-
tice among these types of transducers.

As their name implies, these devices operate at
a frequency of 40KHz, which is nearly three

times higher than the best human hearing, so we don’t have to worry about
noise pollution. This frequency is also above the range of dogs and cats hear-
ing, so you won’t harass your pets.

The circuit for our range finding experiments is shown below.

As you can see, the circuit is remarkably simple, consisting of two ICs (U1a
and U1b are in the same 8-pin package) and a handful of common value dis-
crete components.

-

+

8

4

1

2

3
-

+

7

6

5

+5V R2
100KΩ

R3
22KΩ

R1
10KΩ R4

1KΩ

R5
10KΩ

R6
10KΩ

C1
100nF

C2
100nF

R7
100KΩ

U1a
U1b

LM358

RX -

+

4

8

1

2

3

R8
33KΩ

VR1
100KΩ

Sensitivity

C3
4.7nF

+5V
+5V

U2

LM393
To PICmicro

PORTB.0

R9
1MΩ

From PICmicro
PORTB.4

TX

C4
1nF

From PICmicro
PORTB.5

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 4

Receiver circuit explanation.
The signal picked up from the ultrasonic transducer is extremely small, so in
order to be of any use it needs quite a significant amount of amplification.
ICs U1a and U1b form a standard high gain preamplifier, with U1a having a
gain of 10 set by resistors R1 and R2, and U1b having a gain of 100 set by
resistors R4 and R7. So altogether they form a pre-amp with a gain of 1000
(10 * 100). Remember that both these ICs are enclosed in the same 8-pin
package.

There is no need for a coupling capacitor for the input of U1a, as the trans-
ducer can be thought of as a type of capacitor, therefore it does not present a
resistive load.

Resistors R5 and R6 together with capacitor C2 form a potential divider that
supplies the op-amps with half the voltage rail. This commonly named ‘float-
ing ground’ eliminates the need for a negative supply that usually frightens
people away from using op-amps.

The output of U1b is now sufficiently large enough to be useful, but is not
suitable for interfacing directly to the PICmicro microcontroller. The PICmicro
expects a clean high or low on its IO pin, but the output of the op-amp is an
amplified AC signal with a midpoint voltage of approximately 2.5 Volts. This
is were the clever part of the circuit comes in. In order to convert the AC sig-
nal into discernable highs and lows, we use an LM393 comparator (U2).

A comparator works by comparing the voltage on its two inputs, if the +ve
input is more positive than the -ve input, the output will be high, but if the
+ve input is more negative than the -ve input, the output will be low. Without
any input signal to the pre-amplifier, the output of U1b will be a steady DC
voltage of approx 2.5 Volts. This is fed directly to the +ve input of the LM393
comparator. The same voltage from U1b’s output is also fed through VR1 and
R8 to the -ve input of the comparator, however R9 connected to ground
makes this network function as a potential divider thus reducing the voltage.
So the voltage on the -ve input is slightly lower than the +ve input, and the
output is high, this is the 'no obstacle state'. When an echo is received, an
amplified version of the signal appears on the output of U1b and is fed to the
+ve input of the comparator which now goes both higher and lower than be-
fore as the AC signal is super-imposed on the original DC voltage. However,
the -ve input is fed through the resistor network VR1, R8 and R9, and has
C3 connected to ground, this makes a low-pass filter, removing all the signal
and maintaining the same DC voltage as before. So, if the received signal on
the +ve input should go lower than the voltage on the -ve input the compara-
tor output will go low, and the output from the comparator will be a series of
negative going pulses just right for connecting to the PICmicro.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 5

By adjusting VR1, the voltage difference varies between the +ve and -ve in-
puts of the comparator and makes it more or less sensitive. This overcomes
any problems from the rather unsophisticated op-amp pre-amplifiers, and
makes the circuit somewhat self adjusting as it will automatically compen-
sate for any gain variations.

Transmitter explanation.
The most involved part of the range finder is the receiver, but transmitting
the 40KHz signal is just as important but very straightforward because the
PICmicro does all of the work for us.

We need to transmit a large signal in order to carry enough energy to have a
portion of it reflected back to the receiver, but we do not want to create prob-
lems of ringing (see transducer mounting) by transmitting too much energy.
To do this, we drive the transducer using a simple form of push-pull. This
ensures that the transducer is operating with both cycles of the 40KHz wave
for maximum efficient. And because it is operating from only a 5 Volt supply,
it does not swamp the receiver. The illustration below shows this: -

The transmitting transducer is connected to PORTB.4 and PORTB.5 of the
PICmicro. When PORTB.4 is driven high, PORTB.5 is pulled low, and vice
versa. This is carried out at 40,000 times per second in order to produce a
40KHz push-pull effect on each pin of the transducer. We are still only driv-
ing the transducer at 5 volts, but the above method allows the transducer to
transmit more energy per ping. This arrangement will give us an effective
range of a little over 2 metres, which is more than enough to experiment
with, and indeed enough for most applications.

Both the circuit and the software are designed around the Crownhill PRO-
TON Development board. This offers a comfortable an efficient method of de-
veloping a PICmicro project. However, this is not mandatory and the circuit
can be built using any medium.

The PROTON Development board has a PIC16F877 PICmicro device at its
heart, and attaches to a 2*16 line Alphanumeric LCD which we’ll use to dis-
play the results. It also has a solderless breadboard area where we can build
our circuit. The layout of the ultrasonic range finder on the solderless bread-
board area is shown overleaf.

RB4

RB5
TX

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 6

It’s surprising what can be squeezed on to the small breadboard with a little
care, the secret is the Wire Jumper kit also available from Crownhill. This of-
fers both tidiness and repeatability as each wire length is colour coded differ-
ently. Anyway, a different angle photograph of the same board layout is
shown below in order to clarify any obscured components in the picture
above.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 7

Transducer mounting.
For obvious reasons, both the transmit and receive transducers should be
facing in the same direction. But there is another phenomena that can cause
potential disaster for your experiment, that of ‘ringing’.

Each time the transmitter sends out a 40KHz ping, the receiver physically vi-
brates (rings) in sympathy. This ringing can cause the receiver’s sensitive
amplifiers to see a false reflection immediately after the ping, especially if the
sensitivity control (VR1) is set high. In order to help alleviate this problem,
both the transmitter and receiver transducers must be padded in order to
isolate them somewhat from the medium on which they are both attached.
i.e. the PCB. This was accomplished in the prototype by placing a piece of felt
on the bottom of the transducers where the connecting wires protrude. The
illustration below shows the prototype’s arrangement.

Because we’re not transmitting a very powerful signal from the send trans-
ducer, the ringing effect if not too much of a problem, but it is important to
be aware of the phenomena for your own experiments.

The receive transducer should be connected to the pre-amplifier’s input us-
ing a single core screened cable (small diameter microphone cable). After all,
the pre-amplifier’s input is of a high impedance, and the transducer is a form
of microphone, so the same precautions should be carried out as if we were
dealing with an audio signal. This is especially important if, like the proto-
type, the transducer setup is a few inches away from the receiver’s circuit. If
the transducers are mounted on the same PCB as the receiver, then this pre-
caution is obviously eliminated, but you must still treat it as if it were audio,
and keep the circuit away from strong AC signals, such as transformers,
television sets etc. If strong AC signals enter the pre-amplifier, then false
readings may occur as they swamp the tiny signals produced by the trans-
ducer.

The transmit transducer’s hook-up is not as critical, so standard multi-core
wire can be used.

Felt padding1"

TX

RX

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 8

Range Finding Software.
Now that we know how the circuit works, we can look at the PICmicro BASIC
code that brings everything together and produces a usable range reading on
the LCD. The full listing for the program is shown below.

'
' Ultrasonic range finding
' For use with the two op-amps and an LM393 comparator using a single power supply
' The program uses TIMER1 as an accurate duration counter.
' With this code, a resolution down to 1 inch can be realised.
'
' Written by Les Johnson for use with the PROTON+ Compiler Version 2.1 onwards.
'
'
Include "PROTON_4.INC" ' Use the PROTON Development board with a 4MHz xtal
Device = 16F871 ' Fake a smaller device for a small routine

WARNINGS = OFF ' Disable warning messages

Symbol ECHO = PORTB.0 ' Echo signals from comparator
Symbol TIMER1 = TMR1L.WORD ' Create a 16-bit variable out of TMR1L/TMR1H
Symbol TMR1ON = T1CON.0 ' TIMER1 Enable/Disable
Symbol TMR1IF = PIR1.0 ' TIMER1 overflow flag

Dim PING_LOOP as Byte ' PING Loop counter
Dim PULSE_LENGTH as Word ' TOF (Time Of Flight) value

'---
' Program starts here
Delayms 500 ' Wait for PICmicro to stabilise
INTCON = 0 ' Make sure all interrupts are OFF
T1CON = %00000001 ' Enable Timer1 with a prescaler of 1:1
TRISB = %00000001 ' Set ECHO pin as input, all others as outputs
Cls ' Clear the LCD
Goto MAIN_PROGRAM_LOOP ' Jump over the PING subroutine

'---
' The PING routine generates a 40khz burst of 8 cycles.
PING:
PING_LOOP = 8 ' Number of cycles in ping
PING1:
 PORTB = %00010000 ' 1st half of cycle
 Delayus 10 ' Create a delay of 10uS
 PORTB = %00100000 ' 2nd half of cycle
 Delayus 9 ' Create a delay of 9uS
Djnz PING_LOOP,PING1 ' Special mnemonic to form a fast loop
Return

'---
' The main program loop starts here
MAIN_PROGRAM_LOOP:
While 1 = 1 ' Create an infinite loop
 TMR1ON = 1 ' Enable TIMER1
 Delayms 100 ' Delay 100ms between samples
 TMR1IF = 0 ' Clear TIMER1 overflow
 Gosub PING ' Transmit a 40KHz pulse
 TIMER1 = 0 ' Reset TIMER1 before entering the loop

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 9

 Repeat ' Loop until TIMER1 overflows
 If ECHO = 0 Then ' Capture TIMER1 if a LOW on ECHO pin detected
 TMR1ON = 0 ' Disable TIMER1 at this point
 PULSE_LENGTH = TIMER1 ' Store the value of TIMER1
 Break ' Exit the loop
 Endif
 PULSE_LENGTH = 0 ' If we reached here then Out of Range
 Until TMR1IF = 1 ' Timeout if TIMER1 overflows
 If PULSE_LENGTH = 0 Then ' Did we reach the end of the loop ?
 Print at 1,1,"OUT OF RANGE " ' Yes. So Display text if out of range
 Else ' Otherwise...
 ' Display distance in inches
 Print at 1,1,"DIST = ",DEC PULSE_LENGTH / 146,34," "
 Endif
Wend

Software explanation.
The BASIC program that ties everything together is surprisingly simple in its
operation, but has been carefully crafted to allow more than enough accu-
racy.

The program is centred around one of the PICmicro’s hardware timers.
TIMER1, or TMR1 to give it its official name, is a 16-bit timer that, once en-
abled, will start counting on every instruction cycle (FOSC/4). When the timer
overflows. i.e. reaches a count of 65536, a flag will be set (TMR1IF) and the
timer will start counting from 0 onwards again. TIMER1 can be both read
and written to, thus allowing a precise measurement of time to be measured.
TIMER1 has two modes of operation, counter or timer, we’re using it as a
timer in this program.

At this point it may be a good idea to have the PIC16F877’s datasheet at
hand, which can be downloaded, free of charge, from www.microchip.com.
Another great free download from Microchip is the midrange reference man-
ual, which is packed full of useful information relating to all aspects of the
PICmicro’s architecture and operation, including detailed information relat-
ing to the PICmicro’s several timers.

The program starts by enabling TIMER1 and assigning a 1:1 prescaler to it,
this means that the timer will increment on every instruction cycle. Different
prescaler ratios can also be attached to TIMER1 allowing it to increment on
every 2, 4, 8, 16, 32, 64 or 128 instruction cycles. However, in our applica-
tion, we need microsecond timing, so a 1:1 ratio is perfect.

After clearing the TIMER1 overflow flag (TMR1IF), the program then calls the
PING subroutine which transmits a 40KHz signal 8 times from PORTB.4.
Timing within the PING subroutine is deliberately accurate, as the amount of
cycles taken by each instruction dictates the frequency and duration of the
output signal.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 10

Once the ping has been transmitted from the transducer, TIMER1 is cleared
and a loop is formed to detect the returning echo. The echo pin (PORTB.0)
will be pulled low if a signal was detected, and TIMER1 will be halted and its
value transferred to the variable PULSE_LENGTH, then the loop will be exited
using a BREAK command. If an echo signal is not detected within the full
range of TIMER1 (65535), the loop will be exited anyway by checking the
TIMER1 overflow flag, which will clear the variable PULSE_LENGTH.

We have now captured the Time of Flight value from the transmitted ping to
it’s reception (if any). So we can convert the time into distance using some
simple experimentation and a little arithmetic.

We know from the earlier discussion that the speed of sound here on earth
(in my office anyway) is 344 Metres per Second, or 3440 centimetres per sec-
ond, and we know how long in microseconds it took for the echo to be re-
ceived, so by dividing the time taken divided by 2; by the speed of sound, we
can come up with the distance in centimetres to the target object.

Distance = (TOF / 2) / 3440

Well not quite… we do have some overheads to take into account such as the
duration of the initial 40KHz ping, sound propagation, and latency caused by
software and hardware etc. This is where some experimentation comes in.

As an example, the distance from the top of the transducer pair sitting on my
bench to the ceiling is exactly 150cm or 59 inches, as measured using an old
fashioned tape measure. The raw value produced in PULSE_LENGTH (de-
rived from TIMER1) is 8642. It actually varies from 8642 to 8666 but this will
be ironed out with the division. This value is a close approximation of how
many microseconds it took for the round trip of the 40KHz ping plus the
overheads mentioned above. The setup I used is shown below.

Bench Surface

150 centimetres
or

59 inches

Ceiling

TX/RX Transducer pair

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 11

Dividing the raw distance of 8642 by 150 gives a value of 57.6, so without
using floating point, our calculation to convert to centimetres is a simple di-
vision by 58: -

PULSE_LENGTH / 58

57.6 is closer to 58 than it is to 57, so a division by the closest integer is suf-
ficient with the integer math that we’re using.

To calculate the value in inches, I used the same principle. I divided the raw
distance value contained in PULSE_LENGTH (8642) by 59, which is the im-
perial representation of 150 centimetres. This gave me a value of 146.4, so if
we divide by its closest integer of 146, we’ll get the distance measured in
good old inches.

PULSE_LENGTH / 146

As you can tell, I’m not a mathematician or I would have calculated the over-
heads instead of experimenting, but isn’t that the whole point of this discus-
sion, and anyway where’s the fun in knowing beforehand what’s going to
happen.

The relevant distance is displayed on the LCD using the standard PRINT
command, only if the value of PULSE_LENGTH is greater than zero. If
PULSE_LENGTH is equal to zero then this means that TIMER1 overflowed
because no echo was received, and the text “OUT OF RANGE” is displayed.

Clarifying the results.
Our simple receiving circuit does not have sophisticated filtering or gain con-
trols, so the results can be rather erratic at times. However, this is true of
most simple ultrasonic range systems, as sound can be reflected and
bounced around by many objects in the vicinity of the initial ping. One way
of alleviating this is to use a process named MEDIAN filtering, Median mean-
ing Middle.

A median filter simply takes the middle value of a sorted sample range. Be-
cause the range of samples is sorted in either ascending or descending order,
any erroneous results should be on the extremities of the samples, and the
average value should be somewhere in the middle. For example, suppose we
have 7 samples: -

149, 150, 1, 151, 150, 0, 150

A simple average (Addition of all values divided by the amount of values) of
these samples would produce a value of 107, which is totally wrong as the
average value is clearly between 149 and 151, and is actually 150. It’s the
values 0 and 1 that have clouded the result.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 12

To median filter the same 7 samples involves using a straightforward bubble
sort algorithm to arrange the values in ascending order.

0, 1, 149, 150, 150, 150, 151

Now if we take the fourth (middle) value in the list, we get the average of 150.

Of course, this method isn’t perfect, and it does rely on the amount of sam-
ples taken. For example, if only 3 samples were taken, there’s a good chance
that the average value would not be the middle value when sorted, but if 15
samples, or more, were taken, there’s a very good chance that all the errone-
ous values will be pushed to the outskirts of the samples and the true result
will lie somewhere in the middle.

As mentioned above, median filtering relies heavily on a bubble sort algo-
rithm, and a simple bubble sort demonstration program written in PROTON+
BASIC is listed below.

' Bubble sort Demonstration
Include "PROTON_4.INC"

Symbol SAMPLES_TO_TAKE = 7 ' The amount of samples to take
Dim SAMPLE[SAMPLES_TO_TAKE] as Byte ' Create an array to hold the samples
Dim SWAPTMP as Byte ' Temporary variable for swapping
Dim INDEX as Byte ' Holds the position in the sort
Dim SWAP_OCCURED as Bit ' Indicates if the sort is complete
Delayms 200 ' Wait for the PICmicro to stabilise
Clear ' Clear all RAM before we start
Cls ' Clear the LCD
STR SAMPLE = 149, 150, 1, 151, 150, 0, 150 ' Load the array with values
Gosub BUBBLE_SORT ' Do the bubble sort
' Display the sorted list
Print at 1,1,Dec SAMPLE[0],":",Dec SAMPLE[1],":",Dec SAMPLE[2],":",Dec SAMPLE[3]
Print at 2,1,Dec SAMPLE[4],":",Dec SAMPLE[5],":",Dec SAMPLE[6]
Stop
'--
' This subroutine implements a technique called "bubble sort."
BUBBLE_SORT:
Repeat
 SWAP_OCCURED = 0 ' Clear flag that indicates a swap.
 INDEX = 0
 Repeat ' For each cell of the array...
 If SAMPLE[INDEX] > SAMPLE[INDEX + 1] Then ' move larger values up.
 SWAPTMP = SAMPLE[INDEX] ' ..by swapping them.
 SAMPLE[INDEX] = SAMPLE[INDEX + 1]
 SAMPLE[INDEX + 1] = SWAPTMP
 SWAP_OCCURED = 1 ' Set bit if swap occurred.
 Endif
 Inc INDEX
 Until INDEX = SAMPLES_TO_TAKE ' Check next cell of the array.
Until SWAP_OCCURED = 0 ' Keep sorting until no more swaps.
Return

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 13

The idea behind the bubble sort subroutine is quite straightforward.. com-
pare adjacent bytes in the array. i.e. SAMPLE[0] and SAMPLE[1]. If the value
stored in SAMPLE[0] is less than or equals that in SAMPLE[1] then do noth-
ing. Otherwise, swap the values so that SAMPLE[0] gets the contents of
SAMPLE[1], and vice-versa. Keep doing this with each pair of values in the
array, and the larger values will migrate toward the higher index values. Re-
peated passes through the array will completely sort it. The routine is fin-
ished when it makes a loop through the array without swapping any pairs.

We can now incorporate the BUBBLE_SORT subroutine in our original range
finding program, but we need to make some changes in order to take nine
range samples instead of the original single sample. The listing for the new
program is shown below.

'
' Ultrasonic range finding
'
' For use with the two op-amps and an LM393 comparator using a single power supply
' The program uses TIMER1 as an accurate duration counter
' and a MEDIAN filter to give a more reliable reading
'
' Written by Les Johnson for use with the PROTON+ Compiler Version 2.1 onwards.
'
'
Include "PROTON_4.INC" ' Use the PROTON Development board with a 4MHz xtal
Device = 16F871 ' Fake a smaller device for a small routine

WARNINGS = OFF ' Disable warning messages

Symbol ECHO = PORTB.0 ' Echo signals from comparator
Symbol TIMER1 = TMR1L.WORD ' Create a 16-bit variable out of TMR1L/TMR1H
Symbol TMR1ON = T1CON.0 ' TIMER1 Enable/Disable
Symbol TMR1IF = PIR1.0 ' TIMER1 overflow flag
Symbol SAMPLES_TO_TAKE = 9 ' The amount of range samples to take

Dim SAMPLES[SAMPLES_TO_TAKE] as Byte ' Create an array to hold the range samples
Dim SAMPLE_COUNT as Byte
Dim PING_LOOP as Byte ' PING Loop counter
Dim PULSE_LENGTH as Word ' TOF (Time Of Flight) value
Dim SWAPTMP as Word
Dim INDEX as Byte
Dim SWAP_OCCURED as Bit
Dim MEDIAN as Word

'---
' Program starts here
Delayms 500 ' Wait for PICmicro to stabilise
INTCON = 0 ' Make sure all interrupts are OFF
T1CON = %00000001 ' Enable Timer1 with a prescaler of 1:1
TRISB = %00000001 ' Set ECHO pin as input, all others as outputs
Cls ' Clear the LCD
Goto MAIN_PROGRAM_LOOP ' Jump over the subroutine

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 14

'---
' The PING routine generates a 40khz burst of 8 cycles.
PING:
PING_LOOP = 8 ' Number of cycles in burst
PING1:
 PORTB = %00010000 ' 1st half of cycle
 Delayus 10 ' Create a delay of 10uS
 PORTB = %00100000 ' 2nd half of cycle
 Delayus 9 ' Create a delay for 9uS
Djnz PING_LOOP,PING1 ' Special mnemonic to form a fast loop
Return

'---
' Create a MEDIAN filter to make an educated guess as to what is the true reading
' from the sample readings taken.
' The routine below is a BUBBLE SORT, that arranges all the samples in ascending
' order within the array SAMPLES.
' The middle sample is then extracted.
' This should eliminate spurious readings from the edges.
MEDIAN_FILTER:
Repeat
 SWAP_OCCURED = 0 ' Clear flag that indicates swap.
 INDEX = 0
 Repeat ' For each cell of the array...
 If SAMPLES[INDEX] > SAMPLES[INDEX + 1] Then ' Move larger values up.
 SWAPTMP = SAMPLES[INDEX] ' ..by swapping them.
 SAMPLES[INDEX] = SAMPLES[INDEX + 1]
 SAMPLES[INDEX + 1] = SWAPTMP
 SWAP_OCCURED = 1 ' Set bit if swap occurred.
 Endif
 Inc INDEX
 Until INDEX = SAMPLES_TO_TAKE ' Check out next cell of the array.
Until SWAP_OCCURED = 0 ' Keep sorting until no more swaps.
PULSE_LENGTH = SAMPLES[4] ' Extract the middle sample's value
Return
'---
' Take a range reading
GET_RANGE:
Delayms 20 ' Delay 20 ms between samples
TMR1ON = 1 ' Enable TIMER1
TMR1IF = 0 ' Clear TIMER1 overflow
Gosub PING ' Transmit a 40KHz pulse
TIMER1 = 0 ' Reset TIMER1 before entering the loop
Repeat ' Loop until TIMER1 overflows
 If ECHO = 0 Then ' Exit if a LOW on the ECHO pin is detected
 TMR1ON = 0 ' Disable TIMER1 at this point
 PULSE_LENGTH = TIMER1 ' Store the value of TIMER1
 Break ' Exit the loop
 Endif
 PULSE_LENGTH = 0 ' If we reached here then Out of Range
Until TMR1IF = 1 ' Timeout if TIMER1 overflowed
Return

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 15

'---
' The main program loop starts here

MAIN_PROGRAM_LOOP:
While 1 = 1 ' Create an infinite loop
SAMPLE_COUNT = 0
Repeat ' Create a loop for all the sample readings
 Gosub GET_RANGE ' Go get a range
 SAMPLES[SAMPLE_COUNT] = PULSE_LENGTH / 58 ' Convert into cm and store it
 Inc SAMPLE_COUNT
Until SAMPLE_COUNT = SAMPLES_TO_TAKE ' Loop until all samples taken
Gosub MEDIAN_FILTER ' Perform a median filter on the samples
If PULSE_LENGTH = 0 Then ' Did we reach the end of the loop ?
 Print at 1,1,"NOTHING IN RANGE" ' Yes. So Display text if out of range
Else ' Otherwise...
 ' Display distance in centimetres
 Print at 1,1,"DIST = ",DEC PULSE_LENGTH," cm "
Endif
Wend

The range finding part of the program hasn’t really changed a great deal, it’s
simply now called as a subroutine, aptly named GET_RANGE.

The main part of the program forms a nine cycle loop in order to fill the array
with samples at 20ms intervals. Once all the samples are taken, the ME-
DIAN_FILTER subroutine is called to sort the array and extract the middle
value. This is then displayed on the LCD.

There is another method we could use that still involves the median filter,
that of averaging. This entails adding the middle three of the nine samples
taken, then dividing them by the amount of additions, in our case three.

This can be implemented in our program with a single line change. Within
the MEDIAN_FILTER subroutine, change the line: -

PULSE_LENGTH = SAMPLES[4]

to

PULSE_LENGTH = (SAMPLES[3] + SAMPLES[4] + SAMPLES[5]) / 3

This method is better performed with more samples, but more samples
means a larger delay between range findings. This is only ascertainable with
the type of project that it’s intended for, and I’ll leave it up to you whether or
not you implement it.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 16

Ready made units.
If you don’t have the resources or the time to build the ultrasonic range
finder from scratch, then there are a couple of alternatives. The people at
Daventech have created two ultrasonic range finding modules that are very
easy to interface with, and produce surprisingly good results. The SRF04 is
the more basic of the two modules and uses a simple interface method but
requires more code in order to obtain useful results. The SRF08 on the other
hand, is packed full of features that will keep any twiddler happy for hours.
It uses a more involved interface method but requires very little code to
product remarkably accurate results.

Interfacing with the SRF04.
The SRF04 ultrasonic range finder is a small PCB measuring only 43mm by
20mm. It has two transducers attached, one for transmit and one for receive.
The illustrations below show the front and rear views of the SRF04.

Connections to the SRF04 are via four of its five PCB pads shown below.

As far as I can tell, there is no polarity protection or voltage regulation on the
PCB, so the SRF04 must be supplied with no more than 5 Volts, and the cor-
rect polarity must be observed otherwise damage ‘will’ occur.

The TRIGGER pin causes the SRF04 to take a range reading when it is cycled
high to low, and must be in the high state for no less than 10us.

GND ECHO

TRIGGER

+5v

NC

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 17

The ECHO pin will remain in the high state until an echo is detected. Meas-
uring the length of time that the pin stays high will give us a measure of time
in microseconds that we can convert into distance. In order to convert the re-
turned pulse length into centimetres, we need to divide by 36, and to convert
to inches we divide by 73.

The full listing for a program to control the SRF04 with the PROTON+ BASIC
compiler is shown below. The TRIGGER pin should be connected to PORTB.1
of the PICmicro, and the ECHO pin should be connected to PORTB.0.

Include "PROTON_20.INC" ' Use the PROTON board with a 20MHz xtal

Symbol TRIGGER = PORTB.1 ' Define pin for Trigger pulse
Symbol ECHO = PORTB.0 ' Define pin for Echo pulse

Dim RANGE as Word ' 16 bit variable for Range

Delayms 200 ' Wait for PICmicro to stabilise
Cls ' Clear the LCD

While 1 = 1
 Pulsout TRIGGER,15,HIGH ' Produce a 15us high to low pulse
 RANGE = Pulsin ECHO,1 ' Measures the range in uS
 Delayms 10 ' 10ms recharge period after ranging completes
 RANGE = RANGE / 62 ' Use 62 for cm or 149 for inches
 Print at 1,1,"RANGE = ", Dec Range," cm "
Wend

Notice that were using a 20MHz crystal. This is because the resolution of the
PULSIN command is simply not good enough for accurate results if a lower
frequency oscillator is used. The resolution of PULSIN with a 20MHz crystal
is 2us, which is more than enough for good accuracy.

Because we have a 2 microsecond resolution, the division to convert into
centimetres or inches has to be doubled. So to convert to centimetres, we di-
vide the returning pulse length by 62, and to convert to inches, we divide the
pulse length by 146.

It is possible to break the returned pulse length into fractions of a centimetre
or inch, but this is asking a little too much from ultrasonic range finding in
general, never mind the little SRF04. However, by utilising the Median filter
subroutine discussed earlier, the results from the SRF04 can be made ex-
tremely stable, and very accurate.

There’s not a lot else I can say about this module that isn’t shown in the de-
monstration program above. It really is that simple to use!

One thing that I found really useful was the fact that on the Daventech web
site www.robot-electronics.co.uk , you can find the circuit diagram of the
SRF04. And with a little modification, the range finder programs discussed
earlier will work perfectly with it.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 18

And to prove it, shown below are some pictures of the circuit for the SRF04
built on the PROTON development board’s solderless breadboard area.

OK, so it’s not actually built on the PROTON development board’s solderless
area, but the breadboard used is identical.

For ethical reasons, I cannot show the circuit diagram here. And for the
same reasons, the circuit should only be used for educational or personal
use. The people at Daventech have put a lot of thought into the SRF04, so
they deserve our support.

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 19

Interfacing with the SRF08.
The SRF08 range finding module is the big brother of the SRF04, and is quite
a sophisticated piece of equipment thanks, in part, to the on-board PICmicro
and some clever circuitry. Interfacing with the SRF08 is accomplished using
the popular 2-wire I2C bus, first developed by Philips for use in domestic ap-
pliances. The I2C bus is one of my favourite interfacing methods, so I feel
right at home with this little device.

The SRF08 has exactly the same dimensions as the SRF04 which is 43mm
by 20mm, and both modules are remarkably similar until you look closer,
upon which, you will notice a small CDS light sensor located between the two
ultrasonic transducers. So the SRF08 is also capable of measuring light level.

The SRF08 module appears as a Slave device on the I2C bus, with the con-
trolling hardware, the PICmicro in our case, being the Master. And because
the I2C protocol calls for open drain outputs, it requires a pullup resistor on
both the SDA (Data) and SCL (Clock) pins, as illustrated below.

Ensure that a voltage of no more than 5 Volts is supplied to the SRF08, and
that its polarity is observed, or damage ‘will’ occur.

The MCLR pin is not used for standard interfacing and can be left uncon-
nected, but it can also be used to reset the module by briefly pulling it to
ground.

The documentation that comes with the SRF08 is reasonably comprehensive,
and somewhat involved, therefore it would be rather pedantic to repeat it
here. So the best thing to do is to show you some code samples that will in-
terface the SRF08 to a PICmicro using the PROTON+ BASIC compiler.

Upon first using the SRF08, its default address on the I2C bus, commonly
called its SLAVE ADDRESS, is set to $E0. So by sending a series of com-
mands to the device with the slave address of $E0, both Light and Range can
be ascertained, either in centimetres, inches of raw Time Of Flight data
measured in microseconds (uS).

GND SCL

SDA

+5v

MCLR

+ 5 Volts

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 20

A Light and Range reading is accomplished by writing to the Command Reg-
ister, which has a value of $00, using the compiler’s BUSOUT or HBUSOUT
commands. Then sending, in this case, the instruction for a range conversion
in centimetres, which is $51. After this instruction has been sent to the bus,
we must wait a minimum of 65ms before asking for the results of the com-
mand, note that the length of time to wait can be changed and is well docu-
mented in the SRF08 instruction manual.

Busout $E0,$00,[$51] ' Send command for range in centimetres

Reading the values back from the SRF08 entails using the BUSIN or HBUSIN
commands. In order to read the light level as well as the range value, we can
access the internal register addressed at $01, then by allowing the SRF08 to
auto increment its internal address counter, we can automatically take a
reading of the range, which is addressed at $02.

Busin $E0,$01,[LIGHT, RANGE] ' Read Light and Range values

A program to read the Light and Range values from the SRF08 is listed be-
low. It uses the PROTON MK2 development board as the building medium,
therefore connect the SRF08 SDA line to PORTC.4, and the SCL line to
PORTC.3. Ensure that jumpers J7 and J8 are connected to enable the pullup
resistors.

' Daventech SRF08 Ultrasonic Range Finder
' demonstration software for the PROTON+ Compiler Version 2.1

Include "PROTON_4.INC" ' Use the PROTON Development board

SLOW_BUS = ON ' Slow down the I2C bus slightly
Dim LIGHT as Byte ' 8-bit Light sensor value
Dim RANGE as Word ' 16 bit variable for Range value
Symbol SRF08_NEW_ADDRESS = $E1 ' New Slave Address
Symbol SRF08 = SRF08_NEW_ADDRESS ' SRF08 I2C Slave Address
Symbol CMDREG = 0 ' SRF08 Command register
Symbol LIGHTREG = 1 ' SRF08 Light sensor register

Delayms 200 ' Wait for PICmicro to stabilise
Cls ' Clear the LCD

' Change the SRF08 address. Call this once with a single SRF08 connected.
Gosub CHANGEADDRESS

While 1 = 1 ' Create an infinite loop
 Busout SRF08, CMDREG, [81] ' Send command for range in centimetres
 Delayms 66 ' Wait for range to finish
 Busin SRF08, LIGHTREG, [LIGHT, RANGE] ' Read the light level and the range
 Print at 1,1,"LIGHT = ", Dec LIGHT," " ' Display the light level
 Print at 2,1,"RANGE = ", DEC RANGE, " cm " ' Display the range
Wend

A fixed slave address of $E0 would cause a problem if more than two SRF08
modules were connected to the same bus. But Daventech have thought of

PROTON+ Experimenters Notebook

 PROTON+ Experimenters Notebook Page 21

this scenario and allow the slave address of each module to be changed
through software.

A small program to accomplish address changing is listed below. The pro-
gram changes the slave address from the default $E0 to $E1, then starts tak-
ing light and range readings. Again, it uses the PROTON MK2 development
board.

' Daventech SRF08 Ultrasonic Range Finder
' demonstration software for the PROTON+ Compiler Version 2.1
'
' Change the Slave Address of the SRF08 module.

Include "PROTON_4.INC" ' Use the PROTON Development board

SLOW_BUS = ON ' Slow down the I2C bus slightly
Dim LIGHT as Byte ' 8-bit Light sensor value
Dim RANGE as Word ' 16 bit variable for Range value
Symbol SRF08_NEW_ADDRESS = $E1 ' New SRF08 I2C Slave Address
Symbol SRF08 = $E0 ' Original SRF08 I2C Slave Address
Symbol CMDREG = 0 ' SRF08 Command register
Symbol LIGHTREG = 1 ' SRF08 Light sensor register

Delayms 200 ' Wait for PICmicro to stabilise
Cls ' Clear the LCD

' Change the SRF08 address. Call this once with a single SRF08 connected.
Gosub CHANGEADDRESS

While 1 = 1 ' Create an infinite loop
 Busout SRF08, CMDREG, [81] ' Send command for range in centimetres
 Delayms 66 ' Wait for range to finish
 ' Read the light level and the range
 Busin SRF08_NEW_ADDRESS, LIGHTREG, [LIGHT, RANGE]
 Print at 1,1,"LIGHT = ", Dec LIGHT," " ' Display the light level
 Print at 2,1,"RANGE = ", DEC RANGE, " cm " ' Display the range
Wend
'--
' This subroutine will change the SRF08's I2C address to whatever you have set
' in the SRF08 SYMBOL statement above. Since we don't know the current address
' of the SRF08, we use the General Broadcast address (00) to communicate with it.
' Make sure you only have one SRF08 connected when you do this.
' The new address is stored on the SRF08, so this only needs to be done once.
CHANGEADDRESS:
Busout SRF08, CMDREG, [$A0] ' \
Busout SRF08, CMDREG, [$AA] ' Required Sequence to change Address
Busout SRF08, CMDREG, [$A5] ' /
Busout SRF08, CMDREG, [SRF08_NEW_ADDRESS] ' Send new Slave Address
Return

Don’t forget to keep a note of the new slave address for future reference.

I hope I’ve wetted your appetite for some serious experimenting with ultra-
sonics, either building your own or using a ready made module. But above
all, have fun while your doing so.

Les Johnson

