

Radio Control Encoder

Produced and compiled with Let Pic Basic Pro Lite

Radio control electronics has always fascinated me, and through the years I've built numerous odds and ends, including an encoder.

My favourite analogue chip, the NE5044, has been obsolete a while now.

Fortunately Pics, and Internet, came along, but Microchip Assembler was more Greek to me than any foreigner from that country!

At the best I could flash a LED, and pretty much resigned to using other people's compilations.

I've been looking longingly at all the Basic compilers out there, but alas, that is like having Champagne taste on a Beer budget :-)

Ok, ok, on to the project.

Scope of Project:

A modern RC encoder, whether it be for an AM or FM system, would typically produce of a number of pulses corresponding to the number of channels, plus a longer sync pulse to enable the decoder at the receiver to extract the pulses in the correct order.

This combined pulse train is called a Frame, and is approximately 20 milliseconds long.

A typical channel pulse at neutral is 1.5 milliseconds long, and consists of a variable high for 1100 microseconds, and a fixed low of 400 microseconds.

The fixed low is required by most AM receivers for automatic gain control.

The decoder circuit will look at the pulse length from rising edge to rising edge, so we only need to vary the high, giving a combined pulse from 1000 microseconds to 2000 microseconds, for full travel of the control stick.

An actual control stick only moves about 90 degrees, so the voltage swing is small.

This is the reason for the rather complicated maths done on the ADC value.

I've also scaled the equation to enable an eight bit A to D pic to be used. (16C711)

A great advantage of using the ADIN function instead of POT, is that the channels can be mixed or reversed externally.

Obviously this could also be done in software, but that is beyond my abilities at this moment (nor with 30 lines of code !!!).

Another issue to address is the terms Fixed Frame Rate, and Variable Frame Rate.

This code produces a Variable Frame Rate, as the varying pulse lengths add or subtract from the total Frame time.

This would be easy to fix with more code.

Most modern decoders are quite happy with both, but a "nice to have" would be a link on the encoder board, to change from one to the other.

The Code:

I have expanded the description notes somewhat here, edit to fit into 30 lines

' 4 Channel radio control encoder, by G.Kuhn ZS1NZ�' Change nx value for more or less channels, compensate with Frame�	Device 16F877			' Using the 16F877�	Declare XTAL 4			' 4Mhz crystal�	symbol pulse PortB.0		' Pulse train out pin is PortB bit-0�	Declare ADIN_TAD	FRC		' Choose the RC osc for ADC samples�	Declare ADIN_STIME 100		' Allow 100us for charge time�	Dim adcval as Word		' Variable to store ADC result�	Dim nx as byte			' Variable for loop count�	Dim trim as word			' Part of pulse length calculation�	Dim out as word			' Part of pulse length calculation�	Dim init as word			' Part of pulse length calculation�	trisa = %11111111			' Set port A all inputs�	trisb = %11111110			' Set port B.0 as output�	ADCON1 = %10000000		' Right justified result 10 bit value

						' and ADC referenced to Vdd and Vss�	trim = 1700				' Fine tune pulse edge to edge length here�Again:

	for nx = 0 to 3			' Loop to scan first 4 ADC's, can be any 							' number up to 7, but the frame time has to 						' trimmed.�	set pulse				' Make out pin high�	adcval = adin nx			' Load ADC value into variable �	init = (((adcval+4)/2/2)*18)	' Scale the result

	'init = (((adcval+4)/4)*18)	' Les, why doesn't this work ? �	'init = ((adcval+4)*18)		' For 8 bit ADC

	out = init - trim			' Calculate output pulse�	pauseus out	 			' Output pulse�	low pulse				' Make out pin low�	pauseus 400 			' Fixed off period for each stick�	next nx				' Do this four times�	set pulse				' Start of frame sync�Frame:					' Total frame length about 20 milliseconds

	pauseus 14000		�	low pulse				' End of frame sync�	goto again				' Repeat the scan

The Hex Code:

:10000000640000308A004828A200A20DA20D220D33

:100010003839C1389F00643018201F1564001F193B

:100020000E281E08A40083161E088312A30043286E

:10003000A101E83EA000A109FC30031C2228A00772

:1000400003181F28A0076400A10F1F2820182828C4

:10005000A01C2C2864002C2808001030AA00A10144

:10006000A001A90CA20C031C3B282508A007260808

:100070000318260FA107A10CA00CA80CA70CAA0B13

:1000800031282708432883138312031364000800D0

:10009000FF3083168500FE30860080309F000630DA

:1000A0008312AF00A430AE00AD01640004302D0215

:1000B0008A110A120318982806142D088A010420B0

:1000C000AB002408AC002C08A4002B08A3000430CB

:1000D000A3070318A40A0310A40CA30C0310A40C78

:1000E000A30C2408A9002308A200A6011230A50031

:1000F0008A012D20B2002808B3002E083202B00079

:100100002F08031C013E3302B1003108A100300862

:100110008A01192006108316061001308312A100EF

:1001200090308A011920AD0A8A110A12031D552840

:1001300006143630A100B0308A011920061083164B

:08014000061083128A01542805

:02400E00363F3B

:00000001FF

The Circuit:

�

The End !

