
CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 1/31 - © TOWITOKO electronics GmbH

CardServer V2.02
Technical Documentation
SmartCard Manager, SCARD Interface, Delphi ComponentSmartCard Manager, SCARD Interface, Delphi Component

Release 02.03.98Release 02.03.98

© '98 TOWITOKO electronics GmbH© '98 TOWITOKO electronics GmbH

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 2/31 - © TOWITOKO electronics GmbH

Version history

V2.01V2.01
• Delphi component extended by following properties:

ConfigMenuItem, ConfigPopupMenu, ConfigMaxPort

V2.02V2.02
• Command ‘Device, Select’ was extended, so that alternately to the index of the device the

device name (as retrieved with ‘Device, Info’) can be used.
• The CardServer task SCRDSERV.EXE / SCARDS32.EXE has to be located in the Windows

directory. The program start invoked by all interfaces (e.g. SCARD.DLL) is with explicit path.
• Version check of the interfaces against the server task
• Messages for device detection and list management (tasks, devices) are added
• Delphi component extended by:

Events: OnDeviceListChange, OnTaskListChange, OnCardInfoChange, OnDeviceSearch
Properties: Enabled

• Support of new XICOR memory chips
• Full functionality with Windows NTTM 4.0
• Problem with accessing ‘KartenZwerg’ and ‘CHIPDRIVE extern II' fixed
• Minor bugs fixed

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 3/31 - © TOWITOKO electronics GmbH

CardServer - Overview
A large number of manufacturers of smartcards, terminals and drivers do exist. Also many
industrial standards, card protocols and standardization have been set up. Our goal is to make
the integration of smartcards and terminals into your application software as easy as possible.
The CardServer will handle the following jobs for you:

Management of connected terminals:Management of connected terminals:
• Management of a selection list for all connected smartcard terminals, similar to the selection

lists for printers (e.g. ‘CHIPDRIVE extern on COM 1’)
• Status information on each terminal: Status of the smartcard, serial number, terminal

information.
• The most recent configuration data is stored in a INI-file (e.g. COM port assignments)

Management of connected application programs:Management of connected application programs:
• Management of a list with all application programs currently bound to the CardServer
• The CardServer gives control on the card exactly to one application program at a time. If the

application software is finished with card access CardServer passes control to the next
application program.

• CardServer can start specific application programs in dependence of the inserted card type if
the application software has been registered for this type of card. Either the card application
type (e.g. GSM or EC-card) or the AID of the card can be used as identifying mark. (from
V2.10).

Management of memory smartcards:Management of memory smartcards:
• automatic detection of the semiconductor type and various parameters including necessity of

PINs, write protection and even the page sizes for I²C cards
• automatic detection of card application data on the card
• data access with a uniform command set, independent of the card type (e.g.

‘Card,MemWrite’ or ‘Card,ISOAPDU’)
• immediate write and read access to TLV data fields (Tag Length Value encoding)
• caches for write- and read access for maximum performance
• PIN management
• more than 50 semiconductor types are currently supported!

Management of processor smartcards:Management of processor smartcards:
• automatic detection of the card type and evaluation of the ATR
• support of sending commands in transparent mode (1:1 to card without any protocol

overhead)
• T0 and T1 are completely implemented according ISO7816-3 including error handling,

chaining and all S-blocks
• T0 and T1 protocol parameters are preset according to the ATR
• support of APDU alternately according ISO7816-4, GMS11.11 or CT-API

Access to data of standard card applications:Access to data of standard card applications:
• GSM cards according to GSM11.11 are recognized and can be accessed with macro

functions, i.e. by issuing the command ‘Apps,Gsm,ReadAdn,17’ you can directly read the
17th short dial number entry. Equally of course you can process any T0 command. The GSM
module supports the following data areas: ADN, FDN, MSISDN, LDN, BDN, SMS, SMSP,
CBMI, PUCT, PLMN and many others

• German health insurance card ‘KVK’
• German telephone prepaid debit card
• German EC-card with chip (national electronic purse)
• with PlugINs you can create your own card application modules! (from V.2.10)

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 4/31 - © TOWITOKO electronics GmbH

Interfaces of the CardServer
The CardServer runs as a separate background task under Windows® 95, Windows NT™
and Windows® 3.11. Application programs can communicate with the CardServer using one of
the following interfaces. All interfaces are compatible with all operating systems listed above.

TDEV interface - TDEV.DLL, TDEV32.DLLTDEV interface - TDEV.DLL, TDEV32.DLL
The TDEV interface exists for compatibility our earlier driver support interface. We do
recommend the use of the new SCARD interface because only that way you have full access
to all new features of the Card Server.
Available in 16- and 32 Bit Version running under Windows® 95, Windows NT™ and
Windows® 3.11.

CT-API interface - CTAPIW16.DLL, CTAPIW32.DLLCT-API interface - CTAPIW16.DLL, CTAPIW32.DLL
CT-API interface, compatible with CT-API V1.1 (Issued by: Deutsche Telekom AG / PZ
Telesec, GMD Forschungszentrum Informationstechnik GmbH, TÜV Informationstechnik
GmbH und TeleTrustT Deutschland e.V.)
More details on this specification can be found on the word wide web at:
http://www.darmstadt.gmd.de/~eckstein/CT/mkt.html#SPEK.
The command set is implemented according to the MKT (Multifunktionale Kartenterminals für
das Gesundheitswesen, Issuer: GMD Arbeitsgemeinschaft 'Karten im Gesundheitswesen').
This interface only gives access to a small fraction of the CardServers functionality.
Available in 16- and 32 bit Version running under Windows® 95, Windows NT™ and
Windows® 3.11.

SCARD interface - SCARD.DLL, SCARD32.DLLSCARD interface - SCARD.DLL, SCARD32.DLL
The SCARD interface packages the full CardServer functionality. The implementation on client
side is extremely easy. Only one single DLL-function call is used for all accesses. Windows
messages do the event handling for your application program
Available in 16- and 32 bit Version running under Windows® 95, Windows NT™ and
Windows® 3.11.

Delphi 1/2/3 component - SCARDCMP.PASDelphi 1/2/3 component - SCARDCMP.PAS
For DELPHI we have a component available, which makes the implementation even simpler.
All events are implemented and various lists (terminals, applications, terminal status
information, card status information) are available in form of string lists.
Available in 16- and 32 bit Version running under Windows® 95, Windows NT™ and
Windows® 3.11.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 5/31 - © TOWITOKO electronics GmbH

The SCARD interfaceThe SCARD interface
All calls of this interface are directly passed to the CardServer. The function call returns only
after processing of the command by the CardServer. Other Windows messages are regularly
processed, while the command is being executed. The SCARD interface can be called
recursively in up to four levels.
Both DLLs 16/32 BIT (SCARD.DLL / SCARD32.DLL) export the following command:

SCardComand (Handle, Cmd, CmdLen, DataIn, DataInLen,
 DataOut, DataOutLen)

LPINT Handle /* pointer on a 32 bit signed integer */
LPSTR Cmd /* pointer on a zero terminated string */
LPINT CmdLen /* pointer on a 32 bit signed integer */
LPSTR DataIn /* pointer on a array of byte or string */
LPINT DataInLen /* pointer on a 32 bit signed integer */
LPSTR DataOut /* pointer on a array of byte or string */
LPINT DataOutLen /* pointer on a 32 bit signed integer */

Handle In case more instances of DLL are required by the application software this
handle can be used to distinguish between object instances. The value can be
set to zero if only a single instance is used. The CardServer in this case will do
the assignment via the thread- / task handle of your application program.

Cmd CardServer command (zero terminated string)

CmdLen this value contains the length of the command string, if the data transfer to the
CardServer is encrypted. If un-encrypted transfer is used, this value must be
set to zero,

DataIn pointer on input data

DataInLen length of the input data

DataOut pointer on output data

DataOutLen maximum length for returned data - is set to the actual length of the returned
data

response global return code, is set to zero if command execution was successful

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 6/31 - © TOWITOKO electronics GmbH

Sample code for implementation with VB4/5, AccessSample code for implementation with VB4/5, Access
Declare Function SCardComand Lib "SCARD32.dll" (

Handle As Long,
ByVal Cmd As String,
CmdLen As Long,
ByVal DataIn As String,
DataInLen As Long,
ByVal DataOut As String,
DataOutLen As Long

) As Long

Note: If you are using a 16-bit verson of VB you must use the 16 bit version of the
DLL: ... Lib "SCARD.DLL" ...

Sample code for implementation with Sample code for implementation with PASCAL / DELPHIPASCAL / DELPHI
function SCardComand (

var Handle: LongInt;
Cmd: Pointer;
var CmdLen: LongInt;
DataIn: Pointer;
var DataInLen: LongInt;
DataOut: Pointer;
var DataOutLen: LongInt): LongInt; stdcall; external "SCARD32.DLL";

Note: Using Delphi 1 (16-bit version) you must use the 16 bit version of the DLL:
... LongInt); LongInt; external "SCARD";

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 7/31 - © TOWITOKO electronics GmbH

The DELPHI componentThe DELPHI component
With DELPHI the implementation of card access is even easier. Mainly the TSmartCard
component does the following jobs:
• loads the SCARD Library (16/32) dynamically and imports the SCardComand function
• creates a object instance to the Card Server
• creates a window handle and registers it for the receipt of CardServer events
• introduces a new exception ‘ESmartCard’ and this way forwards error messages
In the following the methods, properties and events of the component TSmartCard are briefly
introduced. More detailed information is found in the reference section of the CardServer
commands:

TSmartCard - methodsTSmartCard - methods
function Command (const Cmd: string;
 DataIn: pointer; DataInLen: longint;
 DataOut: pointer; DataOutMax longint): longint
This method packages the SCardCommand function for communication with the CardServer.
CMD contains the command string. DataOutMax contains the value for the maximum size of
the data structure DataOut. Both pointers can be assigned with NIL if no data is exchanged.
The return value contains the number bytes written to DataOut. If a error occurs a ESmartCard
exception is generated.
function ComandStr (const Cmd, DataIn: string): string;
Same as Command but instead of pointers strings are used for data exchange. The return
value resembles DataOut.
procedure ComandList (const Cmd: string; Lines: TStrings);

Same as command but without input parameter (DataIn := NIL). The result in form of a string
list is placed in lines (e.g. used by DeviceList).

TSmartCard - PROPERTIESTSmartCard - PROPERTIES
Active: Boolean;
This property set to TRUE will cause the component to load the SCARD library and hereby
starting the CardServer. FALSE will unload the library.
Enabled: Boolean;
Locks all event routines. The library will not be loaded or unloaded. If the CardServer assigns
the control on the card to the component, the ‘Card,Unlock’ command is issued immediately to
pass on control to the next application (independent of property AutoUnlock).
DeviceInfo: TStringList
List of the terminal status information on the currently selected terminal
DeviceList: TStringList
List of all available terminals
TaskList: TStringList
List of all application programs / tasks bound to the CardServer
CardInfo: TStringList
List of status information on the currently inserted smartcard
AutoUnlock: Boolean
This property allows the automatically release of the terminal (command ‘device, unlock’) after
ending the OnActiveCard event.
ConfigPopupMenu: TPopupMenu

This property assigned to an pupup menu inserts all necessary menu entries for the
configuration of the CardServer and terminal selection. ConfigMenuItem is deleted if this
poperty is used.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 8/31 - © TOWITOKO electronics GmbH

ConfigMenuItem: TMenuItem

If this property is assigned to an menu entry, the component automatically adds all necessary
entries for the configuration of the CardServer and terminal selection. ConfigPopupMenu is
deleted if this property is used.
ConfigMaxPort: Integer

This property denominates the maximum number of available COM-Ports in the ConfigMenu.

TSmartCard - EVENTSTSmartCard - EVENTS
OnDeviceError: TCardEvent
Terminal access failed / the terminal to PC connection was interrupted!
OnCardWait: TCardEvent
No card is present in the terminal / the card has been removed from the terminal
OnCardDetect: TCardEvent
A card has been inserted to the terminal. The card cannot be accessed yet!
OnCardInvalid: TCardEvent
The card recognition has failed / no valid card!
OnCardActive: TCardEvent
The card was recognized and activated. The card can now be accessed.
OnCardLock: TCardLockEvent
Another application program has started to access the card
OnCardValid: TCardEvent
All applications are finished with the access to the card (command 'Card,Unlock'). It is now
possible to access the card again
OnProgress: TProgressEvent
Event for reporting progress on memory card access
OnDeviceSearch: TSearchEvent
Event for display of progress during search for a terminal (started with command ‘Device,
SearchComPort’ or at first start of the CardServer)
OnCardInfoChange: TNotifyEvent
Event for displaying new data in the CardInfo list
OnTaskListChange: TNotifyEvent
Event for displaying new data in the TaskList
OnDeviceListChange: TNotifyEvent
Event for displaying new Data in the DeviceList

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 9/31 - © TOWITOKO electronics GmbH

 CardServer Reference
For making the implementation of smartcard access as simple as possible the CardServer
uses the same syntax for every command. The selection of the function calls and the
transmission of eventually necessary parameters is done with a command string. Input and
output data are optional.
A command string always contains key words and parameters separated by comma.
Example 1 command Str(" Device,Info,Type ")

DataIn nil
DataOut Str(" CHIPDRIVE extern ")

The command returns the current terminal type.
Possible return codes: 0 = OK

Example 2 command Str(" Card,MemWrite,16,8 ")
DataIn Str(" TOWITOKO")
DataOut nil

This command writes 8 characters starting at address 16 to a memory card.
Possible return codes: 0='OK', 4000='No card present in terminal', 1009='Terminal is locked'

Get started quicklyGet started quickly
For the development of the CardServer the easy implementation was one of the most
important factors. The CardServer offers all functionality of the PC/SC standard (and even
more) but still it is kept simple on the application programmers side so that you can get started
with least effort right away.
For testing the previously shown Examples you do not need to initialize any parameter or
execute any other (administrative) commands - just start!
But equally as important you gain access to a great number of powerful features which will
especially be delighting for all professional users.

The card statusThe card status
The CardServer handles the management of the card. For each application program this
information on the status of the card and the terminal is held available:
• It is tested if the terminal is connected and responding properly. In case of an failure the

status is set to ERROR
• It is tested if there is a card present in the terminal. In case no card is present the status is

set to WAIT
• If a card is inserted, the automatic detection is started, i.e. the exact card type

(semiconductor type) is determined and consecutively the card is checked for data of known
card applications. While the automatic detection is running the status is set to DETECT.
Card access is not possible yet in this state (error message ‘No card present in terminal’).

• If the card cannot be read or another detection failure occurs the status is set to INVALID -
• otherwise control on the cards is given to exactly one application program. This application

program receives the status ACTIVE while all other application programs receive the status
LOCKED.

• This remains until:
a) the card is removed. The status is set to WAIT again.
b) a ‘Card,Unlock’ command is issued by the active application program.

• In case b) the CardServer passes control on the card to the next Application program, which
again can pass on control to the next application.

• If all application programs have released the card with the ‘Card,Unlock’ command the status
is set to VALID, i.e. the card is valid but currently not assigned to any application program.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 10/31 - © TOWITOKO electronics GmbH

• If a application program needs to access the card again (e.g. because of a user request) the
control needs to be requested by issuing a ‘Card,Lock’ command. The status ACTIVE is
assigned for the application program which issued the request - all other applications get the
status LOCKED.

• The active application program may release the card by issuing a ‘Card, Unlock’ and the
status for all application programs will return to VALID.

The Status can be polled with the commands ‘Card,Info,Status’ or ‘Card,Info’.

Windows MessagingWindows Messaging
Under Windows it is much better to transmit status changes using windows messages. This
reduces the system load because no continuous polling is necessary.
Your application can register (and un-register) any number of windows for the receipt of
CardServer messages using the commands "System,AddHWndMsg“ and "System,DelHWnd".
A message is sent to your application program in each of the following cases:
• In case of a status change (e.g. WAIT -> DETECT)
• Within the status LOCKED if control is passed to another application program
In the following status change no message is sent:
• If your application has requested card access by issuing a 'Card,Lock', i.e. the status for your

application program changes from VALID to ACTIVE no message is sent to you. For all
other applications the status changes from VALID to LOCKED and a message is sent to
them. The reason for this exception is to have the message ACTIVE sent only on the first
activation after card insertion.

Structure of the messagesStructure of the messages
The Windows message is sent to the given window handle using ‘PostMessage’. The
message ID (MsgID) can be specified by you with the registration of the window handle
(compare System,AddHWndMsg,[HWND],[MsgID]").

The W-parameter indicates the message type:
• MsgError = decimal 100 for status changes after ERROR
• MsgWait = decimal 110 for status changes after WAIT
• MsgDetect = decimal 120 for status changes after DETECT
• MsgInvalid = decimal 130 for status changes after INVALID
• MsgValid = decimal 140 for status changes after VALID
• MsgActive = decimal 150 for status changes after ACTIVE
• MsgLocked = decimal 160 for status changes after LOCKED

and for every change of the active application program
• MsgProgress = decimal 200 for progress display during memory card access
• MsgDeviceList = decimal 300 indicates changes of the device list
• MsgDeviceSearch = decimal 301 progress display during device search
• MsgTaskList = decimal 310 indicates changes of the task list
• MsgCardInfo = decimal 320 indicates changes of the CardInfo list

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 11/31 - © TOWITOKO electronics GmbH

The low order word of the L-parameter indicates the index of the active terminal within the
terminal list (starting with zero). Exception:
• MsgDeviceSearch: COM-Port which is checked

The high order word of the L-parameter is dependent on the message:
• MsgLocked index of the active application within the task list (starting with zero)
• MsgProgress completion status from 0 to 100 percent
• MsgDeviceSearch completion status from 0 to 100 percent,

 special values: 254 device OK; 255 No device detected

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 12/31 - © TOWITOKO electronics GmbH

Order of activation of application programsOrder of activation of application programs
The CardServer determines the order in which the application programs are assigned access
to the card. The priority is determined by the following criteria (in order of the List) (from
V2.10).
It is determined if:
• a application has been registered for a special card application type (e.g. SIM-Surf for GSM

cards).
• a processor card allows a assignment by the registered name (ISO7816-4).
• a memory card matches a registered mask (byte wise comparison of any memory location).
• a application program has registered a AID (contained among the history bytes within the

ATR of processor cards or within the ATR (TLV encoding) of a memory card.
In case several application programs have the same ranking or no criteria were matched the
tab sequence of the Windows-desktop is used for determining the first application program.

Rules for smooth cooperation of multiple application programsRules for smooth cooperation of multiple application programs
The automatic selection of matching application programs and especially the passing of
control to the next application can be optimized. Observe the following rules:
• register reliable criteria
• allow the CardServer to start up your application program on demand
• do not open modal dialog boxes as long as your application is not the active one. Otherwise

it may happen that several modal dialogs are opened simultaneously!
• do not use the event DETECT for opening dialogs or windows but better just add a line of

text to a status line, e.g. 'Card is analyzed , please wait'.
• Do not use the event INVALID (invalid card) for modal dialogs!
• Issue the 'Card,Unlock' function, if you cannot process the card or if you have finished

processing.
• Issue the command ‘Card,Reset’ prior to ‘Card,Unlock’ if you want to reset acquired access

rights on the card. If available you should use alternate means of resetting the rights since all
caches are erased by resetting the card as well.

• Our suggestion for a terminal selection is a windows menu with the following entries:
- COM 1 ... COM 8
- separation line
- automatic terminal detection
- separation line
- list of all connected terminals ("Device,List").

By doing so the user will have all choices for:
a) register new terminals - command "Device,SearchComPort,[Port]"
b) use the ‘automatic terminal selection’ - command "Device,Select,-1"
c) select a explicit terminal - command "Device,Select,[Index]"

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 13/31 - © TOWITOKO electronics GmbH

Global Return CodesGlobal Return Codes
An important advantage of the CardServer is the uniform error handling by using global return
codes. The file SCARD.ERR contains all values with the assigned text messages. Translations
are easily possible by adding a new language section according to the INI-format.

Code Error message text Description

0000 OK Command was successfully executed

1001 serial port not available The search on the selected COM port was not possible
because the port is not available on the Windows
system. The port needs to be configured to be properly
recognized by the system.

1002 serial port is used by
another application

The COM-port is used by another application program
(e.g. a mouse or a modem)

1008 no terminal detected
on selected port

The COM-port configured properly but no terminal was
detected. Check the connection!

1009 terminal is locked by - At the moment access to the terminal is not possible
because another application is accessing a card or has
not released the card.

1010 The application
software is not
compatible with this
terminal

TOWITOKO distributes OEM-terminals, which are not
compatible with the TOWITOKO standard software
products. The terminals can be upgraded for archiving
compatibility. (see offers at http://www.towitoko.de)

4000 No card present in
terminal

4001 Card was removed
during access

4002 Invalid card present in
terminal

4004 Card ejection failed Reserved for future terminals with automatic card
ejection.

1200 unknown command The command string was not recognized

1201 command execution
not possible with
current card

Not all commands can be used with all cards - especially
between memory and processor cards.

1202 command execution
not possible with this
terminal

Occurs e.g. if a T0 command is sent to a terminal not
supporting processor cards.

1203 invalid command
parameter

e.g. invalid address range for the command
'Card,MemRead'

1310 smartcard access
failed

A non recoverable error occurred during access to the
smartcard

1311 PIN error!
#1 trial(s) left

PIN-Error for memory smartcards; #1 is replaced by the
remaining number of trials

2000 server not available The CardServer failed to start

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 14/31 - © TOWITOKO electronics GmbH

CardServer - command set SYSTEMCardServer - command set SYSTEM
The system area contains all commands for administration and task management:

System,InfoSystem,Info
Determines information on the CardServer and the status of the command execution.
The following values can be retrieved.
VersionCode : Version of the CardServer (4 digit BCD encoding)
VersionText : Version as string.
ErrText: Text of the last error message.
ErrCode: Error code (global return code) of the last command causing an error.
Lng: preset language for the calling application program.
Handle: Handle, assigned to the calling object instance.

The function call "System,Info" returns all values (separated by CR/LF = #13#10). Is the
command string supplemented by a keyword, only the specified parameter is returned.
Example 1: Command Str(" System,Info")

DataIn nil
DataOut Str(" Handle=3

Lng=GERMAN
VersionCode=0202
VersionText=TDEV-Server V2.02
ErrCode=4002
ErrText=Ungültige Karte im Lesegerät ")

Example 2: Command Str(" System,Info,Lng ")
DataIn nil
DataOut Str(" GERMAN")

System,TaskListSystem,TaskList
Returns the list of application programms currently connected to the CardServer:
Example: Command Str(" System,TaskList ")

DataIn nil
DataOut Str(" Delphi,'CHIPDRIVE micro' an COM2

Testgo,'CHIPDRIVE micro' an COM2 ")

System,CreateSystem,Create
The CardServer creates an instance for every connected application program. Herefore the
taskhandle of the application is used. It is not necessary to create a object instance, if only one
instance is needed.
If several instances of a application are needed, they have to be set up with the
‘System,Create’ command.
Important: The parameter handle needs to be set to -1 for calling
Example Command Str(" System,Create ")

DataIn nil
DataOut Str(" Handle=5")

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 15/31 - © TOWITOKO electronics GmbH

System,DestroySystem,Destroy
Releases a object instance which was generated with the Create command. The CardServer
automatically activates this function, if the task handle of the application gets invalid, i.e. the
application was closed.
Example. Command Str(" System,Destroy,[handle] ")

DataIn nil
DataOut nil

handle Handle, which was generated with "System.Create " earlier

System,AddHWndMsgSystem,AddHWndMsg
Registers a window handle and a message value for the notification of your application in case
of status changes. Up to 8 windows can be registered.
Example Command Str(" System,AddHWndMsg,[hwnd],[msgID] ")

DataIn nil
DataOut nil

hwnd Window handle of window to receive messages

msgID Message value for the notification (Message ID)

System,DelHWndSystem,DelHWnd
Deletes a window handle from the list.
Example. Command Str(" System,DelHWnd,[hwnd] ")

DataIn nil
DataOut nil

hwnd Windows handle of the windows that had recieved the messages

System,SetLngSystem,SetLng
Sets the language for the currently application. The error messages are read from the
SCARD.ERR file, which can be easily modified / translated.
Example Command Str(" System,SetLng,[lngstr] ")

DataIn nil
DataOut nil

lngStr Language (= Section string in the file SCARD.ERR) e.g. 'ENGLISH'

System,ConvertErrCodeSystem,ConvertErrCode
Returns the error message text for a given global return code:
Example. Command Str(" System,ConvertErrCode,4002 ")

DataIn nil
DataOut Str(" Invalid Card in terminal ")

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 16/31 - © TOWITOKO electronics GmbH

System,ComandsSystem,Comands
Returns a List of all available commands. The command tree can be listed recursively by
adding more keywords:
Example 1: Command Str(" System,Comands ")

DataIn nil
DataOut Str(" System

Device
Card
Apps")

Example 2: Command Str(" System,Comands,Apps ")
DataIn nil
DataOut Str(" List

Info
...
SetLedCard")

System,CryptKeySystem,CryptKey
This command activates the encrypted communication with the CardServer. Command string
and DataIn need to be presented in encrypted form after issuing this command.
Correspondingly DataOut is returned in encrypted format by the CardServer. The algorithm is
a standard DES.
Important: Since the length of data always is a multiple of 8 when using DES please observe

the following rules:
1. Command, DataIn and DataOut have a length which is a multiple of 8
2. The command needs to be concluded with a zero character before encrypting.
3. DataIn and DataOut are headed by an 16 Bit integer which indicates the actual
length of the decrypted data.

Example. Command Str(" System,CryptKey,DES ")
DataIn KeyID (8 Byte)
DataOut nil

KeyID The DES-key is not transmitted directly but in encrypted form. More details on
this are found in section GenCryptKey

System,GenCryptKeySystem,GenCryptKey
Of course the encryption only makes sense, if the key itself is not transmitted itself. It is
necessary to generate a KeyID in a secure environment which is used in the final application
phase for hiding the actual DES key.
Example Command Str(" System,GenCryptKey,DES ")

DataIn DES-Key (8 Byte)
DataOut KeyID (8 Byte)

DES-Key DES-key used for actual encryption of the data

KeyID This value is needed in the application phase.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 17/31 - © TOWITOKO electronics GmbH

System,UpgradeSystem,Upgrade
An upgrade of the terminal hardware (OEM terminals) allows full compatibility with
TOWITOKOs standard software packages. More detailed information on upgrading is available
at http://www.towitoko.de. The upgrade code is saved to the INI file of the Card Server. In
case a new installation of the software is necessary, the upgrade code has to be entered
again.
Example. Command Str(" System,Upgrade,[Lizenz] ")

DataIn nil
DataOut nil

Lizenz License number

System,OemRegisterSystem,OemRegister
If you are developing application software for a OEM-Terminal you receive a unique driver
certificate which you have to register with this command prior to accessing the terminal.
Example Command Str(" System,OemRegister,OemID ")

DataIn nil
DataOut nil

OemID Driver certificate

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 18/31 - © TOWITOKO electronics GmbH

CardServer - Command Set DEVICECardServer - Command Set DEVICE
Device,InfoDevice,Info

Returns a list of all terminal parameters. The information relate to the terminal currently
assigned to the application (see 'Device,Select'):
Status: indicates the terminal status:

error terminal inaccessible
valid terminal ready

Port: COM-port on which the terminal is connected
Type: device name, e.g. ‘CHIPDRIVE twin Slot 1’

ShortName : short name of the terminal type
CDX CHIPDRIVE extern
CDM CHIPDRIVE micro
CDI CHIPDRIVE intern
CDD CHIPDRIVE extern II
CD1 / CD2 CHIPDRIVE twin slot 1 / 2
KTZ KartenZwerg (OEM Version)
CCR CardReader (OEM Version)

Serial: serial number of the terminal within the production lot number
LotNr: production lot number of the terminal
Version: hardware revision number
Baudrate: COM-port transmission speed
Led: status display (see 'Device,SetLed')

The function call "Device,Info" returns all values (separated by CR/LF = #13#10). If the
command string is supplemented by a keyword only the specified parameter is returned.
Example 1 command Str(" Device,Info")

DataIn nil
DataOut Str(" Status=valid

Port=COM2
Type=CHIPDRIVE micro
ShortName=CDM
Version=1.1
LotNr=9805
Serial=861
Baudrate=9600 ")

Example 2 command Str(" Device,Info,LotNr ")
DataIn nil
DataOut Str(" 9805")

Device,InfoDeviceIDDevice,InfoDeviceID
Command similar to ‘Device,Info’ but relating to a specified terminal within the terminal list
('Device,List')
Example Command Str("Device,InfoDeviceID,[DevID],Serial ")

DataIn nil
DataOut Str(" 861")

DevID terminal index (zero = first entry in the terminal list)

Device,ListDevice,List
returns a list of all terminals connected to the CardServer:

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 19/31 - © TOWITOKO electronics GmbH

Example Command Str(" Device,List")
DataIn nil
DataOut Str(" 'CHIPDRIVE micro' an COM2

'CHIPDRIVE twin Slot 2' an COM3
'CHIPDRIVE twin Slot 1' an COM3 ")

Device,SelectDevice,Select
Using this command you select a specific terminal form the terminal list or you activate the
automatic terminal selection.
Example. Command Str("Device,Select,[DevID] ")

DataIn nil
DataOut nil

DevID terminal index (zero = first entry in the terminal list) or name

If DevID is set to -1 or the command ‘Device,Select’ has not been issued the automatic
terminal selection is activated. The following criteria apply:
- if no valid or active cards are present the first valid terminal from the list is selected.
- If a valid card is present in any terminal this terminal becomes the active terminal for a
application program and remains assigned until the card is removed.
Alternately terminals can be selected with this command by name, short name or COM-Port.
This is the preferred choice if the selection of terminals is to be stored in a INI-file of the
application program since the order of the devices within the list may change.
Valid samples for DevID are:
"CHIPDRIVE twin Slot 1 an COM1" Selection by name and COM-Port (unique)
"COM1" Selection by COM-Port
"CHIPDRIVE extern" Selection by name
"CDX" Selection by short name
"CD1 COM3" Selection by short name and COM-Port (unique)
"2" Selection by Index (unique)
If the selection is not unique, the first device in the list with matching description is used.

Device,RemoveDevice,Remove
Use this command for removing a terminal from the terminal list, i.e. the associated COM port
is released. The terminal can be reconnected with 'Device,SearchComPort'
Example Command Str("Device,Select,[DevID] ")

DataIn nil
DataOut nil

DevID terminal index (zero = first entry of the terminal list)

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 20/31 - © TOWITOKO electronics GmbH

Device,SearchComPortDevice,SearchComPort
Use this command for initiating a search on a terminal device on the indicated COM-Port. If a
terminal is detected, the CardServer determines all device specific data such as device type
and serial number. Functional devices are stored in the INI file of the CardServer. On the next
start of the CardServer previously detected devices are again tested and installed.
Example Command Str("Device,SearchComPort,[Port] ")

DataIn nil
DataOut nil

Port number of the COM port on which the terminal is connected. If no parameter is
assigned all COM ports not used otherwise are searched.

Device,SetLedDevice,SetLed
This command controls the status display of the terminals. The command relates to the active
terminal of your application program.
Example Command Str("Device,SetLed,[ColorStr] ")

DataIn nil
DataOut nil

ColorStr the string contains up to 8 characters, each assigned to a color:
0=off, 1=red, 2=green, 3=yellow.
Examples:
"01" fast red blink signal

"0011" slow red blink signal
"2" steady green signal
"123" red, green, yellow cycling

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 21/31 - © TOWITOKO electronics GmbH

CardServer - Command Set CARDCardServer - Command Set CARD
Card,InfoCard,Info

Returns a list of status information on the currently inserted card:
Status returns the status of the card:

error terminal inaccessible
wait no card in reader
detect card was inserted and is analyzed
invalid card is invalid / card type was not detected
valid card is valid and currently not processed by any application
active card is valid and currently processed by your application
locked card is valid and currently processed by another application

LockedBy: Index of the active application within the application list (System,Tasklist)
followed by the application name (as string, separated by a comma)

Type The exact type declaration of supported memory cards. Following is a list of the
currently implemented chip types. The list is constantly updated. The latest
information is available on the world wide web at http://www.towitoko.de
SLE4404, SLE4406, SLE4436
SLE4432, SLE4442, SLE4428, SLE4418, SLE4418K
SC152, GPM896
I2C 2K, I2C 4K, I2C 8K, I2C 16K
I2C 32K, I2C 64K, I2C 128K, I2C 256K, I2C 512K
X24165, X24645, X76F041, X76F100, X76F128, X76F640
MCM2814ATR
CPU

Protocol indicates the protocol of the card:
ATR cards with special bit protocols e.g. 4406/4436
2W 2-wire protocol
3W 3-wire protocol
I2C I2C-bus protocol
I2CX I2C-bus protocol with 2 byte addressing
XC... special I2C-bus protocol for XICOR chips
T0, T1, T14 processor card protocols

Apps return a list of detected card application modules (separated by comma)

KVK valid German health insurance card
TWK German prepaid telecom debit card
GSM GSM carte according to GSM11.11
ECB German EC-card with chip (electronic purse)
TRP TripleCard multi functional card
PAY German PAY-card
TLV valid TLV structure

MemSize memory cards only: size of accessible data memory in bytes
PinSize memory cards only: size of the PIN in bytes
PinCnt memory cards only: remaining number of PIN entry trials
PageSize memory cards I2C only: page size for write commands
ErrMem memory cards only: number of errors occurred during write and verify

commands
ErrMemPB memory cards only: number of errors occurred during write and verify

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 22/31 - © TOWITOKO electronics GmbH

commands
(write protection bits only)

AtrBinary ATR in binary form
AtrBinarySize size of the ATR in byte
AtrHistory processor cards only: history bytes according to ISO7813-3
AtrHistorySize size of the history in byte
TS, T0, TA1..8, TB1..8,
TC1..8, TD1..8 decoded ATR according to ISO7816-3
SAD, DAD processor cards T1 only: source- and destination addresses
IFSC, IFSD processor cards T1 only: buffer size of the card and terminal
CWT, BWT processor cards only: character- and block waiting time

The function call ‘Card,Info ‘ returns all values (separated by CR/LF = #13#10). By
supplementing the command string with an additional keyword only the specified parameter is
returned:
Example 1 Command Str(" Card,Info")

DataIn nil
DataOut Str(" Status=active

LockedBy=0,Value Card Station
Type=CPU
Protocol=T0
CWT=1000
AtrBinarySize=8
AtrBinary=3B 85 00 54 53 2D 32 10
AtrHistorySize=5
AtrHistory=54 53 2D 32 10
TS=3B
T0=85
TD1=00")

Example 2 command Str(" Card,Info,Type ")
DataIn nil
DataOut Str(" CPU")

Example 3 command Str(" Card,Info ")
DataIn nil
DataOut Str(" Status=active

LockedBy=0,Value Card Station
Type=SLE4432
Protocol=2W
Apps=TLV,KVK
MemSize=256
AtrBinarySize=4
AtrBinary=A2 13 10 91 ")

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 23/31 - © TOWITOKO electronics GmbH

Card,LockCard,Lock
Locks a card for access by other applications. The command can only be executed if a valid
card is present in the terminal and no other application program currently is processing this
card (status = VALID).
The command only needs to be issued, if a card is to be processed again after it has been
released with ‘Card,Unlock’ for other applications.
Example Command Str("Card,Lock")

DataIn nil
DataOut nil

Card,UnlockCard,Unlock
This command is used to release a card for processing by other applications. The CardServer
assigns the card to the next application program.
Example Command Str("Card,Unlock")

DataIn nil
DataOut nil

Card,APDUCard,APDU
This command sends a APDU to the card and receives the response of the card. The
translation to the T0- / T1- protocol are done according to ISO7816-4. ‘Case 1’, ‘Case 2 short’
up to ‘Case 4 short’ with maximum data length of 254 bytes are supported.
Example 1, ISO CASE 1, command without data

Command Str(" Card,APDU")
DataIn CLA, INS, P1, P2
DataOut SW1, SW2

Example 2, ISO CASE 2, command with data block from the card (0<= LE <= 255)
Command Str(" Card,APDU")
DataIn CLA, INS, P1, P2, Le
DataOut SW1, SW2, data block

Example 3, ISO CASE 3, command with data block to the card (Lc > 0!)
Command Str(" Card,APDU")
DataIn CLA, INS, P1, P2, Lc, data block
DataOut SW1, SW2

Example, ISO CASE 4, command with data blocks to and from card (LC > 0!)
Command Str(" Card,APDU")
DataIn CLA, INS, P1, P2, Lc, data block, Le
DataOut SW1, SW2, data block

Lc Number of bytes to transmit to the card
Le Number of bytes expected from the card,

or zero for all data bytes (card determines length of response)
The return codes 9Fxx (GSM response data), 61xx, 6Cxx are not interpreted. This complies
with the CT-API specification of a APDU and is not conforming with ISO7816-4.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 24/31 - © TOWITOKO electronics GmbH

Card,ISOAPDUCard,ISOAPDU
This command is similar to ‘Card,APDI’ but the return codes 61xx, 6Cxx are interpreted and
lead to a GetResponse command, i.e. T0- and T1-cards react identical on APDU level. This
complies the exact ISO 7816-4 requirements and allows a T0 / T1 independent APDU.
Note: GSM-cards operate with the T0-protocol but are (unfortunately) not compatible

with ISO-standard in respect to the APDU since the return code 9Fxx is used
instead of 61xx. The command section ‘Apps,GSM,APDU’ contains the correct
APDU implementation for GSM-cards.

Card,ResetCard,Reset
This command initiates a hardware reset of the card. Eventually obtained access rights are
lost.
Example. Command Str(" Card,Reset")

DataIn nil
DataOut nil

Card,T0TXCard,T0TX
This command sends a T0 command with data to the card:
Example Command Str(" Card,T0TX")

DataIn CLA, INS, P1, P2, P3, data block
DataOut SW1, SW2

Card,T0RXCard,T0RX
This command sends a T0 command to the card and receives data from the card:
Example Command Str(" Card,T0RX")

DataIn CLA, INS, P1, P2, P3
DataOut SW1, SW2, data block

Card,T1Card,T1
This command executes a T1 command (including chaining if necessary):
Example Command Str(" Card,T1")

DataIn CLA, INS, P1, P2, data block
DataOut SW1, SW2, data block

The input data is sent transparently to the card. The nomenclature (CLA, INS ...) is according
to ISO7816-3. Lc and Le are encoded according to "Case 1 to 4" specified in ISO7816-4 or
defined in the specification of the card.

Card,TspTxRxLenCard,TspTxRxLen
This command sends a string to the card and receives a given number of bytes from the card.
The command does not respect any protocols, i.e. sends and receives absolutely transparent
on byte level. The time-out values CWT and BWT are effective here as well.
Example Command Str(" Card,TspRxLen,[RxLen] ")

DataIn data to be sent to card
DataOut data to be received from the card

RxLen This parameter specifies the number of expected bytes to be received from the
card.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 25/31 - © TOWITOKO electronics GmbH

Card,InitBwtCwtCard,InitBwtCwt
Block Waiting Time and Character Waiting Time can be overwritten, i.e. set manually. The
initial values are taken from the ATR of the card.
Example. Command Str(" Card,InitBwtCwt,[Bwt],[Cwt] ")

DataIn nil
DataOut nil

Bwt Block Waiting Time, time-out of the first character of a block in [ms]
Cwt Character Waiting Time, time-out for the following characters in [ms]

valid range: 1 to 60.000 (1 ms to 60 seconds.)

Card,InitSadDadCard,InitSadDad
Initializes the SAD (Source Address) and DAD (Destination Address) for the T1 protocol.
Initially both values are set to zero. The syntax is same as for the command "Card,InitBwtCwt".
The valid range is 0 to 255.

Card,InitIfsdIfscCard,InitIfsdIfsc
Initializes IFSD (buffer size terminal) and IFSC (buffer size smartcard) for the T1 protocol. The
initial values are taken from the ATR of the card. The syntax is same as for the command
"Card,InitBwtCwt". The valid range is 0 to 255.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 26/31 - © TOWITOKO electronics GmbH

Card,MemDisableCacheCard,MemDisableCache
This command disables the cache function for memory cards, i.e. even data already read is
physically read again from the card for each access.
Example. Command Str(" Card,MemDisableCache ")

DataIn nil
DataOut nil

Card,MemEnableCacheCard,MemEnableCache
Enables the cache function for memory cards. This is the default setting.

Card,MemReadCard,MemRead
Reads the selected area from the data memory of a memory card, independent of the chip
type:
Example Command Str(" Card,MemRead,[Adr],[Len] ")

DataIn nil
DataOut data read

Adr offset address on the smartcard for the first byte to read
Len number of bytes to read

Card,MemWriteCard,MemWrite
Writes the selected data area to the data memory of a memory card, independent of the chip
type:
Example Command Str(" Card,MemWrite,[Adr],[Len] ")

DataIn data to write
DataOut nil

Adr offset address on the smartcard for the first byte to write
Len number of bytes to write

Note: Every write access is (internally) followed by an verify command. By using the
command ‘Card,MemReadStatus’ you can retrieve the exact result of the write
access (in case of an write error).

Note: If the cache function is active (default), only data bytes which have actually
changed are written to the card. (only if the same data areas have been
previously read from the card).

Card,MemVerifyCard,MemVerify
This command performs an byte on byte comparison between the transmitted data and the
data stored on the memory smartcard:
Example Command Str(" Card,MemVerify,[Adr],[Len] ")

DataIn data bytes, to be compared with the card data
DataOut nil

Adr offset address on the card
Len number of bytes to compare

Note: The number of errors on data bytes and write protect bits can also be retrieved
with ‘Card,Info’. In case of a verify error the error code 1310 „Card access failed“
is returned. Using the command ‘Card,MemReadStatus’ the exact result of the
comparison can be retrieved.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 27/31 - © TOWITOKO electronics GmbH

Card,MemReadPB / Card,MemWritePB / Card,MemVerifyPBCard,MemReadPB / Card,MemWritePB / Card,MemVerifyPB
These three commands are similar to the previous three commands but the functions relate
not to the data memory but to the write protect information of the card. Some cards allow the
activation of the write protection independently for any (or a subset) of the data memory.
Every byte transmitted in DataIn or received in DataOut resembles the information on the write
protection of one data byte on the card. The following values are defined:
00 hex write protection is not active
01 hex write protection is active

Card,MemSetPBCard,MemSetPB
activates the write protection for the specified address range of the card. The same result can
be archived with ‘Card,MemWritePB’ but for most cases this command is easier to use.
Example Command Str(" Card,MemSetPB,[Adr],[Len] ")

DataIn nil
DataOut nil

The write protection for Len bytes starting at address Adr on the card is activated.

Card,MemReadStatusCard,MemReadStatus
Reads status information on the cache, write protection and verify errors:
Example Command Str(" Card,MemVerify,[Adr],[Len] ")

DataIn status bytes
DataOut nil

The status information is encoded as follows:
Bit 7 (MSB) 1: verify error on data byte
Bit 6 1: verify error on write protection bit
Bit 3 1: data byte content is in cache memory
Bit 2 1: write protection bit content is in cache memory
Bit 0 (LSB) 1: write protect bit for corresponding data byte is active

Card,MemVerifyPinCard,MemVerifyPin
Runs a PIN verification test of the card which may be required before write or read access to
the data contents of the card:
Example Command Str(" Card,MemVerifyPin,[PIN],[Nr] ")

DataIn nil
DataOut nil

PIN The BCD encoded PIN (e.g. 4 digits correspond 2 bytes)
Nr Selection of the PIN in case a card supports more than one PIN.

This parameter is optional.

Card,MemChangePinCard,MemChangePin
Changes the PIN of a card:
Example. Command Str(" Card,MemChangePin,[PIN],[NewPIN],[Nr] ")

DataIn nil
DataOut nil

PIN The BCD-encoded, current PIN
NewPIN The BCD-encoded, new PIN
Nr Selection of the PIN in case a card supports more than one PIN.

This parameter is optional.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 28/31 - © TOWITOKO electronics GmbH

CardServer - Command Set APPSCardServer - Command Set APPS
Apps,TLV,ListApps,TLV,List

Returns a directory of all TLV tags with complete directory path (only possible for memory
cards).
Example Command Str(" Apps,TLV,List ")

DataIn nil
DataOut Str(" 61,11

614f,6
6153,1")

The return data string contains a list of all tags on the card separated by CR/LF. Each line
contains a tag (hex) and ist length (decimal), separated by comma. The tag is preceded by its
path.

Apps,TLV,ReadTagApps,TLV,ReadTag
Reads the contents of a tag (only possible for memory cards).
Example. Command Str(" Apps,TLV,ReadTag,[Tag] ")

DataIn nil or source
DataOut contents of the data field without tag and length

Tag tag with path as described at command "Apps,TLV,List"

Apps,TLV,WriteTagApps,TLV,WriteTag
Writes the contents of a tag and if necessary, creates the tag (only possible for memory
cards). If the length of the new tag is different from the old one large data areas of the card
may need to be rewritten.
Example Command Str(" Apps,TLV,WriteTag,[Tag] ")

DataIn new data content of data field without tag and length
DataOut nil

Tag tag with path as described at command "Apps,TLV,List"

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 29/31 - © TOWITOKO electronics GmbH

Apps,ISOApps,ISO
In preparation. Commands according to ISO7816-4 will be directly executable.

Apps,ECBApps,ECB
In preparation. Data fields on a EC-card with chip will be accessed with these commands.
Transaction commands are also in planning.

Apps,TRPApps,TRP
In preparation. Gives access to the TripleCard system for your application programms.

Apps,GSMApps,GSM
In preparation. Immediate acces to: ADN,FDN,MSISDN,BDN,LDN,SMS,SMSP,CBMI,PLMN
PUCT etc.

Apps,TWK,ReadApps,TWK,Read
Returns the data fields of a German telecom prepaid debit card in decoded format:
Serialnumber 9 digits of the 11 digit serial number of the card
Manufacturer card manufacturer
Date date of chip manufacturing
Orginal value original prepaid value of the card
Remaining value remaining (current) value of the card

The function call "Apps,TWK,Read " returns all values (separated by CR/LF = #13#10). By
adding a keyword to the command string only the corresponding parameter value is returned.
Example 1 Command Str(" Apps,TWK,Read ")

DataIn nil
DataOut Str(" Seriennummer=131212752xx

Hersteller=Giesecke & Devrient, München
Datum=DEZ 19x3
Orginalwert=50,00 DM
Restwert= 0,00 DM ")

Example 2 Command Str(" Apps,TWK,Read,Restwert ")
DataIn nil
DataOut Str(" 0,00 DM ")

Apps,KVK,ReadApps,KVK,Read
Returnes the data fields of a German health insurance card in decoded and validated format:
Krankenkasse , KNummer, VkNr, VNummer, Status, StatusExt
Titel, Vorname, Zusatz, Name, GebDatum
Strasse, Land, PLZ, Ort, Gultigkeit

The function call "Apps,KVK,Read " returns all values (separated by CR/LF = #13#10). By
adding a keyword to the command string only the corresponding parameter value is returned.

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 30/31 - © TOWITOKO electronics GmbH

CardServer Command Tree
Here is a complete list of al CardServer commands organized as a tree:

System Info VersionCode
VersionText
ErrText
ErrCode
Lng
Handle

System Comands
ConvertErrCode
TaskList
Destroy
AddHWndMsg
DelHWnd
SetLng
CryptKey
GenCryptKey
Upgrade
OemRegister

Device Info Status
Port
Type
ShortName
Serial
LotNr
Version
Baudrate
Led

Device InfoDeviceID
List
Select
Remove
SearchComPort
SetLed

Card Info Status
LockedBy
Apps
Type
Protocol
MemSize
PinSize
PinCnt
PageSize
ErrMem
ErrMemPB
AtrBinary, AtrBinarySize
AtrHistory, AtrHistorySize
SAD, DAD, CWT, BWT
IFSC, IFSD
TS, T0, TA1-8, TB1-8, TC1-8, TD1-8

Card Reset
Lock
Unlock
T0TX
T0RX
T1
TspRxLen
InitBwtCwt
InitSadDad
InitIfsdIfsc
MemDisableCache
MemEnableCache
MemRead
MemWrite
MemVerify
MemReadPB
MemWritePB
MemSetPB
MemVerifyPB
MemReadStatus
MemVerifyPin
MemChangePin

Apps TLV List
ReadTag
WriteTag

Apps TWK Read Serial number
Manufacturer
Date
Orginal value
Remaining value

Apps KVK Read Krankenkasse
KNummer, VkNr
VNummer
Status, StatusExt
Titel, Vorname
Zusatz, Name
GebDatum
Strasse, Land, PLZ, Ort
Gultigkeit

CardServer Documentation - Release 02.03.98 CARDSERVER V2.02

06.03.98 10:16 CS5E.DOC - 31/31 - © TOWITOKO electronics GmbH

ChipDriveTM is a trademark from TOWITOKO
KartenZwerg® is a registered trademark from TOWITOKO
Windows® is a registered trademark from Microsoft
Windows® 95 is a registered trademark from Microsoft
Windows NTTM is a trademark from Microsoft
Windows® 3.11 is a registered trademark from Microsoft

