PROTON and PROTON+ Compiler[image: image59.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

22pF

C1

10uF

C2

0.1uF

R1

4.7k

5 Volts

C3

22pF

4MHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C8

22pF

C5

10uF

C6

0.1uF

R3

4.7k

5 Volts

C7

22pF

4MHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

R2

10k

SENDER

RECEIVER

TO

LCD MODULE

s
PROTON+ Compiler[image: image60.wmf]6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

From PIC

Serial Output

To PIC

Serial Input

To PC's

Serial Port

To PIC

Circuit's GND

R1

1K

R2

1K

. Development Suite LITE

Disclaimer
Crownhill reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Crownhill assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user’s specific application. While the information in this publication has been carefully checked, Crownhill shall not be liable for any damages arising as a result of any error or omission.

The LITE version of the compiler is fully functional but does have some restrictions on its use: -

A maximum of 50 lines. This does not include remarks or lines containing only labels, or empty lines.

Only 4 PICmicrotm devices are supported. Namely the 12C508, 12F675, 16F628A, and 16F877.

No 16-bit support is given with the LITE version of the compiler. However, the full version supports 99% of PICmicrotm devices, including the 16-bit core devices.

Only 2 crystal frequencies are supported, 4MHz and 20MHz. While the full version supports 3.58MHz, 4MHz, 8MHz, 10MHz, 12MHz, 14.32MHz, 16MHz, 20MHz, 24MHz, 32MHz, and 40MHz.

PICmicrotm is a trade name of Microchip Technologies Inc.

PROTONtm is a trade name of Crownhill Associates Ltd.

EPICtm is a trade name of microEngineering Labs Inc.

The PROTON+ compiler and documentation was written by Les Johnson and published by Crownhill Associates Limited, Cambridge, England, 2004.

The Proton IDE was written by David Barker of Mecanique.

Introduction

The PROTON+ compiler was written with simplicity and flexibility in mind. Using BASIC, which is almost certainly the easiest programming language around, you can now produce extremely powerful applications for your PICmicrotm without having to learn the relative complexity of assembler, or wade through the gibberish that is C. Having said this, various 'enhancements' for extra versatility and ease of use have been included in the event that assembler is required.

The PROTON+ IDE provides a seamless development environment, which allows you to write, debug and compile your code within the same Windows environment, and by using a compatible programmer, just one key press allows you to program and verify the resulting code in the PICmicrotm of your choice!

The front end of the compilers are Windows based. Simply specify the device at the program beginning and the code produced will be fully compatible with that device.

Contact Details

For your convenience we have set up a web site www.picbasic.org, where there is a section for users of the PROTON+ compiler, to discuss the compiler, and provide self help with programs written for PROTON BASIC, or download sample programs. The web site is well worth a visit now and then, either to learn a bit about how other peoples code works or to request help should you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal
Crownhill Associates Limited.

Old Station Yard

Station Road

Ely

Cambridgeshire.

CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites

http://www.crownhill.co.uk

http://www.picbasic.org

Table of Contents.

9PROTON IDE Overview

10Menu Bar

12Edit Toolbar

14Code Explorer

17Results View

18Editor Options

20Highlighter Options

21On Line Updating

22Compile and Program Options

23Installing a Programmer

24Creating a custom Programmer Entry

26Microcode Loader

28Loader Options

29Loader Main Toolbar

30IDE Plugins

31ASCII Table

31HEX View

32Assembler Window

33Assembler Main Toolbar

34Assemble and Program Toolbar

34Assembler Editor Options

35Serial Communicator

36Serial Communicator Main Toolbar

39Labcenter Electronics PROTEUS VSM

39ISIS Simulator Quick Start Guide

44PICmicrotm Devices

44Limited 12-bit Device Compatibility.

45Programming Considerations for 12-bit Devices.

46Device Specific issues

47Identifiers

47Line Labels

48Variables

53Aliases

56Constants

56Symbols

57Numeric Representations

57Quoted String of Characters

57Ports and other Registers

58General Format

60Creating and using Arrays

66Creating and using Strings

72Creating and using VIRTUAL STRINGS with CDATA

74Creating and using VIRTUAL Strings with EDATA

76STRING Comparisons

79Boolean Logic Operators

80MATH OPERATORS

89ABS

90ACOS

91ASIN

92ATAN

93COS

94DCD

95EXP

96LOG

97LOG10

98MAX

98MIN

98NCD

99POW

100REV

100SIN

101SQR

102TAN

103DIV32

104Commands and Directives

108ADIN

110ASM..ENDASM

111BOX

112BRANCH

113BRANCHL

114BREAK

116BSTART

117BSTOP

117BRESTART

117BUSACK

118BUSIN

121BUSOUT

125BUTTON

127CALL

128CDATA

133CF_INIT

134CF_SECTOR

139CF_READ

142CF_WRITE

146CIRCLE

147CLEAR

148CLEARBIT

149CLS

150CONFIG

151COUNTER

152CREAD

153CURSOR

154CWRITE

155DATA

157DEC

158DECLARE

158MISC Declares.

161TRIGONOMETRY Declares.

162ADIN Declares.

162BUSIN - BUSOUT Declares.

163HBUSIN - HBUSOUT Declare.

163HSERIN, HSEROUT, HRSIN and HRSOUT Declares.

164Second USART Declares for use with HRSIN2, HSERIN2, HRSOUT2 and HSEROUT2.

165HPWM Declares.

166LCD PRINT Declares.

167GRAPHIC LCD Declares.

168KEYPAD Declare.

168RSIN - RSOUT Declares.

169SERIN - SEROUT Declare.

170SHIN - SHOUT Declare.

171Compact Flash Interface Declares

172CRYSTAL Frequency Declare.

173DELAYMS

174DELAYUS

175DEVICE

176DIG

177DIM

181DISABLE

182DTMFOUT

183EDATA

188ENABLE

189Software Interrupts in BASIC

190END

191EREAD

192EWRITE

193FOR...NEXT...STEP

195FREQOUT

197GETBIT

198GOSUB

202GOTO

203HBSTART

204HBSTOP

204HBRESTART

204HBUSACK

205HBUSIN

208HBUSOUT

211HIGH

212HPWM

213HRSIN

219HRSOUT

224HSERIN

230HSEROUT

235IF..THEN..ELSEIF..ELSE..ENDIF

237INCLUDE

239INC

240INKEY

241INPUT

242LCDREAD

243LCDWRITE

244LDATA

249LET

250LEN

252LEFT$

254LINE

255LINETO

256LOADBIT

257LOOKDOWN

258LOOKDOWNL

259LOOKUP

260LOOKUPL

261LOW

262LREAD

265LREAD8, LREAD16, LREAD32

267MID$

269ON GOTO

271ON GOTOL

272ON GOSUB

274ON_INTERRUPT

275Initiating an interrupt.

276Format of the interrupt handler.

277ON_LOW_INTERRUPT

279OUTPUT

280ORG

281OREAD

286OWRITE

288PEEK

289PIXEL

290PLOT

292POKE

293POP

295POT

296PRINT

301Using a Graphic LCD

306PULSIN

307PULSOUT

308PUSH

313PWM

314RANDOM

315RCIN

318READ

320REM

321REPEAT...UNTIL

322RESTORE

323RESUME

324RETURN

326RIGHT$

328RSIN

333RSOUT

338SEED

339SELECT..CASE..ENDSELECT

342SERIN

349SEROUT

357SERVO

359SETBIT

360SET_OSCCAL

361SET

362SHIN

364SHOUT

366SNOOZE

367SLEEP

369SOUND

370SOUND2

371STOP

372STRN

373STR$

375SWAP

376SYMBOL

377TOGGLE

378TOLOWER

380TOUPPER

382UNPLOT

383VAL

385VARPTR

386WHILE...WEND

387USBINIT

390USBIN

392USBOUT

393XIN

395XOUT

397Protected Compiler Words

PROTON IDE Overview

Proton IDE is a professional and powerful visual Integrated Development Environment (IDE) designed specifically for the Proton Plus compiler. Proton IDE is designed to accelerate product development in a comfortable user development environment without compromising performance, flexibility or control.

Code Explorer

Possibly the most advanced code explorer for PIC based development on the market. Quickly navigate your program code and device Special Function Registers (SFRs).

Compiler Results

Provides information about the device used, the amount of code and data used, the version number of the project and also date and time. You can also use the results window to jump to compilation errors.

Programmer Integration

The Proton IDE enables you to start your preferred programming software from within the development environment . This enables you to compile and then program your microcontroller with just a few mouse clicks (or keyboard strokes, if you prefer).

Integrated Bootloader

Quickly download a program into your microcontroller without the need of a hardware programmer. Bootloading can be performed in-circuit via a serial cable connected to your PC.

Real Time Simulation Support

Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, animated components and microprocessor models to facilitate co-simulation of complete microcontroller based designs. For the first time ever, it is possible to develop and test such designs before a physical prototype is constructed.

Serial Communicator

A simple to use utility which enables you to transmit and receive data via a serial cable connected to your PC and development board. The easy to use configuration window allows you to select port number, baudrate, parity, byte size and number of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-configured connection settings.

Online Updating

Online updates enable you to keep right up to date with the latest IDE features and fixes.

Plugin Architecture

The Proton IDE has been designed with flexibility in mind with support for IDE plugins.

Supported Operating Systems

Windows 98, 98SE, ME, NT 4.0 with SP 6, 2000, XP (recommended)

Hardware Requirements

233 MHz Processor (500 MHz or higher recommended)

64 MB RAM (128 MB or higher recommended)

40 MB hard drive space

16 bit graphics card.

Menu Bar

File Menu

· New - Creates a new document. A header is automatically generated, showing information such as author, copyright and date. To toggle this feature on or off, or edit the header properties, you should select editor options.

· Open - Displays a open dialog box, enabling you to load a document into the Proton IDE. If the document is already open, then the document is made the active editor page.

· Save - Saves a document to disk. This button is normally disabled unless the document has been changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also invoked if the document you are trying to save is marked as read only.

· Save As - Displays a save as dialog, enabling you to name and save a document to disk.

·
Close - Closes the currently active document.

· Close All - Closes all editor documents and then creates a new editor document.

· Reopen - Displays a list of Most Recently Used (MRU) documents.

· Print Setup - Displays a print setup dialog.

· Print Preview - Displays a print preview window.

· Print - Prints the currently active editor page.

· Exit - Enables you to exit the Proton IDE.

Edit Menu

· Undo - Cancels any changes made to the currently active document page.

· Redo - Reverse an undo command.

· Cut - Cuts any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected. Clipboard data is placed as both plain text and RTF.

· Copy - Copies any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected. Clipboard data is placed as both plain text and RTF.

· Paste - Paste the contents of the clipboard into the active document page. This option is disabled if the clipboard does not contain any suitable text.

· Delete - Deletes any selected text. This option is disabled if no text has been selected.

· Select All - Selects the entire text in the active document page.

· Change Case - Allows you to change the case of a selected block of text.

· Find - Displays a find dialog.

· Replace - Displays a find and replace dialog.

· Find Next - Automatically searches for the next occurrence of a word. If no search word has been selected, then the word at the current cursor position is used. You can also select a whole phrase to be used as a search term. If the editor is still unable to identify a search word, a find dialog is displayed.

View Menu

· Results - Display or hide the results window.

· Code Explorer - Display or hide the code explorer window.

· Loader - Displays the MicroCode Loader application.

· Loader Options - Displays the MicroCode Loader options dialog.

· Compile and Program Options - Displays the compile and program options dialog.

· Editor Options - Displays the application editor options dialog.

· Toolbars - Display or hide the main, edit and compile and program toolbars. You can also toggle the toolbar icon size.

· Plugin - Display a drop down list of available IDE plugins.

· Online Updates - Executes the IDE online update process, which checks online and installs the latest IDE updates.

Help Menu

· Help Topics - Displays the helpfile section for the toolbar.

· Online Forum - Opens your default web browser and connects to the online Proton Plus developer forum.

· About - Display about dialog, giving both the Proton IDE and Proton compiler version numbers.

Main Toolbar

[image: image1.png]

New

Creates a new document. A header is automatically generated, showing information such as author, copyright and date. To toggle this feature on or off, or edit the header properties, you should select the editor options dialog from the main menu.

[image: image2.png]

Open
Displays a open dialog box, enabling you to load a document into the Proton IDE. If the document is already open, then the document is made the active editor page.

[image: image3.png]

Save
Saves a document to disk. This button is normally disabled unless the document has been changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also invoked if the document you are trying to save is marked as read only.

[image: image4.png]

Cut
Cuts any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected. Clipboard data is placed as both plain text and RTF.

[image: image5.png]

Copy
Copies any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected. Clipboard data is placed as both plain text and RTF.

[image: image6.png]

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the clipboard does not contain any suitable text.

[image: image7.png]

Undo
Cancels any changes made to the currently active document page.

[image: image8.png]

Redo
Reverse an undo command.

[image: image9.png]

Print
Prints the currently active editor page.

Edit Toolbar

[image: image10.png]

Find
Displays a find dialog.

[image: image11.png]

Find and Replace

Displays a find and replace dialog.

[image: image12.png]lagl

Indent
Shifts all selected lines to the next tab stop. If multiple lines are not selected, a single line is moved from the current cursor position. All lines in the selection (or cursor position) are moved the same number of spaces to retain the same relative indentation within the selected block. You can change the tab width from the editor options dialog.

[image: image13.png]lagl

Outdent
Shifts all selected lines to the previous tab stop. If multiple lines are not selected, a single line is moved from the current cursor position. All lines in the selection (or cursor position) are moved the same number of spaces to retain the same relative indentation within the selected block. You can change the tab width from the editor options dialog.

[image: image14.png]

Block Comment
Adds the comment character to each line of a selected block of text. If multiple lines are not selected, a single comment is added to the start of the line containing the cursor.

[image: image15.png]nll

Block Uncomment
Removes the comment character from each line of a selected block of text. If multiple lines are not selected, a single comment is removed from the start of the line containing the cursor.

Compile and Program Toolbar

[image: image16.png]

Compile
Pressing this button, or F9, will compile the currently active editor page. The compile button will generate a *.hex file, which you then have to manually program into your microcontroller. Pressing the compile button will automatically save all open files to disk. This is to ensure that the compiler is passed an up to date copy of the file(s) your are editing.

[image: image17.png]

Compile and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the compile and program button will automatically save all open files to disk. This is to ensure that the compiler is passed an up to date copy of the file(s) your are editing.

Unlike the compile button, the Proton IDE will then automatically invoke a user selectable application and pass the compiler output to it. The target application is normally a device programmer, for example, MicroCode Loader. This enables you to program the generated *.hex file into your MCU. Alternatively, the compiler output can be sent to an IDE Plugin. For example, the Labcenter Electronics Proteus VSM simulator. You can select a different programmer or Plugin by pressing the small down arrow, located to the right of the compile and program button...

[image: image61.wmf]C1

1uF

5 Volts

V+

V+

VCC

GND

MAX232

10

9

12

11

14

15

13

8

7

6

5

4

3

2

1

16

C1+

C1-

C2+

C2-

V-

T1in

T2in

R1out

R2out

T1out

T2out

R1in

R2in

C2

1uF

C3

1uF

C4

1uF

6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

0V

From PIC

Serial Output

To PIC

Serial Input

C5

1uF

To PC

Serial Port

In the above example, MicroCode Loader has been selected as the default device programmer. The compile and program drop down menu also enables you to install new programming software. Just select the 'Install New Programmer...' option to invoke the programmer configuration wizard. Once a program has been compiled, you can use F11 to automatically start your programming software or plugin. You do not have to re-compile, unless of course your program has been changed.

[image: image18.png]

Loader Verify
This button will verify a *.hex file (if one is available) against the program resident on the microcontroller. The loader verify button is only enabled if MicroCode Loader is the currently selected programmer.

[image: image19.png]

Loader Read
This button will upload the code and data contents of a microcontroller to MicroCode Loader. The loader read button is only enabled if MicroCode Loader is the currently selected programmer.

[image: image20.png]

Loader Erase
This button will erase program memory for the 18Fxxx(x) series of microcontroller. The loader erase button is only enabled if MicroCode Loader is the currently selected programmer.

[image: image21.png]

Loader Information
This button will display the microcontroller loader firmware version. The loader information button is only enabled if MicroCode Loader is the currently selected programmer.

Code Explorer

The code explorer enables you to easily navigate your program code. The code explorer tree displays your currently selected processor, include files, declares, constants, variables, alias and modifiers, labels, macros and data labels.

Device Node

The device node is the first node in the explorer tree. It displays your currently selected processor type. For example, if you program has the declaration: -

DEVICE 16F877

then the name of the device node will be 16F877. You don't need to explicitly give the device name in your program for it to be displayed in the explorer. For example, you may have an include file with the device type already declared. The code explorer looks at all include files to determine the device type. The last device declaration encountered is the one used in the explorer window. If you expand the device node, then all Special Function Registers (SFRs) belonging to the selected device are displayed in the explorer tree. Clicking on a SFR node will invoke the SFR View window, as shown below

[image: image62.wmf]To

I/O Pin

R

C

220

W

+5 Volts

The SFR view displays all bitnames that belong to a particular register. Clicking a bitname will display a small hint window that gives additional information about a bitname. For example, if you click on T0CS, then the following hint is displayed: -

[image: image22.png]TMRO Clock Source Select |

The SFR view window can automatically generate the code needed for you to start using the bitnames in your program. All you need to do is place your cursor at the point in your program where you want the code placed, and then select the generate code option. Using the above OPTION_REG example above will generate: -

Symbol PS0 = OPTION_REG.0

' Prescaler Rate Select

Symbol PS1 = OPTION_REG.1

' Prescaler Rate Select

Symbol PS2 = OPTION_REG.2

' Prescaler Rate Select

Symbol PSA = OPTION_REG.3

' Prescaler Assignment

Symbol T0SE = OPTION_REG.4

' TMR0 Source Edge Select

Symbol T0CS = OPTION_REG.5

' TMR0 Clock Source Select

Symbol INTEDG = OPTION_REG.6
' Interrupt Edge Select

Symbol NOT_RBPU = OPTION_REG.7
' PORTB Pull-up Enable

Please note that the SFR View window is not currently implemented for all device types.

Include File Node

When you click on an include file, the IDE will automatically open that file for viewing and editing. Alternatively, you can just explorer the contents of the include file without having to open it. To do this, just click on the [image: image23.png]

icon and expand the node. For example: -

[image: image63.emf]C2

0.1uF

5 Volts

A9

VCC

A10

OE

CE1

WE

RDY/BSY

CSEL

GND

13

CF CARD

20

A0

A1

A5

A4

A3

A2

D1

D0

GND

RESET

19

18

17

16

15

14

12

10

8

7

9

36

41

37

32

39

21

1 50

44

D7

D6

D5

D4

D3

D2

CD1

CE2

REG

VCC

38

26

22

23

2

3

4

5

6

11

A6

A7

A8

R1

47k

PORTD.0

PORTD.1

PORTD.2

PORTD.3

PORTD.4

PORTD.5

PORTD.6

PORTD.7

PORTA.5

PORTE.0

PORTE.1

PORTE.2

PORTC.0

PORTC.1

PORTC.3

PORTC.4

PORTC.2

0V

TO PICMICRO

In the above example, clicking on the [image: image24.png]

 icon for MyInclude.bas has expanded the node to reveal its contents. You can now see that MyInclude.bas has two constant declarations called TransferMax and TransferMin and also two variables called Index and Transfer. The include file also contains another include file called proton_4.inc. Again, by clicking the [image: image25.png]

 icon, the contents of proton_4.inc can be seen, without opening the file. Clicking on a declaration name will open the include file and automatically jump to the line number. For example, if you were to click on TransferMax, the include file MyInclude.bas would be opened and the declaration TransferMax would be marked in the IDE editor window.

When using the code explorer with include files, you can use the explorer history buttons to go backwards or forwards. The explorer history buttons are normally located to the left of the main editors file select tabs,

[image: image26.png]

 History back button
[image: image27.png]&)

 History forward button

Additional Nodes

Declares, constants, variables, alias and modifiers, labels, macros and data label explorer nodes work in much the same way. Clicking on any of these nodes will take you to its declaration. If you want to find the next occurrence of a declaration, you should enable automatically select variable on code explorer click from VIEW...EDITOR OPTIONS.

Selecting this option will load the search name into the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence of the declaration in your program.
To sort the explorer nodes, right click on the code explorer and check the Sort Nodes option.

Explorer Warnings and Errors

The code explorer can identify duplicate declarations. If a declaration duplicate is found, the explorer node icon changes from its default state to a [image: image28.png]

. For example,

DIM MyVar AS BYTE
DIM MyVar AS BYTE

The above example is rather simplistic. It is more likely you see the duplicate declaration error in you program without an obvious duplicate partner. That is, only one single duplicate error symbol is being displayed in the code explorer. In this case, the declaration will have a duplicate contained in an include file. For example,

[image: image64.wmf]C1

1uF

+5 Volts

V+

V+

VCC

GND

MAX232

10

9

12

11

14

15

13

8

7

6

5

4

3

2

1

16

C1+

C1-

C2+

C2-

V-

T1in

T2in

R1out

R2out

T1out

T2out

R1in

R2in

C2

1uF

C3

1uF

C4

1uF

6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

0V

PIC RC.6

PIC RC.7

C5

1uF

+5 Volts

R2

100

W

R1

4.7k

W

RESET

PIC MCLR

The declaration TransferMax has been made in the main program and marked as a duplicate. By exploring your include files, the problem can be identified. In this example, TransferMax has already been declared in the include file MyInclude.bas

Some features of the compiler of not available for some MCU types. For example, you cannot have a string declaration when using a 14 core part (for example, the 16F877). If you try to do this, the explorer node icon changes from its default state and displays a [image: image29.png]

. You will also see this icon displayed if the SFR View feature for a device is not available.

Notes
The code explorer uses an optimised parse and pattern match strategy in order to update the tree in real time. The explorer process is threaded so as not to interfere or slow down other IDE tasks, such as typing in new code. However, if you run computationally expensive background tasks on your machine (for example, circuit simulation) you will notice a drop in update performance, due to the threaded nature of the code explorer.

Results View

The results view performs two main tasks. These are (a) display a list of error messages, should either compilation or assembly fail and (b) provide a summary on compilation success.

Compilation Success View

By default, a successful compile will display the results success view. This provides information about the device used, the amount of code and data used, the version number of the project and also date and time.

[image: image65.emf]R1

220

R2

220

PIN 1

PIN 2

If you don't want to see full summary information after a successful compile, select VIEW...EDITOR OPTIONS from the IDE main menu and uncheck display full summary after successful compile. The number of program words (or bytes used, if its a 16 core device) and the number of data bytes used will still be displayed in the IDE status bar.

Version Numbers

The version number is automatically incremented after a successful build. Version numbers are displayed as major, minor, release and build. Each number will rollover if it reaches 256. For example, if your version number is 1.0.0.255 and you compile again, the number displayed will be 1.0.1.0. You might want to start you version information at a particular number. For example 1.0.0.0. To do this, click on the version number in the results window to invoke the version information dialog. You can then set the version number to any start value. Automatic incrementing will then start from the number you have specified. To disable version numbering, click on the version number in the results window to invoke the version information dialog and then uncheck enable version information.

Date and Time

Date and time information is extracted from the generated *.hex file and is always displayed in the results view.

Success - With Warnings!

A compile is considered successful if it generates a *.hex file. However, you may have generated a number of warning messages during compilation. Because you should not normally ignore warning messages, the IDE will always display the error view, rather than the success view, if warnings have been generated.

To toggle between these different views, you can do one of the following click anywhere on the IDE status bar right click on the results window and select the Toggle View option.

Compilation Error View

If your program generates warning or error messages, the error view is always displayed.

[image: image66.wmf]To

I/O Pin

R

C

220

W

+5 Volts

Clicking on each error or warning message will automatically highlight the offending line in the main editor window. If the error or warning has occurred in an include file, the file will be opened and the line highlighted. By default, the IDE will automatically highlight the first error line found. To disable this feature, select VIEW...EDITOR OPTIONS from the IDE main menu and uncheck automatically jump to first compilation error. At the time of writing, some compiler errors do not have line numbers bound to them. Under these circumstances, Proton IDE will be unable to automatically jump to the selected line.

Occasionally, the compiler will generate a valid ASM file but warnings or errors are generated during assembly. Proton IDE will display all assembler warnings or error messages in the error view, but you will be unable to automatically jump to a selected line.

Editor Options

The editor options dialog enables you to configure and control many of the Proton IDE features. The window is composed of four main areas, which are accessed by selecting the General, Highlighter, Program Header and Online Updating tabs.

Show Line Numbers in Left Gutter

Display line numbers in the editors left hand side gutter. If enabled, the gutter width is increased in size to accommodate a five digit line number.

Show Right Gutter

Displays a line to the right of the main editor. You can also set the distance from the left margin (in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs

Normally, pressing the tab key will advance the cursor by a set number of characters. With smart tabs enabled, the cursor will move to a position along the current line which depends on the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces

When the tab key is pressed, the editor will normally insert a tab control character, whose size will depend on the value shown in the width edit box (the default is four spaces). If you then press the backspace key, the whole tab is deleted (that is, the cursor will move back four spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space control character (multiplied by the number shown in the width edit box). Pressing the backspace key will therefore only move the cursor back by one space. Please note that internally, the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent

When the carriage return key is pressed in the editor window, automatically indent will advance the cursor to a position just below the first word occurrence of the previous line. When this feature is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints

If this option is enabled, small prompts are displayed in the main editor window when a particular compiler keyword is recognised. For example,

[image: image30.png]DELAYMS

DELAYMS Value or Variable or Expression

Parameter hints are automatically hidden when the first parameter character is typed. To view the hint again, press F1. If you want to view more detailed context sensitive help, press F1 again.

Open Last File(s) When Application Starts

When checked, the documents that were open when Proton IDE was closed are automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar

By default, Proton IDE only displays the document filename in the main application title bar (that is, no path information is includes). Check display full pathname if you would like to display additional path information in the main title bar.

Prompt if File Reload Needed

Proton IDE automatically checks to see if a file time stamp has changed. If it has (for example, and external program has modified the source code) then a dialog box is displayed asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded without any prompting.

Automatically Select Variable on Code Explorer Click

By default, clicking on a link in the code explorer window will take you to the part of your program where a declaration has been made. Selecting this option will load the search name into the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence of the declaration in your program.

Automatically Jump to First Compilation Error

When this is enabled, Proton IDE will automatically jump to the first error line, assuming any errors are generated during compilation.

Automatically Change Identifiers to Match Declaration

When checked, this option will automatically change the identifier being typed to match that of the actual declaration. For example, if you have the following declaration,

DIM MyIndex AS BYTE

and you type 'myindex' in the editor window, Proton IDE will automatically change 'myindex' to 'MyIndex'. Identifiers are automatically changed to match the declaration even if the declaration is made in an include file.

Please note that the actual text is not physically changed, it just changes the way it is displayed in the editor window. For example, if you save the above example and load it into wordpad or another text editor, it will still show as 'myindex'. If you print the document, the identifier will be shown as 'MyIndex'. If you copy and paste into another document, the identifier will be shown as 'MyIndex', if the target application supports formatted text (for example Microsoft Word).
In short, this feature is very useful for printing, copying and making you programs look consistent throughout.

Clear Undo History After Successful Compile

If checked, a successful compilation will clear the undo history buffer. A history buffer takes up system resources, especially if many documents are open at the same time. It's a good idea to have this feature enabled if you plan to work on many documents at the same time.

Display Full Summary After Successful Compile

If checked, a successful compilation will display a full summary in the results window. Disabling this option will still give a short summary in the IDE status bar, but the results window will not be displayed.

Default Source Folder

Proton IDE will automatically go to this folder when you invoke the file open or save as dialogs. To disable this feature, uncheck the 'Enabled' option, shown directly below the default source folder.

Highlighter Options

Item Properties

The syntax highlighter tab lets you change the colour and attributes (for example, bold and italic) of the following items: -

Comment

Device Name

Identifier

Keyword (ASM)

Keyword (Declare)

Keyword (Important)

Keyword (Macro Parameter)

Keyword (Proton)

Keyword (User)

Number

Number (Binary)

Number (Hex)

SFR

SFR (Bitname)

String

Symbol

The point size is ranged between 6pt to 16pt and is global. That is, you cannot have different point sizes for individual items.

Reserved Word Formatting

This option enables you to set how Proton IDE displays keywords. Options include: -

Database Default - the IDE will display the keyword as declared in the applications keyword database.

Uppercase - the IDE will display the keyword in uppercase.

Lowercase - the IDE will display the keyword in lowercase.

As Typed - the IDE will display the keyword as you have typed it.

Please note that the actual keyword text is not physically changed, it just changes the way it is displayed in the editor window. For example, if you save your document and load it into wordpad or another text editor, the keyword text will be displayed as you typed it. If you print the document, the keyword will be formatted. If you copy and paste into another document, the keyword will be formatted, if the target application supports formatted text (for example Microsoft Word).

Header options allows you to change the author and copyright name that is placed in a header when a new document is created. For example: -

'* Name : UNTITLED.BAS *
'* Author : David John Barker *
'* Notice : Copyright (c) 2001 Mecanique *
'* : All Rights Reserved *
'* Date : 10/15/01 *
'* Version : 1.0 *
'* Notes : *
'* : *
'**

If you do not want to use this feature, simply deselect the enable check box.

On Line Updating

Dial Up Connection

Checking the 'Dial Up Connection' option will force the Proton IDE to automatically check for updates every time you start the software. It will only do this if you are currently connected to the internet. Proton IDE will not start dialling up your ISP every time you start the program!

LAN or Broadband Connection

Checking the 'LAN or Broadband Connection' option will force Proton IDE to automatically check for updates every time you start the software. This option assumes you have a permanent connection to the internet.

Manual Connection

Checking this option means Proton IDE will never check for online updates, unless requested to do so from the main menu.

Compile and Program Options

Compiler Tab

[image: image67.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

56pf

C1

10uf

C2

0.1uf

R1

4.7k

Regulated 5 Volts

C3

56pf

4Mhz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

14

0v

IN

OUT

GND

78L05

C6

.1uf

R2

10k

C5

1uf

LED

R3

470

LMC662

3

2

4

8

1

9 Volts

In

0- 5 Volts

Out

-

+

IC1

IC2

IC3

9 Volts

You can get the Proton IDE to locate a compiler directory automatically by clicking on the find automatically button. The auto-search feature will stop when a compiler is found.

Alternatively, you can select the directory manually by selecting the find manually button. The auto-search feature will search for a compiler and if one is found, the search is stopped and the path pointing to the compiler is updated. If you have multiple versions of a compiler installed on your system, use the find manually button. This ensures the correct compiler is used by the IDE.

Programmer Tab

[image: image68.wmf]To

I/O Pin

Analogue

Voltage

Output

10k

10uF

Use the programmer tab to install a new programmer, delete a programmer entry or edit the currently selected programmer. Pressing the Install New Programmer button will invoke the install new programmer wizard. The Edit button will invoke the install new programmer wizard in custom configuration mode.
Installing a Programmer

The Proton IDE enables you to start your preferred programming software from within the development environment . This enables you to compile and then program your microcontroller with just a few mouse clicks (or keyboard strokes, if you prefer). The first thing you need to do is tell Proton IDE which programmer you are using. Select VIEW...OPTIONS from the main menu bar, then select the PROGRAMMER tab. Next, select the Add New Programmer button. This will open the install new programmer wizard.

[image: image69.wmf]
Select the programmer you want Proton IDE to use, then choose the Next button. Proton IDE will now search your computer until it locates the required executable. If your programmer is not in the list, you will need to create a custom programmer entry.

Your programmer is now ready for use. When you press the Compile and Program button on the main toolbar, you program is compiled and the programmer software started. The *.hex filename and target device is automatically set in the programming software (if this feature is supported), ready for you to program your microcontroller.

You can select a different programmer, or install another programmer, by pressing the small down arrow, located to the right of the compile and program button, as shown below

[image: image70.wmf]$

7

E

$

0

0

$

1

1

$

1

1

$

1

1

$

7

E

Creating a custom Programmer Entry

In most cases, Proton IDE has a set of pre-configured programmers available for use. However, if you use a programmer not included in this list, you will need to add a custom programmer entry. Select VIEW...OPTIONS from the main menu bar, then select the PROGRAMMER tab. Next, select the Add New Programmer button. This will open the install new programmer wizard. You then need to select 'create a custom programmer entry', as shown below

[image: image71.wmf]To

I/O Pin

5-50k

0.1uF

Select Display Name

The next screen asks you to enter the display name. This is the name that will be displayed in any programmer related drop down boxes. Proton IDE enables you to add and configure multiple programmers. You can easily switch from different types of programmer from the compile and program button, located on the main editor toolbar. The multiple programmer feature means you do not have to keep reconfiguring your system when you switch programmers. Proton IDE will remember the settings for you. In the example below, the display name will be 'My New Programmer'.

[image: image72.wmf]Xpos 0 - 127

Ypos 0 - 63

0

0

63

0

127

63

0

127

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Select Programmer Executable

The next screen asks for the programmer executable name. You do not have to give the full path, just the name of the executable name will do.

[image: image73.wmf]DS1820

VDD

DQ

GND

3

1

2

R1

4.7k

+5 Volts

0v

To RA1

1

2

3

DS1820

1..GND

2..DQ

3..VCC

Select Programmer Path

The next screen is the path to the programmer executable. You can let Proton IDE find it automatically, or you can select it manually.

[image: image74.wmf]Xpos 0 - 127

Ypos 0 - 63

lsb

Line 0

Line 1

Line 2

Line 3

msb

Select Parameters

The final screen is used to set the parameters that will be passed to your programmer. Some programmers, for example, EPICWintm allows you to pass the device name and hex filename. Proton IDE enables you to 'bind' the currently selected device and *.hex file you are working on.

[image: image75.wmf]C2

0.1uF

R2

1k

To Audio

Amplifier

R1

1k

C1

0.1uF

From PIC

I/O pin

From PIC

I/O pin

Speaker

C1

10uF

C2

10uF

For example, if you are compiling 'blink.bas' in the Proton IDE using a 16F628, you would want to pass the 'blink.hex' file to the programmer and also the name of the microcontroller you intend to program. Here is the EPICWintm example: -

-pPIC$target-device$ $hex-filename$

When EPICWintm is started, the device name and hex filename are 'bound' to $target-device$ and $hex-filename$ respectively. In the 'blink.bas' example, the actual parameter passed to the programmer would be: -

-pPIC16F628 blink.hex

Parameter Summary

	Parameter
	Description

	$target-device$
	Microcontoller name

	$hex-filename$
	HEX filename and path, DOS 8.3 format

	$long-hex-filename$
	HEX filename and path

	$asm-filename$
	ASM filename and path, DOS 8.3 format

	$long-asm-filename$
	ASM filename and path

Microcode Loader

The PIC16F87x(A), 16F8x and PIC18Fxxx(x) series of microcontrollers have the ability to write to their own program memory, without the need of a hardware programmer. A small piece of software called a bootloader resides on the target microcontroller, which allows user code and EEPROM data to be transmitted over a serial cable and written to the device. The MicroCode Loader application is the software which resides on the computer. Together, these two components enable a user to program, verify and read their program and EEPROM data all in circuit.

When power is first applied to the microcontroller (or it is reset), the bootloader first checks to see if the MicroCode Loader application has something for it to do (for example, program your code into the target device). If it does, the bootloader gives control to MicroCode Loader until it is told to exit. However, if the bootloader does not receive any instructions with the first few hundred milliseconds of starting, the bootloader will exit and the code previously written to the target device will start to execute.

The bootloader software resides in the upper 256 words of program memory (336 words for 18Fxxx devices), with the rest of the microcontroller code space being available for your program. All EEPROM data memory and microcontroller registers are available for use by your program. Please note that only the program code space and EEPROM data space may be programmed, verified and read by MicroCode Loader. The microcontroller ID location and configuration fuses are not available to the loader process. Configuration fuses must therefore be set at the time the bootloader software is programmed into the target microcontroller.

Hardware Requirements

MicroCode Loader communicates with the target microcontroller using its hardware Universal Synchronous Asynchronous Receiver Transmitter (USART). You will therefore need a development board that supports RS232 serial communication in order to use the loader. There are many boards available which support RS232.

Whatever board you have, if the board has a 9 pin serial connector on it, the chances are it will have a MAX232 or equivalent located on the board. This is ideal for MicroCode Loader to communicate with the target device using a serial cable connected to your computer. Alternatively, you can use the following circuit and build your own.

[image: image76.wmf]+5V

0V

47k

Pullup

To Pin of the

PIC

Push

Switch

+5V

0V

47k

Pulldown

To Pin of the

PIC

Push

Switch

Active LOW

Active HIGH

MicroCode Loader supports the following devices: -

16F870, 16F871, 16F873(A), 16F874(A), 16F876(A), 16F877(A), 16F87, 16F88, 18F242, 18F248, 18F252, 18F258, 18F442, 18F448, 18F452, 18F458, 18F1220, 18F1320, 18F2220, 18F2320, 18F4220, 18F4320, 18F6620, 18F6720, 18F8620 and 18F8720.

The LITE version of MicroCode Loader supports the following devices: 16F876, 16F877, 18F242 and 18F252.

MicroCode Loader comes with a number of pre-compiled *.hex files, ready for programming into the target microcontroller. If you require a bootloader file with a different configuration, please contact Mecanique.

Using the MicroCode Loader is very easy. Before using this guide make sure that your target microcontroller is supported by the loader and that you also have suitable hardware.

Programming the Loader Firmware

Before using MicroCode Loader, you need to ensure that the bootloader firmware has been programmed onto the target microcontroller using a hardware programmer. This is a one off operation, after which you can start programming your target device over a serial connection. Alternatively, you can purchase pre-programmed microcontrollers from Mecanique. You need to make sure that the bootloader *.hex file matches the clock speed of your target microcontroller. For example, if you are using a 18F877 on a development board running at 20 MHz, then you need to use the firmware file called 16F877_20.hex. If you don't do this, MicroCode Loader will be unable to communicate with the target microcontroller. MicroCode Loader comes with a number of pre-compiled *.hex files, ready for programming into the target microcontroller. If you require additional bootloader files, please contact Mecanique. The loader firmware files can be found in the MCLoader folder, located in your main IDE installation folder. Default fuse settings are embedded in the firmware *.hex file. You should not normally change these default settings. You should certainly never select the code protect fuse. If the code protect fuse is set, MicroCode Loader will be unable to program your *.hex file.

Configuring the Loader

Assuming you now have the firmware installed on your microcontroller, you now just need to tell MicroCode Loader which COM port you are going to use. To do this, select VIEW...LOADER from the MicroCode IDE main menu. Select the COM port from the MicroCode Loader main toolbar. Finally, make sure that MicroCode Loader is set as your default programmer.

Click on the down arrow, to the right of the Compile and Program button. Check the MicroCode Loader option, like this: -

[image: image77.wmf]VCC

WP

SCL

A1

A2

VSS

24C32

7

8

A0

SDA

1

2

3

4

6

5

To RB1 or RC4

To RB0 or RC3

0v

+5 Volts

R2

10k

R1

10k

Using MicroCode Loader

Connect a serial cable between your computer and development board. Apply power to the board.

Press 'Compile and Program' or F10 to compile your program. If there are no compilation errors, the MicroCode Loader application will start. It may ask you to reset the development board in order to establish communications with the resident microcontroller bootloader. This is perfectly normal for development boards that do not implement a software reset circuit. If required, press reset to establish communications and program you microcontroller.

Loader Options

Loader options can be set by selecting the OPTIONS menu item, located on the main menu bar.

Program Code
Optionally program user code when writing to the target microcontroller. Uncheck this option to prevent user code from being programmed. The default is ON.

Program Data
Optionally program EEPROM data when writing to the target microcontroller. Uncheck this option to prevent EEPROM data from being programmed. The default is ON.

Verify Code When Programming
Optionally verify a code write operation when programming. Uncheck this option to prevent user code from being verified when programming. The default is ON.

Verify Data When Programming
Optionally verify a data write operation when programming. Uncheck this option to prevent user data from being verified when programming. The default is ON.

Verify Code
Optionally verify user code when verifying the loaded *.hex file. Uncheck this option to prevent user code from being verified. The default is ON.

Verify Data
Optionally verify EEPROM data when verifying the loaded *.hex file. Uncheck this option to prevent EEPROM data from being verified. The default is ON.

Verify After Programming
Performs an additional verification operation immediately after the target microcontroller has been programmed. The default is OFF.

Run User Code After Programming
Exit the bootloader process immediately after programming and then start running the target user code. The default is ON.

Load File Before Programming
Optionally load the latest version of the *.hex file immediately before programming the target microcontroller. The default is OFF.

Baud Rate

Select the speed at which the computer communicates with the target microcontroller. By default, the Auto Detect option is enabled. This feature enables MicroCode Loader to determine the speed of the target microcontroller and set the best communication speed for that device.

If you select one of the baud rates manually, it must match the baud rate of the loader software programmed onto the target microcontroller. For devices running at less that 20MHz, this is 19200 baud. For devices running at 20MHz, you can select either 19200 or 115200 baud.

Loader Main Toolbar

[image: image31.png]

Open Hex File

The open button loads a *.hex file ready for programming.

[image: image32.png]

Program

The program button will program the loaded hex file code and EEPROM data into the target microcontroller. When programming the target device, a verification is normally done to ensure the integrity of the programmed user code and EEPROM data. You can override this feature by un-checking either Verify Code When Programming or Verify Data When Programming. You can also optionally verify the complete *.hex file after programming by selecting the Verify After Programming option.

Pressing the program button will normally program the currently loaded *.hex file. However, you can load the latest version of the *.hex file immediately before programming by checking Load File Before Programming option. You can also set the loader to start running the user code immediately after programming by checking the Run User Code After Programming option. When programming the target device, both user code and EEPROM data are programmed by default (recommended). However, you may want to just program code or EEPROM data. To change the default configuration, use the Program Code and Program Data options.

Should any problems arise when programming the target device, a dialog window will be displayed giving additional details. If no problems are encountered when programming the device, the status window will close at the end of the write sequence.

[image: image33.png]

Read

The read button will read the current code and EEPROM data from the target microcontroller.

Should any problems arise when reading the target device, a dialog window will be displayed giving additional details. If no problems are encountered when reading the device, the status window will close at the end of the read sequence.

[image: image34.png]

Verify

The verify button will compare the currently loaded *.hex file code and EEPROM data with the code and EEPROM data located on the target microcontroller. When verifying the target device, both user code and EEPROM data are verified by default. However, you may want to just verify code or EEPROM data. To change the default configuration, use the Verify Code and Verify Data options.

Should any problems arise when verifying the target device, a dialog window will be displayed giving additional details. If no problems are encountered when verifying the device, the status window will close at the end of the verification sequence.

[image: image35.png]

Erase

The erase button will erase all of the code memory on a PIC 16F8x and PIC18Fxxx(x) microcontroller.

[image: image36.png]

Run User Code

The run user code button will cause the bootloader process to exit and then start running the program loaded on the target microcontroller.

[image: image37.png]

Loader Information

The loader information button displays the loader firmware version and the name of the target microcontroller, for example PIC16F877.

[image: image38.png]

Loader Serial Port

The loader serial port drop down box allows you to select the com port used to communicate with the target microcontroller.

IDE Plugins

The Proton IDE has been designed with flexibility in mind. Plugins enable the functionality of the IDE to be extended by through additional third party software, which can be integrated into the development environment. Proton IDE comes with a default set of plugins which you can use straight away. These are: -

ASCII Table

Assembler

HEX View

Serial Communicator

Labcenter Electronics PROTEUS VSM

To access a plugin, select the plugin icon just above the main editor window. A drop down list of available plugins will then be displayed. Plugins can also be selected from the main menu, or by right clicking on the main editor window.

Plugin Developer Notes

The plugin architecture has been designed to make writing third party plugins very easy, using the development environment of your choice (for example Visual BASIC, C++ or Borland Delphi). This architecture is currently evolving and is therefore publicly undocumented until all of the protocols have been finalised. As soon as the protocol details have been finalised, this documentation will be made public. For more information, please feel free to contact us.

ASCII Table

The American Standard Code for Information Interchange (ASCII) is a set of numerical codes, with each code representing a single character, for example, 'a' or '$'.

[image: image78.emf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

20

PIC16F876

C4

15pF

C2

0.1uF

C1

10uF

C3

15pF

Regulated 5 Volts

18

RC0

RC1

RC2

RC3

RC4

RC5

RC6

RC7

VSS

RA5

20MHz

Crystal

0v

R1

4.7k

17

16

15

14

13

12

11

28

27

26

25

24

23

22

21

7

6

5

4

3

2

19 8

10

9

1

To

Serial

LCD

VR1

100k

linear

The ASCII table plugin enables you to view these codes in either decimal, hexadecimal or binary. The first 32 codes (0..31) are often referred to as non-printing characters, and are displayed as grey text.

HEX View

The HEX view plugin enables you to view program code and EEPROM data for 14 and 16 core devices.

[image: image79.png]2 Instal New Programmer.

[|Mcrocode Losder
iroEnginesring Labs Seris Programmer

Labcenter Electronics PROTEUS VSW...

The HEX View window is automatically updated after a successful compile, or if you switch program tabs in the IDE. By default, the HEX view window remains on top of the main IDE window. To disable this feature, right click on the HEX View window and uncheck the Stay on Top option.

Assembler Window

The Assembler plugin allows you to view and modify the *.asm file generated by the compiler. Using the Assembler window to modify the generated *.asm file is not really recommended, unless you have some experience using assembler.

Assembler Menu Bar

File Menu

New - Creates a new document. A header is automatically generated, showing information such as author, copyright and date.

· Open - Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the document is already open, then the document is made the active editor page.

· Save - Saves a document to disk. This button is normally disabled unless the document has been changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also invoked if the document you are trying to save is marked as read only.

· Save As - Displays a save as dialog, enabling you to name and save a document to disk.

· Close - Closes the currently active document.

· Close All - Closes all editor documents and then creates a new editor document.

· Reopen - Displays a list of Most Recently Used (MRU) documents.

· Print Setup - Displays a print setup dialog.

· Print - Prints the currently active editor page.

· Exit - Enables you to exit the Assembler plugin.

Edit Menu

· Undo - Cancels any changes made to the currently active document page.

· Redo - Reverse an undo command.

· Cut - Cuts any selected text from the active document page and places it into the clipboard.

· Copy - Copies any selected text from the active document page and places it into the clipboard.

· Paste - Paste the contents of the clipboard into the active document page. This option is disabled if the clipboard does not contain any suitable text.

· Delete - Deletes any selected text. This option is disabled if no text has been selected.

· Select All - Selects the entire text in the active document page.

· Find - Displays a find dialog.

· Replace - Displays a find and replace dialog.

· Find Next - Automatically searches for the next occurrence of a word. If no search word has been selected, then the word at the current cursor position is used. You can also select a whole phrase to be used as a search term. If the editor is still unable to identify a search word, a find dialog is displayed.

View Menu

· Options - Displays the application editor options dialog.

· Toolbars - Display or hide the main and assemble and program toolbars. You can also toggle the toolbar icon size.

Help Menu

· Help Topics - Displays the IDE help file.

· About - Display about dialog, giving the Assembler plugin version number.

Assembler Main Toolbar

[image: image39.png]

New

Creates a new document. A header is automatically generated, showing information such as author, copyright and date.

[image: image40.png]

Open

Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the document is already open, then the document is made the active editor page.

[image: image41.png]

Save

Saves a document to disk. This button is normally disabled unless the document has been changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also invoked if the document you are trying to save is marked as read only.

[image: image42.png]

Cut

Cuts any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected.

[image: image43.png]

Copy

Copies any selected text from the active document page and places it into the clipboard. This option is disabled if no text has been selected.

[image: image44.png]

Paste

Paste the contents of the clipboard into the active document page. This option is disabled if the clipboard does not contain any suitable text.

[image: image45.png]

Undo

Cancels any changes made to the currently active document page.

[image: image46.png]

Redo

Reverse an undo command.

Assemble and Program Toolbar

[image: image47.png]

Assemble

Pressing this button, or F9, will compile the currently active editor page. The compile button will generate a *.hex file, which you then have to manually program into your microcontroller. Pressing the assemble button will automatically save all open files to disk.

[image: image48.png]

Assemble and Program

Pressing this button, or F10, will compile the currently active editor page. Pressing the assemble and program button will automatically save all open files to disk.

Unlike the assemble button, the Assembler plugin will then automatically invoke a user selectable application and pass the assembler output to it. The target application is normally a device programmer, for example, MicroCode Loader. This enables you to program the generated *.hex file into your MCU.

Assembler Editor Options

Show Line Numbers in Left Gutter

Display line numbers in the editors left hand side gutter. If enabled, the gutter width is increased in size to accommodate a five digit line number.

Show Right Gutter

Displays a line to the right of the main editor. You can also set the distance from the left margin (in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs

Normally, pressing the tab key will advance the cursor by a set number of characters. With smart tabs enabled, the cursor will move to a position along the current line which depends on the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces

When the tab key is pressed, the editor will normally insert a tab control character, whose size will depend on the value shown in the width edit box (the default is four spaces). If you then press the backspace key, the whole tab is deleted (that is, the cursor will move back four spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space control character (multiplied by the number shown in the width edit box). Pressing the backspace key will therefore only move the cursor back by one space. Please note that internally, the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent

When the carriage return key is pressed in the editor window, automatically indent will advance the cursor to a position just below the first word occurrence of the previous line. When this feature is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints

If this option is enabled, small prompts are displayed in the main editor window when a particular compiler keyword is recognised.

Open Last File(s) When Application Starts

When checked, the documents that were open when the Assembler plugin was closed are automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar

By default, the Assembler plugin only displays the document filename in the main application title bar (that is, no path information is included). Check display full pathname if you would like to display additional path information in the main title bar.

Prompt if File Reload Needed

The Assembler plugin automatically checks to see if a file time stamp has changed. If it has (for example, and external program has modified the source code) then a dialog box is displayed asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded without any prompting.

Automatically Jump to First Compilation Error

When this is enabled, the Assembler plugin will automatically jump to the first error line, assuming any errors are generated during compilation.

Clear Undo History After Successful Compile

If checked, a successful compilation will clear the undo history buffer. A history buffer takes up system resources, especially if many documents are open at the same time. It's a good idea to have this feature enabled if you plan to work on many documents at the same time.

Default Source Folder

The Assembler plugin will automatically go to this folder when you invoke the file open or save as dialogs. To disable this feature, uncheck the 'Enabled' option, shown directly below the default source folder.

Serial Communicator

The Serial Communicator plugin is a simple to use utility which enables you to transmit and receive data via a serial cable connected to your PC and development board. The easy to use configuration window allows you to select port number, baudrate, parity, byte size and number of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-configured connection settings.

Menu options

File Menu

· Clear - Clears the contents of either the transmit or receive window.

· Open - Displays a open dialog box, enabling you to load data into the transmit window.

· Save As - Displays a save as dialog, enabling you to name and save the contents of the receive window.

· Exit - Enables you to exit the Serial Communicator software.

Edit Menu

· Undo - Cancels any changes made to either the transmit or receive window.

· Cut - Cuts any selected text from either the transmit or receive window.

· Copy - Copies any selected text from either the transmit or receive window.

· Paste - Paste the contents of the clipboard into either the transmit or receive window. This option is disabled if the clipboard does not contain any suitable text.

· Delete - Deletes any selected text. This option is disabled if no text has been selected.

View Menu

· Configuration Window - Display or hide the configuration window.

· Toolbars - Display small or large toolbar icons.

Help Menu

· Help Topics - Displays the serial communicator help file.

· About - Display about dialog, giving software version information.

Serial Communicator Main Toolbar

[image: image49.png]

Clear

Clears the contents of either the transmit or receive window.

[image: image50.png]

Open

Displays a open dialog box, enabling you to load data into the transmit window.

[image: image51.png]

Save As

Displays a save as dialog, enabling you to name and save the contents of the receive window.

[image: image52.png]

Cut

Cuts any selected text from either the transmit or receive window.

[image: image53.png]

Copy

Copies any selected text from either the transmit or receive window.

[image: image54.png]

Paste

Paste the contents of the clipboard into either the transmit or receive window. This option is disabled if the clipboard does not contain any suitable text.

[image: image55.png]

Connect

Connects the Serial Communicator software to an available serial port. Before connecting, you should ensure that your communication options have been configured correctly using the configuration window.

[image: image56.png]

Disconnect

Disconnect the Serial Communicator from a serial port.

Configuration

The configuration window is used to select the COM port you want to connect to and also set the correct communications protocols.

[image: image80.png]Code Explorer

0w
55 Incuces
& & Myincude.ses
5 Incuces
& @ proton_4inc
& 5 Dedres
@ & Constants
5 & Constants
() Transferax
) Transfertin
56 Varibles
) Index
¥ Transfer
& Dedres
) x7aL
5 & Constants
€] Maxvabe
(€] Mivale

Clicking on a configuration link will display a drop down menu, listing available options. A summary of selected options is shown below the configuration links. For example, in the image above, summary information is displayed under the heading 19200 Configuration.

[image: image57.png]

Favourites

Pressing the favourite icon will display a number of options allowing you to add, manage or load configuration favourites.

[image: image81.png]Information for OPTION_REG (16F877)

The following information is a guide only. You should always refer to the relevant Microchip datasheet
for the latest device configuration information.

NOT_RBPU INTEDG TOCS Tose PsA

Code Generation

The IDE can automatically generate the code needed for you to start using the above bit names. Just
select the option you want from the following links...

Generate and insert code at the current cursor position
Don't qenerate anv code, just exit

Add to Favourites

Select this option if you wish to save your current configuration. You can give your configuration a unique name, which will be displayed in the favourite drop down menu. For example, 9600 Configuration or 115200 Configuration

Manage Favourites

Select this option to remove a previously saved configuration favourite.

Notes

After pressing the connect icon on the main toolbar, the configuration window is automatically closed and opened again when disconnect is pressed. If you don't want the configuration window to automatically close, right click on the configuration window and un-check the Auto-Hide option.

Transmit Window

The transmit window enables you to send serial data to an external device connected to a PC serial port. In addition to textual data, the send window also enables you to send control characters. To display a list of transmit options, right click on the transmit window.

[image: image82.png]Code Explorer
& O 17677
& 5 Incuces
& & Myincude sas
& (5 Incuces
& (&) proton_sinc
&) Dedares
&) Constants
& £ Constants
[3 Transferbix
€] Transfertin
569 varibles
) Index
¥ Transfer
& 65 Dedares
) x7aL
& 6 Constants
&) Maxvae
&) Mivale
3 Transferax

Clear

Clear the contents of the transmit window.

Word Wrap

This option allows you to wrap the text displayed in the transmit window.

Auto Clear After Transmit

Enabling this option will automatically clear the contents of the transmit window when data is sent.

Transmit on Carriage Return

This option will automatically transmit data when the carriage return key is pressed. If this option is disabled, you will need to manually press the send button or press F4 to transmit.

Line Terminator

You can append your data with a number of line terminations characters. These include CR, CR and LF, LF and CR, NULL and No Terminator.

Parse Control Characters

When enabled, the parse control characters option enables you to send control characters in your message, using either a decimal or hexadecimal notation. For example, if you want to send hello world followed by a carriage return and line feed character, you would use hello world#13#10 for decimal, or hello worldDA for hex. Only numbers in the range 0 to 255 will be converted. For example, sending the message letter #9712345 will be interpreted as letter a12345.

If the sequence of characters does not form a legal number, the sequence is interpreted as normal characters. For example, hello world#here I am. If you don't want characters to be interpreted as a control sequence, but rather send it as normal characters, then all you need to do is use the tilda symbol (~). For example, letter ~#9712345 would be sent as letter #9712345.

Receive Window

The receive window is used to capture data sent from an external device (for example, a PIC MCU) to your PC. To display a list of transmit options, right click on the receive window.

[image: image83.wmf]VCC

WP

SCL

A1

A2

VSS

24C32

7

8

A0

SDA

1

2

3

4

6

5

To RB1 or RC4

To RB0 or RC3

0v

+5 Volts

R2

10k

R1

10k

Clear

Clear the contents of the receive window.

Word Wrap

When enabled, incoming data is automatically word wrapped.

Notes

In order to advance the cursor to the next line in the receive window, you must transmit either a CR ($D) or a CR LF pair ($D $A) from your external device.

Labcenter Electronics PROTEUS VSM

Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, animated components and microprocessor models to facilitate co-simulation of complete microcontroller based designs. For the first time ever, it is possible to develop and test such designs before a physical prototype is constructed.

The Proton Plus Development Suite comes shipped with a free demonstration version of the PROTEUS simulation environment and also a number of pre-configured Virtual Hardware Boards (VHB). Unlike the professional version of PROTEUS, you are unable to make any changes to the pre-configured boards or create your own boards.

If you already have a full version of PROTEUS VSM installed on your system (6.5.0.5 or higher), then this is the version that will be used by the IDE. If you don't have the full version, the IDE will default to using the demonstration installation.

System Requirements

Windows 98SE, ME, 2000 or XP

64MB RAM (128 MB or higher recommended)

300 MHz Processor (500 MHz or higher recommended)

Further Information

You can find out more about the simulator supplied with the Proton Development Suite from Labcentre Electronics

ISIS Simulator Quick Start Guide

This brief tutorial aims to outline the steps you need to take in order to use Labcenter Electronics PROTEUS Virtual System Modelling (VSM) with the Proton IDE. The first thing you need to do is load or create a program to simulate. In this worked example, we will keep things simple and use a classic flashing LED program. In the IDE, press the New toolbar button and type in the following: -

Device = 16F877

XTAL = 20

Symbol LED = PORTD.0

MainProgram:

High LED

DelayMS 500

Low LED

DelayMS 500

GoTo MainProgram

You now need to make sure that the output of the compile and program process is re-directed to the simulator. Normally, pressing compile and program will create a *.hex file which is then sent to your chosen programmer. However, we want the output to be sent to the simulator, not a device programmer. To do this, press the small down arrow to the right of the compile and program toolbar icon and check the Labcenter Electronics PROTEUS VSM option, as shown below: -

[image: image84.wmf]+5V

0V

47k

Pullup

To Pin of the

PIC

Push

Switch

+5V

0V

47k

Pulldown

To Pin of the

PIC

Push

Switch

Active LOW

Active HIGH

After selecting the above option, save your program and then press the compile and program toolbar button to build your project. This will then start the Virtual Hardware Board (VHB) Explorer, as shown below: -

[image: image85.png]Resils

-8
Compilation Success for Target Device 16F877 16 3uly 2004
version 0.0.0.1 132438

(] 7365 program words used from a possible 8192 (82.90%)
@SS 165 variable bytes used from a possble 368 (44.84%)

VHB Explorer is the IDE plugin that co-ordinates activity between the IDE and the simulator. Its primary purpose is to bind a Virtual Hardware Board to your program. In this example, the program has been built for the 16F877 MCU which flashes an LED connected to PORTD.0. To run the simulation for this program, just double click on the PIC16_ALCD_VHB hardware board item. This will invoke the PROTEUS simulator which will then automatically start executing your program using the selected board.

Additional Integration Tips

If you followed the PROTEUS VSM quick start guide, you will know how easy it is to load you program into the simulation environment with the Virtual Hardware Board (VHB) Explorer. However, one thing you might have noticed is that each time you press compile and program the VHB Explorer is always displayed. If you are using the same simulation board over and over again, manually having to select the board using VHB Explorer can become a little tiresome.

Virtual Hardware Boards Favourites

The good news is that every time you select a board using VHB Explorer, it is saved as a VHB Explorer favourite. You can access VHB Explorer favourites from within Proton IDE by right clicking on the main editor window and selecting the Virtual Hardware Boards option, as shown below : -

[image: image86.png]Results

@ ERROR Line 19] : Variable' A" not found! (ncuderoot.bas)
(@ ERROR Line 20] : Vricble ' LABEL " not found! (incuderoot.bes)

In the quick start guide, the program was bound to a simulation board called PIC16_ALCD_VHB. If we check this favourite and then press compile and program, VHB Explorer is not displayed. Instead, you project is loaded immediately into the PROTEUS simulation environment. You can have more than one board bound to your project, allowing you to quickly switch between target simulation boards during project development.

To add additional boards to your project, manually start VHB Explorer by selecting the plugin icon [image: image58.png]

 and clicking on the Labcenter Electronics PROTEUS VSM... option. When VHB Explorer starts, just double click on the board you want to be bound to your current project. Your new board selection will be displayed next time you right click on the main editor window and select Virtual Hardware Boards. You can delete a favourite board by manually starting VHB Explorer and pressing the Favourites toolbar icon. Choose the Manage Favourites option to remove the virtual hardware board from the favourites list.

Online Updates

Online updates enable you to keep right up to date with the latest IDE features and fixes. To access online updates, select VIEW...ONLINE UPDATES from the main menu. This will invoke the IDE update manager, as shown below: -

Update Manager

[image: image87.wmf]C2

0.1uF

R2

1k

To Audio

Amplifier

R1

1k

C1

0.1uF

From PIC

I/O pin

From PIC

I/O pin

Speaker

C1

10uF

C2

10uF

Before installing an update, it is important you review the changes that will be made to your system. If your system is up to date, you will see the following message: -

[image: image88.wmf]6

2

1

5

3

7

4

8

9

+5V

R3

4.7k

R1

4.7k

R2

10k

+5V

To

RB6

To

RB7

SERIAL

IN

SERIAL

OUT

T1

BC147

T2

BCR183

Update Options

Online updating will work with a dial-up, LAN or broadband connection. The IDE will only check for online updates if requested to do so. That is, you explicitly select VIEW...ONLINE UPDATES. If you want the update manager to automatically check from updates each time Proton IDE starts, then select VIEW...EDITOR OPTIONS and choose the Online Updating tab.

Please note that selecting VIEW...ONLINE UPDATES will always force a dial up connection (assuming that you use a dial up connection and you are not already connected to the internet). If Proton IDE has made a connection for you, it terminates the connection when the update process has completed.

Firewalls

If you have a firewall installed, online updating will only work if the IDE has been granted access to the internet.

Confidentiality

The online update process is a proprietary system developed by Mecanique that is both safe and secure. The update manager will only send information it needs to authenticate access to online updates. The update manager will not send any personal information whatsoever to the update server. The update manager will not send any information relating to third party software installed on your system to the update server.

and Directives
Compiler

Overview.
PICmicrotm Devices

The compiler support most of the PICmicrotm range of devices, and takes full advantage of their various features e.g. The A/D converter in the 16F87x series, the data memory eeprom area in the16F84, the hardware multiply present on the 16-bit core devices etc.

This manual is not intended to give you details about PICmicrotm devices, therefore, for further information visit the Microchip website at www.microchip.com, and download the multitude of datasheets and application notes available.

Limited 12-bit Device Compatibility.

The 12-bit core PICmicrotm microcontrollers have been available for a long time, and are at the heart of many excellent, and complex projects. However, with their limited architecture, they were never intended to be used for high level languages such as BASIC. Some of these limits include only a two-level hardware stack and small amounts of general purpose RAM memory. The code page size is also small at 512 bytes. There is also a limitation that calls and computed jumps can only be made to the first half (256 words) of any code page. Therefore, these limitations have made it necessary to eliminate some compiler commands and modify the operation of others.

While many useful programs can be written for the 12-bit core PICmicros using the compiler, there will be some applications that are not suited to these devices. Choosing a 14-bit core device with more resources will, in most instances, be the best solution.

Some of the commands that are not supported for the 12-bit core PICmicros are illustrated in the table below: -

	Command
	Reason for omission

	DWORDs
	Memory limitations

	FLOATs
	Memory limitations

	ADIN
	No internal ADCs

	CDATA
	No write modify feature

	CLS
	Limited stack size

	CREAD
	No write modify feature

	CURSOR
	Limited stack size

	CWRITE
	No write modify feature

	DATA
	Page size limitations

	DTMFOUT
	Limited stack size

	EDATA
	No on-board EEPROM

	EREAD
	No on-board EEPROM

	EWRITE
	No on-board EEPROM

	FREQOUT
	Limited stack size

	LCDREAD
	No graphic LCD support

	LCDWRITE
	No graphic LCD support

	HPWM
	No 12-bit MSSP modules

	HRSIN
	No hardware serial port

	HRSOUT
	No hardware serial port

	HSERIN
	No hardware serial port

	HSEROUT
	No hardware serial port

	INTERRUPTS
	No Interrupts

	PIXEL
	No graphic LCD support

	PLOT
	No graphic LCD support

	READ
	Page size limitations

	RESTORE
	Limited memory

	SEROUT
	Limited memory

	SERIN
	Limited memory

	SOUND2
	Limited resources

	UNPLOT
	No graphic LCD support

	USBIN
	No 12-bit USB devices

	USBOUT
	No 12-bit USB devices

	XIN
	Limited stack size

	XOUT
	Limited stack size

Trying to use any of the above commands with 12-bit core devices will result in the compiler producing numerous SYNTAX errors. If any of these commands are a necessity, then choose a comparable 14-bit core device.

The available commands that have had their operation modified are: -

PRINTScribble1789, RSOUTScribble2029, BUSINScribble649, BUSOUTScribble669
Most of the modifiers are not supported for these commands because of memory and stack size limitations, this includes the AT Scribble1789, and the STR Scribble534modifier. However, the @Scribble1789, DEC Scribble1789and DEC3 Scribble1789modifiers are still available.

Programming Considerations for 12-bit Devices.

Because of the limited architecture of the 12-bit core PICmicrotm microcontrollers, programs compiled for them by the compiler will be larger and slower than programs compiled for the 14-bit core devices. The two main programming limitations that will most likely occur are running out of RAM memory for variables, and running past the first 256 word limit for the library routines.

Even though the compiler arranges its internal SYSTEM variables more intuitively than previous versions, it still needs to create temporary variables for complex expressions etc. It also needs to allocate extra RAM for use as a SOFTWARE-STACK so that the BASIC program is still able to nest GOSUBScribble1129s up to 4 levels deep.

Some PICmicrotm devices only have 25 bytes of RAM so there is very little space for user variables on those devices. Therefore, use variables sparingly, and always use the appropriately sized variable for a specific task. i.e. BYTEScribble2709 variable if 0-255 is required, WORDScribble2729 variable if 0-65535 required, BITScribble2689 variables if a true or false situation is required. Try to alias any commonly used variables, such as loops or temporary stores etc.

As was mentioned earlier, 12-bit core PICmicrotm microcontrollers can call only into the first half (256 words) of a code page. Since the compiler's library routines are all accessed by calls, they must reside entirely in the first 256 words of the PICmicrotm code space. Many library routines, such as BUSINScribble649, are quite large. It may only take a few routines to outgrow the first 256 words of code space. There is no work around for this, and if it is necessary to use more library routines that will fit into the first half of the first code page, it will be necessary to move to a 14-bit core PICmicrotm instead of the 12-bit core device.

No 32-bit or floating point variable support with 12-bit devices.
Because of the profound lack of RAM space available on most 12-bit core devices, the PROTON+ compiler does not allow 32-bit DWORDScribble2749 type variables to be used. For 32-bit support, use on of the many 14, or 16-bit core equivalent devices. Floating point variables are also not supported with 12-bit core devices.

Device Specific issues

Before venturing into your latest project, always read the datasheet for the specific device being used. Because some devices have features that may interfere with expected pin operations. The PIC16C62x and the 16F62x devices are examples of this. These PICmicros have analogue comparators on PORTAScribble2779. When these chips first power up, PORTA Scribble2779is set to analogue mode. This makes the pin functions on PORTA Scribble2779work in a strange manner. To change the pins to digital, simply add the following line near the front of your BASIC program, or before any of the pins are accessed: -

CMCON = 7

Any PICmicrotm with analogue inputs, such as the PIC16C7xx, PIC16F87x and PIC12C67x series devices, will power up in analogue mode. If you intend to use them as digital types you must set the pins to digital by using the following line of code: -

ADCON1 = 7

Alternatively, you can use a special command that sets all the pins to digital mode: -

ALL_DIGITAL = TRUE
This will set analogue pins to digital on any compatible device.

Another example of potential problems is that bit-4 of PORTA Scribble2779(PORTA.4) exhibits unusual behaviour when used as an output. This is because the pin has an open drain output rather than the usual bipolar stage as in the rest of the output pins. This means it can pull to ground when set to 0 (low), but it will simply float when set to a 1 (high), instead of going high.

To make this pin act as expected, add a pull-up resistor between the pin and 5 Volts. A typical value resistor may be between 1K and 33K, depending on the device it is driving. If the pin is used as an input, it behaves the same as any other pin.

Some PICmicros, such as the PIC16F87x range, allow low-voltage programming. This function takes over one of the PORTB Scribble2784(PORTB.3) pins and can cause the device to act erratically if this pin is not pulled low. In normal use, It's best to make sure that low-voltage programming is disabled at the time the PICmicrotm is programmed. By default, the low voltage programming fuse is disabled, however, if the CONFIG Scribble749directive is used, then it may inadvertently be omitted.

All of the PICmicrotm pins are set to inputs on power-up. If you need a pin to be an output, set it to an output before you use it, or use a BASIC command that does it for you. Once again, always read the PICmicrotm data sheets to become familiar with the particular part.

The name of the port pins on the 8 pin devices such as the PIC12C50X, PIC12C67x ,12CE67x and 12F675 is GPIO. The name for the TRIS register is TRISIO: -

GPIO.0 = 1

' Set GPIO.0 high

TRISIO = %101010

' Manipulate ins and outs

However, these are also mapped as PORTBScribble2784, therefore any reference to PORTB Scribble2784on these devices will point to the relevant pin.

Some devices have internal pull-up resistors on PORTB, or GPIOScribble2929. These may be enabled or disabled by issuing the PORTB_PULLUPS command: -

PORTB_PULLUPS = ON

' Enable PORTB pull-up resistors

 or

PORTB_PULLUPS = OFF

' Disable PORTB pull-up resistors
Identifiers

An identifier is a technical term for a name. Identifiers are used for line labels, variable names, and constant aliases. An identifier is any sequence of letters, digits, and underscores, although it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label are all treated as equivalent. And while labels might be any number of characters in length, only the first 32 are recognised.
Line Labels

In order to mark statements that the program may wish to reference with the GOTOScribble1149, CALLScribble560, or GOSUB Scribble1129commands, the compiler uses line labels. Unlike many older BASICs, the compiler does not allow or require line numbers and doesn’t require that each line be labelled. Instead, any line may start with a line label, which is simply an identifier followed by a colon ':'.

Lab:

PRINT "Hello World"

GOTO Lab
Variables

Variables are where temporary data is stored in a BASIC program. They are created using the DIM Scribble969keyword. Because RAM space on PICmicros is somewhat limited in size, choosing the right size variable for a specific task is important. Variables may be BITSScribble2689, BYTESScribble2709, WORDSScribble2729, DWORDSScribble2749 or FLOATSScribble2769.

Space for each variable is automatically allocated in the microcontroller's RAM area. The format for creating a variable is as follows: -

DIM Label AS Size

Label is any identifier, (excluding keywords). Size is BITScribble2689, BYTEScribble2709, WORDScribble2729, DWORDScribble2749 or FLOATScribble2769. Some examples of creating variables are: -

DIM Dog AS BYTE

' Create an 8-bit unsigned variable (0 to 255)

DIM Cat AS BIT

' Create a single bit variable (0 or 1)

DIM Rat AS WORD

' Create a 16-bit unsigned variable (0 to 65535)

DIM Large_Rat as DWORD
' Create a 32-bit signed variable (-2147483648 to

‘ +2147483647)

DIM Pointy_Rat as FLOAT
' Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and the size of the variables within the BASIC program. The compiler may reserve approximately 26 RAM locations for its own use. It may also create additional temporary (SYSTEM) variables for use when calculating complex equations, or more complex command structures. Especially if floating point calculations are carried out.

Intuitive Variable Handling.

The compiler handles its SYSTEM variables intuitively, in that it only creates those that it requires. Each of the compiler's built in library subroutines i.e. PRINTScribble1789, RSOUT Scribble2029etc, require a certain amount of SYSTEM RAM as internal variables. Previous versions of the compiler defaulted to 26 RAM spaces being created before a program had been compiled. However, with the 12-bit core device compatibility, 26 RAM slots is more than some devices possess.

Try the following program, and look at the RAM usage message on the bottom STATUS bar.

DIM WRD1 AS WORD

' Create a WORD variable i.e. 16-bits

Loop:

HIGH PORTB.0

' Set bit 0 of PORTB high

FOR WRD1= 1 TO 20000 : NEXT
' Create a delay without using a library call

LOW PORTB.0

' Set bit 0 of PORTB high

FOR WRD1= 1 TO 20000 : NEXT
' Create a delay without using a library call

GOTO Loop

' Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as variable WRD1.

The compiler will increase it's SYSTEM RAM requirements as programs get larger, or more complex structures are used, such as complex expressions, inline commands used in conditions, Boolean logic used etc. However, with the limited RAM space available on some PICmicrotm devices, every byte counts.

There are certain reserved words that cannot be used as variable names, these are the system variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create these names when required: -

PP0, PP0H, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H, PP7, PP7H, PP8, PP9H,GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR, BPF, BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list below illustrates this.

FLOAT

Requires 4 bytes of RAM.

DWORD

Requires 4 bytes of RAM.

WORD

Requires 2 bytes of RAM.

BYTE

Requires 1 byte of RAM.

BIT

Requires 1 byte of RAM for every 8 BIT variables used.

Each type of variable may hold a different minimum and maximum value.

FLOAT type variables may theoretically hold a value from -1e37 to +1e38, but because of the 32-bit architecture of the compiler, a maximum and minimum value should be thought of as -2147483646.999 to +2147483646.999 making this the most accurate of the variable family types. However, more so than DWORD types, this comes at a price as FLOAT calculations and comparisons will use more code space within the PICmicrotm. Use this type of variable sparingly, and only when strictly necessary. Smaller floating point values offer more accuracy.

DWORD type variables may hold a value from -2147483648 to +2147483647 making this the largest of the variable family types. This comes at a price however, as DWORDScribble2749 calculations and comparisons will use more code space within the PICmicrotm. Use this type of variable sparingly, and only when necessary.

WORD type variables may hold a value from 0 to 65535, which is usually large enough for most applications. It still uses more memory, but not nearly as much as a DWORDScribble2749 type.

BYTE type variables may hold a value for 0 to 255, and are the usual work horses of most programs. Code produced for BYTE sized variables is very low compared to WORDScribble2729, FLOATScribble2769, or DWORDScribble2749 types, and should be chosen if the program requires faster, or more efficient operation.

BIT type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring a single BIT type variable in a program will not save RAM space, but it will save code space, as BIT type variables produce the most efficient use of code for comparisons etc.

See also :
ALIASES, ARRAYS, DIM, CONSTANTS SYMBOL, Floating Point Math.

Floating Point Math
The PROTON+ compiler can perform 32 x 32 bit IEEE 754 'Compliant' Floating Point calculations.

Declaring a variable as FLOAT will enable floating point calculations on that variable.

DIM FLT AS FLOAT
To create a floating point constant, add a decimal point. Especially if the value is a whole number.

SYMBOL PI = 3.14

' Create an obvious floating point constant

SYMBOL FL_NUM = 5.0
' Create a floating point format value of a whole number

Please note. Floating point arithmetic is not the utmost in accuracy, it is merely a means of compressing a complex or large value into a small space (4 bytes in the compiler's case). Perfectly adequate results can usually be obtained from correct scaling of integer variables, with an increase in speed and a saving of RAM and code space. 32 bit floating point math is extremely microcontroller intensive since the PICmicrotm is only an 8 bit processor. It also consumes large amounts of RAM, and code space for its operation, therefore always use floating point sparingly, and only when strictly necessary. Floating point is not available on 12-bit core PICmicros because of memory restrictions, and is most efficient when used with 16-bit core devices because of the more linear code and RAM specifications.

Floating Point Format

The PROTON+ compiler uses the Microchip variation of IEEE 754 floating point format. The differences to standard IEEE 745 are minor, and well documented in Microchip application note AN575 (downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the floating-point routines to take advantage of the PICmicro's architecture and reduce the amount of overhead required in the calculations. The representation is shown below compared to the IEEE-754 format: where s is the sign bit, y is the lsb of the exponent and x is a placeholder for the mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the Exponent and Mantissa 0 bytes. The following assembly code shows an example of this operation.

Format
Exponent
Mantissa 0
Mantissa 1
Mantissa 2

IEEE-754
sxxx xxxx
yxxx xxxx
xxxx xxxx
xxxx xxxx

Microchip
xxxx xxxy
sxxx xxxx
xxxx xxxx
xxxx xxxx

IEEE-754 TO MICROCHIP

RLF MANTISSA0

RLF EXPONENT

RRF MANTISSA0

MICROCHIP TO IEEE-754

RLF MANTISSA0

RRF EXPONENT

RRF MANTISSA0

Variables Used by the Floating Point Libraries.

Several 8-bit RAM registers are used by the math routines to hold the operands for and results of floating point operations. Since there may be two operands required for a floating point operation (such as multiplication or division), there are two sets of exponent and mantissa registers reserved (A and B). For argument A, PBP_AARGHHH holds the exponent and PBP_AARGHH, PBP_AARGH and PBP_AARG hold the mantissa. For argument B, PBP_BARGHHH holds the exponent and PBP_BARGHH, PBP_BARGH and PBP_BARG hold the mantissa.

Floating Point Example Programs.

' Multiply two floating point values

DEVICE = 18F452

XTAL = 4

DIM FLT AS FLOAT

SYMBOL FL_NUM = 1.234
' Create a floating point constant value

CLS

FLT = FL_NUM *10

PRINT DEC FLT

STOP

' Add two floating point variables

DEVICE = 18F452

XTAL = 4

DIM FLT AS FLOAT

DIM FLT1 AS FLOAT

DIM FLT2 AS FLOAT

CLS

FLT1 = 1.23

FLT2 = 1000.1

FLT = FLT1 + FLT2

PRINT DEC FLT

STOP

' A digital voltmeter, using the on-board ADC

DEVICE = 16F877

XTAL = 4

ADIN_RES = 10

' 10-bit result required

ADIN_TAD = FRC

' RC OSC chosen

ADIN_DELAY = 50

' Allow 50us sample time

DIM RAW AS WORD

DIM VOLTS AS FLOAT

SYMBOL QUANTA = 5.0 / 1024
' Calculate the quantising value

CLS

TRISA = %00000001

' Configure AN0 (PORTA.0) as an input

ADCON1 = %10000000

' Set analogue input on PORTA.0

WHILE 1 = 1

RAW = ADIN 0

VOLTS = RAW * QUANTA

PRINT AT 1,1,DEC2 VOLTS,"V "

WEND
Notes.
Floating point expressions containing more than 3 operands are not allowed, due to the extra RAM space required for a software stack.

Any expression that contains a floating point variable or value will be calculated as a floating point. Even if the expression also contains a BYTE, WORD, or DWORD value or variable.

If the assignment variable is a BYTE, WORD, or DWORD variable, but the expression is of a floating point nature. Then the floating point result will be converted into an integer.

DEVICE = 16F877

DIM DWD AS DWORD

DIM FLT AS FLOAT

SYMBOL PI = 3.14

FLT = 10

DWD = FLT + PI
' Float calculation will result in 13.14, but reduced to integer 13

PRINT DEC DWD
' Display the integer result 13

STOP
For a more in-depth explanation of floating point, download the Microchip application notes AN575, and AN660. These can be found at www.microchip.com.

Code space requirements.

As mentioned above, floating point accuracy comes at a price of speed, and code space. Both these issues are not a problem if a 16-bit core device is used, however 14-bit core devices can pose a problem. The compiler attempts to load the floating point libraries into low memory, along with all the other library subroutines, but if it does not fit within the first 2048 bytes of code space, and the PICmicrotm has more than 2048 bytes of code available, the floating point libraries will be loaded into the top 1000 bytes of code memory. This is invisible to the user, however, the compiler will warn that this is occurring in case that part of memory is being used by your BASIC program.

More Accurate Display or Conversion of Floating Point values.

By default, the compiler uses a relatively small routine for converting floating point values to decimal, ready for RSOUT, PRINT STR$ etc. However, because of its size, it does not perform any rounding of the value first, and is only capable of converting relatively small values. i.e. approx 6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a larger routine. This is implemented by using a DECLARE: -

FLOAT_DISPLAY_TYPE = LARGE or STANDARD

Using the LARGE model for the above declare will trigger the compiler into using the more accurate floating point to decimal routine. Note that even though the routine is larger than the standard converter, it actually operates much faster.

The compiler defaults to STANDARD if the DECLARE is not issued in the BASIC program.

See also :
DIM, SYMBOL, ALIASES, ARRAYS, CONSTANTS .
Aliases

The SYMBOL Scribble2269directive is the primary method of creating an alias, however DIM Scribble969can also be used to create an alias to a variable. This is extremely useful for accessing the separate parts of a variable.

DIM Fido as Dog

' Fido is another name for Dog

DIM Mouse as Rat.LOWBYTE
' Mouse is the first byte (low byte) of word Rat

DIM Tail as Rat.HIGHBYTE
' Tail is the second byte (high byte) of word Rat

DIM Flea as Dog.0

' Flea is bit-0 of Dog

There are modifiers that may also be used with variables. These are HIGHBYTE, LOWBYTE, BYTE0, BYTE1, BYTE2, BYTE3, WORD0, and WORD1.

WORD0, WORD1, BYTE2, and BYTE3 may only be used in conjunction with a 32-bit DWORDScribble2749 type variable.

HIGHBYTE and BYTE1 are one and the same thing, when used with a WORDScribble2729 type variable, they refer to the High byte of a WORDScribble2729 type variable: -

DIM WRD as WORD

' Declare a WORD sized variable

DIM WRD_HI as WRD.HIGHBYTE

' WRD_HI now represents the HIGHBYTE of variable WRD

Variable WRD_HI is now accessed as a BYTEScribble2709 sized type, but any reference to it actually alters the high byte of WRD.

However, if BYTE1 is used in conjunction with a DWORDScribble2749 type variable, it will extract the second byte. HIGHBYTE will still extract the high byte of the variable, as will BYTE3.

The same is true of LOWBYTE and BYTE0, but they refer to the Low Byte of a WORDScribble2729 type variable: -

DIM WRD as WORD

' Declare a WORD sized variable

DIM WRD_LO as WRD.LOWBYTE

' WRD_LO now represents the LOWBYTE of variable WRD

Variable WRD_LO is now accessed as a BYTEScribble2709 sized type, but any reference to it actually alters the low byte of WRD.

The modifier BYTE2 will extract the 3rd byte from a 32-bit DWORDScribble2749 type variable, as an alias. Likewise BYTE3 will extract the high byte of a 32-bit variable.

DIM DWD as DWORD

' Declare a 32-bit variable named DWD

DIM PART1 as DWD.BYTE0

' Alias PART1 to the low byte of DWD

DIM PART2 as DWD.BYTE1

' Alias PART2 to the 2nd byte of DWD

DIM PART3 as DWD.BYTE2

' Alias PART3 to the 3rd byte of DWD

DIM PART4 as DWD.BYTE3

' Alias PART3 to the high (4th) byte of DWD

The WORD0 and WORD1 modifiers extract the low word and high word of a DWORDScribble2749 type variable, and is used the same as the BYTEn modifiers.

DIM DWD as DWORD

' Declare a 32-bit variable named DWD

DIM PART1 as DWD.WORD0

' Alias PART1 to the low word of DWD

DIM PART2 as DWD.WORD1

' Alias PART2 to the high word of DWD

RAM space for variables is allocated within the PICmicrotm in the order that they are placed in the BASIC code. For example: -

DIM VAR1 as BYTE

DIM VAR2 as BYTE

Places VAR1 first, then VAR2: -

VAR1 EQU n

VAR2 EQU n

This means that on a PICmicrotm with more than one BANK, the first n variables will always be in BANK0 (the value of n depends on the specific PICmicrotm used).

Finer points for variable handling.

The position of the variable within BANKs is usually of little importance if BASIC code is used, however, if assembler routines are being implemented, always assign any variables used within them first.

Problems may also arise if a WORDScribble2729, or DWORDScribble2749 variable crosses a BANK boundary. If this happens, a warning message will be displayed in the error window. Most of the time, this will not cause any problems, however, to err on the side of caution, try and ensure that WORDScribble2729, or DWORDScribble2749 type variables are fully inside a BANK. This is easily accomplished by placing a dummy BYTEScribble2709 variable before the offending WORDScribble2729, or DWORDScribble2749 type variable, or relocating the offending variable within the list of DIM Scribble969statements.

WORD type variables have a low byte and a high byte. The high byte may be accessed by simply adding the letter H to the end of the variable's name. For example: -

DIM WRD as WORD

Will produce the assembler code: -

WRD EQU n

WRDH EQU n

To access the high byte of variable WRD, use: -

WRDH = 1

This is especially useful when assembler routines are being implemented, such as: -

MOVLW 1

MOVWF WRDH

; Load the high byte of WRD with 1

DWORDScribble2749 type variables have a low, mid1, mid2, and hi byte. The high byte may be accessed by adding three letter H's to the variable's name. For example: -

DIM DWD as DWORD
Will produce the assembler code: -

DWD EQU n

DWDH EQU n

DWDHH EQU n

DWDHHH EQU n

To access the high byte of variable WRD, use: -

DWDHHH = 1

or

DWD.HIGHBYTE = 1

The low, and mid bytes may be similarly accessed by adding or removing the "H" after the variable's name.

Constants

Named constants may be created in the same manner as variables. It can be more informative to use a constant name instead of a constant number. Once a constant is declared, it cannot be changed later, hence the name ‘constant'.

DIM Label as Constant expression

DIM MOUSE as 1

DIM MICE as MOUSE * 400

DIM MOUSE_PI as MOUSE + 2.14

Although DIM Scribble969can be uses to create constants, SYMBOL Scribble2269is more often used.
Symbols

SYMBOL Scribble2269provides yet another method for aliasing variables and constants. SYMBOL Scribble2269cannot be used to create a variable. Constants declared using SYMBOL Scribble2269do not use any RAM within the PICmicrotm.

SYMBOL CAT = 123

SYMBOL TIGER = CAT

' TIGER now holds the value of CAT

SYMBOL MOUSE = 1

' Same as DIM Mouse AS 1

SYMBOL TIGOUSE = TIGER + MOUSE ' Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using SYMBOL by simply adding a decimal point to a value.

SYMBOL PI = 3.14

' Create a floating point constant named PI

SYMBOL FL_NUM = 5.0

' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

' Create a floating point constant holding the result of the expression

SYMBOL QUANTA = 5.0 / 1024

If a variable or register's name is used in a constant expression then the variable's or register's address will be substituted, not the value held in the variable or register: -

SYMBOL CON = (PORTA + 1)

' CON will hold the value 6 (5+1)

SYMBOL Scribble2269is also useful for aliasing Ports and Registers: -

SYMBOL LED = PORTA.1

' LED now references bit-1 of PORTA

SYMBOL T0IF = INTCON.2

' T0IF now references bit-2 of INTCON register

The equal sign between the Constant's name and the alias value is optional: -

SYMBOL LED PORTA.1

' Same as SYMBOL LED=PORTA.1

Numeric Representations
PROTON and PROTON+ recognise several different number representations: -

Binary is prefixed by %. i.e. %0101

Hexadecimal is prefixed by $. i.e. $0A

Character byte is surrounded by quotes. i.e. "a" represents a value of 97

Decimal values need no prefix.

Floating point is created by using a decimal point. i.e. 3.14 (PROTON+ only)
Quoted String of Characters

A Quoted String of Characters contains one or more characters (maximum 200) and is delimited by double quotes. Such as "Hello World"

Strings are usually treated as a list of individual character values, and are used by commands such as PRINT, RSOUT, BUSOUT, EWRITE etc. And of course, STRING variables.

NULL Terminated

NULL is a term used in computer languages for zero. So a NULL terminated STRING is a collection of characters followed by a zero in order to signify the end of characters. For example, the string of characters "HELLO", would be stored as: -

"H" , "E" , "L" , "L" ,"O" , 0

Notice that the terminating NULL is the value 0 not the character "0".

Ports and other Registers

All of the PICmicrotm registers, including the ports, can be accessed just like any other byte-sized variable. This means that they can be read from, written to or used in equations directly.

PORTA = %01010101
' Write value to PORTA

VAR1 = WRD * PORTA
' Multiply variable WRD with the contents of PORTA
The compiler can also combine16-bit registers such as TMR1*Scribble2849 into a WORDScribble2729 type variable. Which makes loading and reading these registers simple: -

' Combine TMR1L, and TMR1H into WORD variable TIMER1

DIM TIMER1 AS TMR1L.WORD

TIMER1 = 12345

' Load TMR1 with value 12345

or

WRD1 = TIMER1

' Load WRD1 with contents of TMR1

The .WORD extension links registers TMR1L, and TMR1H, (which are assigned in the .LBP file associated with relevant PICmicrotm used).

Any hardware register that can hold a 16-bit result can be assigned as a WORDScribble2729 type variable: -

' Combine ADRESL, and ADRESH into WORD variable AD_RESULT

DIM AD_RESULT AS ADRES*Scribble2889.WORD

' Combine PRODL, and PRODH into WORD variable MUL_PROD

DIM MUL_PROD AS PRODL*Scribble2909.WORD

General Format

The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with colons ':'.

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

TRISB = %00000000
' Make all pins on PORTB outputs

FOR VAR1 = 0 TO 100
' Count from 0 to 100

PORTB = VAR1

' Make PORTB = count (VAR1)

NEXT

' Continue counting until 100 is reached

Single-line version: -

TRISB = %00000000 : FOR VAR1 = 0 TO 100 : PORTB = VAR1 : NEXT
Line Continuation Character '_'

Lines that are too long to display, may be split using the continuation character '_'. This will direct the continuation of a command to the next line. It's use is only permitted after a comma delimiter: -

VAR1 = LOOKUP VAR2,[1,2,3,_

4,5,6,7,8]

or

PRINT AT 1,1,_

"HELLO WORLD",_

DEC VAR1,_

HEX VAR2

Inline Commands within COmparisons
A very useful addition to the compiler is the ability to mix most INLINE commands into comparisons. For example: -
ADINScribble550, BUSINScribble649, COUNTERScribble769, DIGScribble949, EREADScribble1049, HBUSINScribble1249, INKEYScribble1389, LCDREADScribble1449, LOOKDOWNScribble1489, LOOKDOWNLScribble1509, LOOKUPScribble1529, LOOKUPLScribble1549, PIXELScribble1709, POTScribble1769, PULSINScribble1809, RANDOMScribble1869, SHINScribble2129, RCINScribble1889, RSIN Scribble2009etc.
All these commands may be used in an IF-THENScribble1349, SELECT-CASE, WHILE-WENDScribble2309, or REPEAT-UNTILScribble1949 structure. For example, with the previous versions of the compiler, to read a key using the INKEY Scribble1389command required a two stage process: -

VAR1 = INKEY

IF VAR1 = 12 THEN { do something }

Now, the structure: -

IF INKEY = 12 THEN { do something }

is perfectly valid. And so is: -

IF ADIN 0 = 1020 THEN { do something }
' Test the ADC from channel 0

The new structure of the in-line commands does not always save code space, however, it does make the program easier to write, and a lot easier to understand, or debug if things go wrong.

The LOOKUPScribble1529, LOOKUPLScribble1549, LOOKDOWNScribble1489, and LOOKDOWNL Scribble1509commands may also use another in-line command instead of a variable. For example, to read and re-arrange a key press from a keypad: -

KEY = LOOKUP INKEY, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255]

In-line command differences do not stop there. They may now also be used for display purposes in the RSOUTScribble2029, SEROUTScribble2069, HRSOUTScribble1329, and PRINT Scribble1789commands: -

LABEL: RSOUT LOOKUP INKEY, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255] : GOTO LABEL

How's that for a simple serial keypad program. Or: -

WHILE 1 = 1 : PRINT RSIN : WEND
Believe it or not, the above single line of code is a simple serial LCD controller. Accepting serial data through the RSIN Scribble2009command, and displaying the data with the PRINT Scribble1789command.
Creating and using Arrays

The PROTON+ compiler supports multi part BYTEScribble2709, and WORDScribble2729 variables named arrays. An array is a group of variables of the same size (8-bits wide, or 16-bits wide), sharing a single name, but split into numbered cells, called elements.

An array is defined using the following syntax: -

DIM Name[length] AS BYTE

DIM Name[length] AS WORD
where Name is the variable's given name, and the new argument, [length], informs the compiler how many elements you want the array to contain. For example: -

DIM MYARRAY[10] AS BYTE
' Create a 10 element byte array.

DIM MYARRAY[10] AS WORD
' Create a 10 element word array.

A unique feature of the compiler is the ability to allow up to 256 elements within a BYTEScribble2709 array, and 128 elements in a WORDScribble2729 array. However, because of the rather complex way that some PICmicro's RAM cells are organised (i.e. BANKS), there are a few rules that need to be observed when creating arrays.

PICmicrotm Memory Map Complexities.

Larger PICmicros have more RAM available for variable storage, however, accessing the RAM on the 14-bit core devices is not as straightforward as one might expect. The RAM is organised in BANKS, where each BANK is 128 bytes in length. Crossing these BANKs requires bits 5 and 6 of the STATUS register to be manipulated. The larger PICmicros such as the 16F877 device have 512 RAM locations, but only 368 of these are available for variable storage, the rest are known as SYSTEM REGISTERS and are used to control certain aspects of the PICmicrotm i.e. TRIS, IO ports, UART etc. The compiler attempts to make this complex system of BANK switching as transparent to the user as possible, and succeeds where standard BITScribble2689, BYTEScribble2709, WORDScribble2729, and DWORDScribble2749 variables are concerned. However, ARRAY variables will inevitably need to cross the BANKS in order to create arrays larger than 96 bytes, which is the largest section of RAM within BANK0. Coincidently, this is also the largest array size permissible by most other compilers at the time of writing this manual.

Large arrays (normally over 96 elements) require that their STARTING address be located within the first 255 bytes of RAM (i.e. within BANK0 and BANK2), the array itself may cross this boundary. This is easily accomplished by declaring them at, or near the top of the list of variables. The Compiler does not manipulate the variable declarations. If a variable is placed first in the list, it will be placed in the first available RAM slot within the PICmicrotm. This way, you, the programmer maintains finite control of the variable usage. For example, commonly used variables should be placed near the top of the list of declared variables. An example of declaring an array is illustrated below: -

DEVICE 16F877

' Choose a PICmicro with extra RAM

DIM SMALL_ARRAY[20] AS BYTE
' Create a small array of 20 elements

DIM VAR1 AS BYTE

' Create a standard BYTE variable

DIM LARGE_ARRAY[256] AS BYTE
' Create a BYTE array of 256 elements

or

DIM ARRAY1[120] AS BYTE

' Create an array of 120 elements

DIM ARRAY2[100] AS BYTE

' Create another smaller array of 100 elements

If an array cannot be resolved, then a warning will be issued informing you of the offending line: WARNING Array ‘array name' is declared at address ‘array address'. Which is over the 255 RAM address limit, and crosses BANK3 boundary!

Ignoring this warning will spell certain failure of your program.

The following array declaration will produce a warning when compiled for a 16F877 device: -

DEVICE 16F877

' Choose a PICmicro with extra RAM

DIM ARRAY1[200] AS BYTE
' Create an array of 200 elements

DIM ARRAY2[100] AS BYTE
' Create another smaller array of 100 elements

Examining the assembler code produced, will reveal that ARRAY1 starts at address 32 and finishes at address 295. This is acceptable and the compiler will not complain. Now look at ARRAY2, its start address is at 296 which is over the 255 address limit, thus producing a warning message.

The above warning is easily remedied by re-arranging the variable declaration list: -

DIM ARRAY2[100] AS BYTE

' Create a small array of 100 elements

DIM ARRAY1[200] AS BYTE

' Create an array of 200 elements

Again, examining the asm code produced, now reveals that ARRAY2 starts at address 32 and finishes at address 163. everything OK there then. And ARRAY1 starts at address 164 and finishes at address 427, again, its starting address was within the 255 limit so everything's OK there as well, even though the array itself crossed several BANKs. A simple re-arrangement of code meant the difference between a working and not working program.

Of course, the smaller PICmicrotm devices do not have this limitation as they do not have 255 RAM cells anyway. Therefore, arrays may be located anywhere in the variable declaration list. The same goes for the 16-bit core devices, as these can address any area of their RAM.

16-bit core simplicity.

The 16-bit core devices i.e. PIC18XXX, have no such complexities in their memory map as the 14-bit core devices do. The memory is still banked, but each bank is 256 bytes in length, and runs linearly from one to the other. Add to that, the ability to access all RAM areas using indirect addressing, makes arrays extremely easy to use. If many large arrays are required in a program, then the 16-bit core devices (especially the Flash types) are highly recommended.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0 and ends at n-1. For example: -

MYARRAY [3] = 57

PRINT "MYARRAY[3] = " , DEC MYARRAY[3]

The above example will access the fourth element in the BYTEScribble2709 array and display "MYARRAY[3] = 57" on the LCD. The true flexibility of arrays is that the index value itself may be a variable. For example: -

DEVICE 16F84

' We'll use a smaller device this time

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

DIM INDEX AS BYTE

' Create a normal BYTE variable.

FOR INDEX = 0 TO 9

' Repeat with INDEX= 0,1,2...9

MYARRAY[INDEX] = INDEX * 10
' Write INDEX*10 to each element of the array.

NEXT

FOR INDEX = 0 TO 9

' Repeat with INDEX= 0,1,2...9

PRINT AT 1 , 1 , DEC MYARRAY [INDEX]
' Show the contents of each element.

DELAYMS 500

' Wait long enough to view the values

NEXT

STOP

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. INDEX * 10.

A word of caution regarding arrays: If you're familiar with other BASICs and have used their arrays, you may have run into the "subscript out of range" error. Subscript is simply another term for the index value. It is considered 'out-of range' when it exceeds the maximum value for the size of the array.

For example, in the example above, MYARRAY is a 10-element array. Allowable index values are 0 through 9. If your program exceeds this range, the compiler will not respond with an error message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded variables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

DEVICE 16F84

' We'll use a smaller device

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

DIM INDEX AS BYTE

' Create a normal BYTE variable.

FOR INDEX = 0 TO 8

' Repeat with INDEX= 0,1,2...8

MYARRAY[INDEX + 1] = INDEX * 10 ' Write INDEX*10 to each element of the array.

NEXT

FOR INDEX = 0 TO 8

' Repeat with INDEX= 0,1,2...8

PRINT AT 1 , 1 , DEC MYARRAY [INDEX + 1]
' Show the contents of each element.

DELAYMS 500

' Wait long enough to view the values

NEXT

STOP
The expression within the square braces should be kept simple, and arrays are not allowed as part of the expression.

Using Arrays in Expressions.

Of course, arrays are allowed within expressions themselves. For example: -

DIM MYARRAY[10] AS BYTE
' Create a 10-byte array.

DIM INDEX AS BYTE

' Create a normal BYTE variable.

DIM VAR1 AS BYTE

' Create another BYTE variable

DIM Result AS BYTE

' Create a variable to hold the result of the expression

INDEX = 5

' And INDEX now holds the value 5

VAR1 = 10

' Variable VAR1 now holds the value 10

MYARRAY[INDEX] = 20

' Load the 6th element of MYARRAY with value 20

Result = (VAR1 * MYARRAY[INDEX]) / 20
' Do a simple expression

PRINT AT 1 , 1 , DEC Result , " "

' Display the result of the expression

STOP
The previous example will display 10 on the LCD, because the expression reads as: -

(10 * 20) / 20

VAR1 holds a value of 10, MYARRAY[INDEX] holds a value of 20, these two variables are multiplied together which will yield 200, then they're divided by the constant 20 to produce a result of 10.

Arrays as Strings

Arrays may also be used as simple strings in certain commands, because after all, a string is simply a byte array used to store text.

For this, the STR modifier is used.

The commands that support the STR modifier are: -

BUSOUT - BUSIN

HBUSOUT - HBUSIN (PROTON+ Only)

HRSOUT - HRSIN (PROTON+ Only)

OWRITE - OREAD (PROTON+ Only)

RSOUT - RSIN

SEROUT - SERIN

SHOUT - SHIN

PRINT
The STR modifier works in two ways, it outputs data from a pre-declared array in commands that send data i.e. RSOUTScribble2029, PRINT Scribble1789etc, and loads data into an array, in commands that input information i.e. RSINScribble2009, SERIN Scribble2049etc. The following examples illustrate the STR modifier in each compatible command.

Using STR with the BUSIN and BUSOUT commands.
Refer to the sections explaining the BUSIN Scribble649and BUSOUT Scribble669commands.
Using STR with the HBUSIN and HBUSOUT commands.
Refer to the sections explaining the HBUSIN Scribble1249and HBUSOUT Scribble1269commands.

Using STR with the RSIN Scribble2009command.

DIM ARRAY1[10] AS BYTE

' Create a 10-byte array named ARRAY1

RSIN STR ARRAY1

' Load 10 bytes of data directly into ARRAY1

Using STR with the RSOUT Scribble2029command.

DIM ARRAY1[10] AS BYTE

' Create a 10-byte array named ARRAY1

RSOUT STR ARRAY1

' Send 10 bytes of data directly from ARRAY1
Using STR with the HRSIN and HRSOUT commands.
Refer to the sections explaining the HRSOUT Scribble1329and HRSIN Scribble1309commands.

Using STR with the SHOUT command.

SYMBOL DTA = PORTA.0

' Define the two lines for the SHOUT command

SYMBOL CLK = PORTA.1

DIM ARRAY1[10] AS BYTE

' Create a 10-byte array named ARRAY1

' Send 10 bytes of data from ARRAY1

SHOUT DTA, CLK, MSBFIRST, [STR ARRAY1]

Using STR with the SHIN Scribble2129command.

SYMBOL DTA = PORTA.0

' Define the two lines for the SHIN command

SYMBOL CLK = PORTA.1

DIM ARRAY1[10] AS BYTE

' Create a 10-byte array named ARRAY1

' Load 10 bytes of data directly into ARRAY1

SHIN DTA, CLK, MSBPRE , [STR ARRAY1]

Using STR with the PRINT Scribble1789command.

DIM ARRAY1[10] AS BYTE

' Create a 10-byte array named ARRAY1

PRINT STR ARRAY1

' Send 10 bytes of data directly from ARRAY1

Using STR with the SEROUT and SERIN commands.
Refer to the sections explaining the SERIN Scribble2049and SEROUT Scribble2069commands.

Using STR with the OREAD and OWRITE commands.
Refer to the sections explaining the OREAD Scribble1649and OWRITE Scribble1669commands.

The STR modifier has two forms for variable-width and fixed-width data, shown below: -

STR bytearray ASCII string from bytearray until byte = 0 (NULL terminated).

Or array length is reached.

STR bytearray\n ASCII string consisting of n bytes from bytearray.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

The example below is the variable-width form of the STR modifier: -

DIM MYARRAY[5] AS BYTE
' Create a 5 element array

MYARRAY[0] = "A"

' Fill the array with ASCII

MYARRAY[1] = "B"

MYARRAY[2] = "C"

MYARRAY[3] = "D"

MYARRAY[4] = 0

' Add the NULL Terminator

PRINT STR MYARRAY

' Display the string

The code above displays "ABCD" on the LCD. In this form, the STR formatter displays each character contained in the byte array until it finds a character that is equal to 0 (value 0, not ASCII "0"). NOTE: If the byte array does not end with 0 (NULL), the compiler will read and

output all RAM register contents until it cycles through all RAM locations for the declared length of the byte array.

For example, the same code as before without a NULL terminator is: -

DIM MYARRAY[4] AS BYTE
' Create a 4 element array

MYARRAY[0] = "A"

' Fill the array with ASCII

MYARRAY[1] = "B"

MYARRAY[2] = "C"

MYARRAY[3] = "D"

PRINT STR MYARRAY

' Display the string

The code above will display the whole of the array, because the array was declared with only four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the STR modifier, use the form STR MYARRAY\n; where MYARRAY is the byte array and n is the number of characters to display, or transmit. Changing the PRINT Scribble1789line in the examples above to: -

PRINT STR MYARRAY \ 2

would display "AB" on the LCD.

STR is not only used as a modifier, it is also a command, and is used for initially filling an array with data. The above examples may be re-written as: -

DIM MYARRAY[5] AS BYTE

' Create a 5 element array

STR MYARRAY = "ABCD" , 0

' Fill the array with ASCII, and NULL terminate it

PRINT STR MYARRAY

' Display the string

Strings may also be copied into other strings: -

DIM String1[5] AS BYTE

' Create a 5 element array

DIM String2[5] AS BYTE

' Create another 5 element array

STR String1 = "ABCD" , 0

' Fill the array with ASCII, and NULL terminate it

STR String2 = "EFGH" , 0

' Fill the other array with ASCII, and NULL terminate it

STR String1 = STR String2
' Copy String2 into String1

PRINT STR String1

' Display the string

The above example will display "EFGH", because String1 has been overwritten by String2.

Using the STR command with BUSOUTScribble669, HBUSOUTScribble1269, SHOUTScribble2149, and OWRITE Scribble1669differs from using it with commands SEROUTScribble2069, PRINTScribble1789, HRSOUTScribble1329, and RSOUT Scribble2029in that, the latter commands are used more for dealing with text, or ASCII data, therefore these are NULL terminated.

The HBUSOUTScribble1269, BUSOUTScribble669, SHOUTScribble2149, and OWRITE Scribble1669commands are not commonly used for sending ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a NULL terminator would cut short a string of byte data, if one of the values happened to be a 0. So these commands will output data until the length of the array is reached, or a fixed length terminator is used i.e. MYARRAY\n.

Creating and using Strings

The PROTON+ compiler supports STRING variables, only when targeting a 16-bit core PICmicrotm device.

The syntax to create a string is : -

DIM String Name as STRING * String Length
String Name can be any valid variable name. See DIM .

String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a STRING named ST that can hold 20 characters: -

DIM ST as STRING * 20

Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

DEVICE = 18F452

' Must be a 16-bit core device for Strings

' Create three strings capable of holding 20 characters

DIM DEST_STRING as STRING * 20

DIM SOURCE_STRING1 as STRING * 20

DIM SOURCE_STRING2 as STRING * 20

SOURCE_STRING1 = "HELLO "
' Load String SOURCE_STRING1 with the text HELLO

' Load String SOURCE_STRING2 with the text WORLD

SOURCE_STRING2 = "WORLD"

' Add both Source Strings together. Place result into String DEST_STRING

DEST_STRING= SOURCE_STRING1+ SOURCE_STRING2

The String DEST_STRING now contains the text "HELLO WORLD", and can be transmitted serially or displayed on an LCD: -

PRINT DEST_STRING

The Destination String itself can be added to if it is placed as one of the variables in the addition expression. For example, the above code could be written as: -

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters

' Create another String capable of holding 20 characters

DIM SOURCE_STRING as STRING * 20

DEST_STRING = "HELLO "
' Pre-load String DEST_STRING with the text HELLO

SOURCE_STRING = "WORLD"
' Load String SOURCE_STRING with the text WORLD

' Concatenate DEST_STRING with SOURCE_STRING

DEST_STRING = DEST_STRING + SOURCE_STRING

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a regular expression otherwise a syntax error will be produced.

It's not only other strings that can be added to a string, the functions CSTR, ESTR, MID$, LEFT$, RIGHT$, STR$, TOUPPER, and TOLOWER can also be used as one of variables to concatenate.

A few examples of using these functions are shown below: -

CSTR Example
' Use the CSTR function in order to place a code memory string into a String variable

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters

DIM SOURCE_STRING as STRING * 20 ' Create another String

SOURCE_STRING = "HELLO "

' Load the string with characters

DEST_STRING = SOURCE_STRING + CSTR CODE_STR
' Concatenate the string

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
CODE_STR:

CDATA "WORLD",0

The above example is really only for demonstration because if a LABEL name is placed as one of the parameters in a string concatenation, an automatic (more efficient) CSTR operation will be carried out. Therefore the above example should be written as: -

More efficient Example of above code
' Place a code memory string into a String variable more efficiently than using CSTR

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters

DIM SOURCE_STRING as STRING * 20
' Create another String

SOURCE_STRING = "HELLO "

' Load the string with characters

DEST_STRING = SOURCE_STRING + CODE_STR
' Concatenate the string

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
CODE_STR:

CDATA "WORLD",0

A NULL terminated string of characters held in DATA (on-board eeprom) memory can also be loaded or concatenated to a string by using the ESTR function: -

ESTR Example
' Use the ESTR function in order to place a DATA memory string into a String variable

' Remember to place EDATA before the main code, so it’s recognised as a constant value

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters

DIM SOURCE_STRING as STRING * 20
' Create another String

DATA_STR EDATA "WORLD",0

' Create a string in DATA memory named DATA_STR

SOURCE_STRING = "HELLO "

' Load the string with characters

DEST_STRING = SOURCE_STRING + ESTR DATA_STR
' Concatenate the string

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
Converting an integer or floating point value into a string is accomplished by using the STR$ function: -

STR$ Example
' Use the STR$ function in order to concatenate an integer value into a String variable

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 30 ' Create a String capable of holding 30 characters

DIM SOURCE_STRING as STRING * 20
' Create another String

DIM WRD1 as WORD

' Create a Word variable

WRD1 = 1234

' Load the Word variable with a value

SOURCE_STRING = "VALUE = "

' Load the string with characters

DEST_STRING = SOURCE_STRING + STR$ (DEC WRD1)
' Concatenate the string

PRINT DEST_STRING

' Display the result which is "VALUE = 1234"

STOP

LEFT$ Example
' Copy 5 characters from the left of SOURCE_STRING and add to a quoted character string

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

DEST_STRING = LEFT$ (SOURCE_STRING , 5) + " WORLD"

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
RIGHT$ Example
' Copy 5 characters from the right of SOURCE_STRING and add to a quoted character string

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

DEST_STRING = "HELLO " + RIGHT$ (SOURCE_STRING , 5)

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP

MID$ Example
' Copy 5 characters from position 4 of SOURCE_STRING and add to quoted character strings

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

DEST_STRING = "HEL" + MID$ (SOURCE_STRING , 4 , 5) + "RLD"

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP
Converting a string into uppercase or lowercase is accomplished by the functions TOUPPER and TOLOWER: -

TOUPPER Example
' Convert the characters in SOURCE_STRING to upper case

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

SOURCE_STRING = "hello world" ' Load the source string with lowercase characters

DEST_STRING = TOUPPER(SOURCE_STRING)

PRINT DEST_STRING

' Display the result which is "HELLO WORLD"

STOP

TOLOWER Example
' Convert the characters in SOURCE_STRING to lower case

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

SOURCE_STRING = "HELLO WORLD"
 ' Load the string with uppercase characters

DEST_STRING = TOLOWER(SOURCE_STRING)

PRINT DEST_STRING

' Display the result which is "hello world"

STOP

Loading a String Indirectly
If the Source String is a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, the value contained within the variable is used as a pointer to the start of the Source String's address in RAM.

Example
' Copy SOURCE_STRING into DEST_STRING using a pointer to SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

 ' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

DEST_STRING = STRING_ADDR

' Source string into the destination string

PRINT DEST_STRING

' Display the result, which will be "HELLO"

STOP
Slicing a STRING into pieces.
Each position within the string can be accessed the same as a BYTE ARRAY by using square braces: -

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

SOURCE_STRING[0] = "H"
' Place the letter "H" as the first character in the string

SOURCE_STRING[1] = "E"
' Place the letter "E" as the second character

SOURCE_STRING[2] = "L"
' Place the letter "L" as the third character

SOURCE_STRING[3] = "L"
' Place the letter "L" as the fourth character

SOURCE_STRING[4] = "O"
' Place the letter "O" as the fifth character

SOURCE_STRING[5] = 0

' Add a NULL to terminate the string

PRINT SOURCE_STRING

' Display the string, which will be "HELLO"

STOP
The example above demonstrates the ability to place individual characters anywhere in the string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM VAR1 as BYTE

SOURCE_STRING = "HELLO"

' Load the source string with characters

' Copy character 1 from the source string and place it into VAR1

VAR1 = SOURCE_STRING[1]

PRINT VAR1

' Display the character extracted from the string. Which will be "E"

STOP
When using the above method of reading and writing to a string variable, the first character in the string is referenced at 0 onwards, just like a BYTE ARRAY.

The example below shows a more practical STRING slicing demonstration.

' Display a string's text by examining each character individually

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM CHARPOS as BYTE

' Holds the position within the string

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

CHARPOS = 0

' Start at position 0 within the string

REPEAT

' Create a loop

' Display the character extracted from the string

 PRINT SOURCE_STRING[CHARPOS]

 INC CHARPOS

' Move to the next position within the string

' Keep looping until the end of the string is found

UNTIL CHARPOS = LEN (SOURCE_STRING)

STOP

Notes
A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used their String variables, you may have run into the "subscript out of range" error. This error occurs when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters. If your program exceeds this range by trying to place 21 characters into a string only created for 20 characters, the compiler will not respond with an error message. Instead, it will access the next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded variables are overwritten. It's up to the programmer (you!) to help prevent this from happening by ensuring that the STRING in question is large enough to accommodate all the characters required, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored if you are confident that the STRING is large enough.

See also :
Creating and using VIRTUAL STRINGS with CDATA

Creating and using VIRTUAL STRINGS with EDATA

CDATA, LEN, LEFT$, MID$, RIGHT$

STRING Comparisons, STR$, TOLOWER, TOUPPER, VARPTR .

Creating and using VIRTUAL STRINGS with CDATA

Some PICmicros such as the 16F87x range and all the 18FXXX range, have the ability to read and write to their own flash memory. And although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast, and harmless. Which offers a unique form of data storage and retrieval, the CDATA command proves this, as it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the 'self modifying PICmicros ' with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data. The CSTR modifier may be used in commands that deal with text processing i.e. PRINT, SEROUT, HRSOUT, and RSOUT .

The CSTR modifier is used in conjunction with the CDATA command. The CDATA command is used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD" , 0

The above line of code will create, in flash memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

 NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

PRINT CSTR STRING1

The label that declared the address where the list of CDATA values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

PRINT "HELLO WORLD"

PRINT "HOW ARE YOU?"

PRINT "I AM FINE!"

STOP

Now using the CSTR modifier: -

CLS

PRINT CSTR TEXT1

PRINT CSTR TEXT2

PRINT CSTR TEXT3

STOP
TEXT1: CDATA "HELLO WORLD" , 0

TEXT2: CDATA "HOW ARE YOU?" , 0

TEXT3: CDATA "I AM FINE!" , 0

Again, note the NULL terminators after the ASCII text in the CDATA commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA command cannot (rather should not) be written too, but only read from.

Not only label names can be used with the CSTR modifier, constants, variables and expressions can also be used that will hold the address of the CDATA 's label (a pointer). For example, the program below uses a WORD size variable to hold 2 pointers (address of a label, variable or array) to 2 individual NULL terminated text strings formed by CDATA .

' Use the PROTON development board for the example

INCLUDE "PROTON_4.INC"

DIM ADDRESS AS WORD
' Pointer variable

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

ADDRESS = STRING1

' Point address to string 1

PRINT CSTR ADDRESS

' Display string 1

ADDRESS = STRING2

' Point ADDRESS to string 2

PRINT CSTR ADDRESS

' Display string 2

STOP
' Create the text to display

STRING1:

CDATA "HELLO ", 0

STRING2:

CDATA "WORLD", 0

Creating and using VIRTUAL Strings with EDATA

Some 14-bit core and all 16-bit core PICmicros have on-board eeprom memory, and although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast and harmless. Which offers a great place for text storage and retrieval.

Combining the eeprom memory of PICmicros with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data using a memory resource that is very often left unused and ignored. The ESTR modifier may be used in commands that deal with text processing i.e. PRINT, SEROUT, HRSOUT, and RSOUT and STRING handling etc.

The ESTR modifier is used in conjunction with the EDATA command, which is used to initially create the string of characters: -

STRING1 EDATA "HELLO WORLD" , 0

The above line of code will create, in eeprom memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1 in DATA memory. Note the NULL terminator after the ASCII text.

To display, or transmit this string of characters, the following command structure could be used:

PRINT ESTR STRING1

The identifier that declared the address where the list of EDATA values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save many bytes of valuable code space.

Try both these small programs, and you'll see that using ESTR saves code space: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

PRINT "HELLO WORLD"

PRINT "HOW ARE YOU?"

PRINT "I AM FINE!"

STOP

Now using the ESTR modifier: -

TEXT1 EDATA "HELLO WORLD" , 0

TEXT2 EDATA "HOW ARE YOU?" , 0

TEXT3 EDATA "I AM FINE!" , 0

CLS

PRINT ESTR TEXT1

PRINT ESTR TEXT2

PRINT ESTR TEXT3

STOP
Again, note the NULL terminators after the ASCII text in the EDATA commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the EDATA command cannot (rather should not) be written to often, but can be read as many times as wished without causing harm to the device.

Not only identifiers can be used with the ESTR modifier, constants, variables and expressions can also be used that will hold the address of the EDATA's identifier (a pointer). For example, the program below uses a BYTE size variable to hold 2 pointers (address of a variable or array) to 2 individual NULL terminated text strings formed by EDATA .

' Use the PROTON development board for the example

INCLUDE "PROTON_4.INC"

DIM ADDRESS AS WORD
' Pointer variable

' Create the text to display in eeprom memory

STRING1 EDATA "HELLO ", 0

STRING2 EDATA "WORLD", 0

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

ADDRESS = STRING1

' Point address to string 1

PRINT ESTR ADDRESS

' Display string 1

ADDRESS = STRING2

' Point ADDRESS to string 2

PRINT ESTR ADDRESS

' Display string 2

STOP
Notes
Note that the identifying text MUST be located on the same line as the EDATA directive or a syntax error will be produced. It must also NOT contain a postfix colon as does a line label or it will be treat as a line label. Think of it as an alias name to a constant.

Any EDATA directives MUST be placed at the head of the BASIC program as is done with SYMBOLS, so that the name is recognised by the rest of the program as it is parsed. There is no need to jump over EDATA directives as you have to with LDATA or CDATA, because they do not occupy code memory, but reside in high DATA memory.

STRING Comparisons

Just like any other variable type, STRING variables can be used within comparisons such as IF-THEN, REPEAT-UNTIL, and WHILE-WEND . In fact, it's an essential element of any programming language. However, there are a few rules to obey because of the PICmicro's architecture.

Equal (=)or Not Equal (<>) comparisons are the only type that apply to STRINGS, because one STRING can only ever be equal or not equal to another STRING. It would be unusual (unless your using the C language) to compare if one STRING was greater or less than another.

So a valid comparison could look something like the lines of code below: -

IF STRING1 = STRING2 THEN PRINT "EQUAL" : ELSE PRINT "NOT EQUAL"

or

IF STRING1 <> STRING2 THEN PRINT "NOT EQUAL" : ELSE PRINT "EQUAL"

But as you've found out if you read the Creating STRINGs section, there is more than one type of STRING in a PICmicrotm. There is a STRING variable, a code memory string, and a quoted character string .

Note that pointers to STRING variables are not allowed in comparisons, and a syntax error will be produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to another string variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM STRING1 as STRING * 20
' Create a String capable of holding 20 characters

DIM STRING2 as STRING * 20

' Create another String

CLS

STRING1 = "EGGS"

' Pre-load String STRING1 with the text EGGS

STRING2 = "BACON"

' Load String STRING2 with the text BACON

IF STRING1 = STRING2 THEN

' Is STRING1 equal to STRING2 ?

 PRINT AT 1,1, "EQUAL"

' Yes. So display EQUAL on line 1 of the LCD

ELSE

' Otherwise

 PRINT AT 1,1, "NOT EQUAL"

' Display NOT EQUAL on line 1 of the LCD

ENDIF

STRING2 = "EGGS"

' Now make the strings the same as each other

IF STRING1 = STRING2 THEN

' Is STRING1 equal to STRING2 ?

 PRINT AT 2,1, "EQUAL"

' Yes. So display EQUAL on line 2 of the LCD

ELSE

' Otherwise

 PRINT AT 2,1, "NOT EQUAL"

' Display NOT EQUAL on line 2 of the LCD

ENDIF

STOP
The example above will display NOT EQUAL on line one of the LCD because STRING1 contains the text "EGGS" while STRING2 contains the text "BACON", so they are clearly not equal.

Line two of the LCD will show EQUAL because STRING2 is then loaded with the text "EGGS" which is the same as STRING1, therefore the comparison is equal.

A similar example to the one above uses a quoted character string instead of one of the STRING variables.

Example 2
' String variable to Quoted character string comparison

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM STRING1 as STRING * 20
' Create a String capable of holding 20 characters

CLS

STRING1 = "EGGS"

' Pre-load String STRING1 with the text EGGS

IF STRING1 = "BACON" THEN

' Is STRING1 equal to "BACON" ?

 PRINT AT 1,1, "EQUAL"

' Yes. So display EQUAL on line 1 of the LCD

ELSE

' Otherwise

 PRINT AT 1,1, "NOT EQUAL"

' Display NOT EQUAL on line 1 of the LCD

ENDIF

IF STRING1 = "EGGS" THEN

' Is STRING1 equal to "EGGS" ?

 PRINT AT 2,1, "EQUAL"

' Yes. So display EQUAL on line 2 of the LCD

ELSE

' Otherwise

 PRINT AT 2,1, "NOT EQUAL"

' Display NOT EQUAL on line 2 of the LCD

ENDIF

STOP
The example above produces exactly the same results as example1 because the first comparison is clearly not equal, while the second comparison is equal.

Example 3
' Use a string comparison in a REPEAT-UNTIL loop

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
' Create a String

DIM DEST_STRING as STRING * 20

' Create another String

DIM CHARPOS as Byte

' Character position within the strings

CLS

CLEAR DEST_STRING

' Fill DEST_STRING with NULLs

SOURCE_STRING = "HELLO"

' Load String SOURCE_STRING with the text HELLO

REPEAT

' Create a loop

 ' Copy SOURCE_STRING into DEST_STRING one character at a time

 DEST_STRING[CHARPOS] = SOURCE_STRING[CHARPOS]

 INC CHARPOS

' Move to the next character in the strings

' Stop when DEST_STRING is equal to the text "HELLO"

UNTIL DEST_STRING = "HELLO"

PRINT DEST_STRING

' Display DEST_STRING

STOP
Example 4
' Compare a string variable to a string held in code memory

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM STRING1 as STRING * 20
' Create a String capable of holding 20 characters

CLS

STRING1 = "BACON"

' Pre-load String STRING1 with the text BACON

IF CODE_STRING= "BACON" THEN
' Is CODE_STRING equal to "BACON" ?

 PRINT AT 1,1, "EQUAL"

' Yes. So display EQUAL on line 1 of the LCD

ELSE

' Otherwise

 PRINT AT 1,1, "NOT EQUAL"

' Display NOT EQUAL on line 1 of the LCD

ENDIF

STRING1 = "EGGS"

' Pre-load String STRING1 with the text EGGS

IF STRING1 = CODE_STRING THEN
' Is STRING1 equal to CODE_STRING ?

 PRINT AT 2,1, "EQUAL"

' Yes. So display EQUAL on line 2 of the LCD

ELSE

' Otherwise

 PRINT AT 2,1, "NOT EQUAL"

' Display NOT EQUAL on line 2 of the LCD

ENDIF

STOP
CODE_STRING: CDATA "EGGS" , 0

Example 5
' String comparisons using SELECT-CASE

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM STRING1 as STRING * 20
' Create a String capable of holding 20 characters

CLS

STRING1 = "EGGS"

' Pre-load String STRING1 with the text EGGS

SELECT STRING1

' Start comparing the string

 CASE "EGGS"

' Is STRING1 equal to EGGS?

 PRINT AT 1,1,"FOUND EGGS"

 CASE "BACON"

' Is STRING1 equal to BACON?

 PRINT AT 1,1,"FOUND BACON"

 CASE "COFFEE"

' Is STRING1 equal to COFFEE?

 PRINT AT 1,1,"FOUND COFFEE"

 CASE ELSE

' Default to...

 PRINT AT 1,1,"NO MATCH"

' Displaying no match

 ENDSELECT
 STOP
See also :
Creating and using STRINGS

Creating and using VIRTUAL STRINGS with CDATA

CDATA, IF-THEN-ELSE-ENDIF, REPEAT-UNTIL

SELECT-CASE, WHILE-WEND .

Boolean Logic Operators

The IF-THEN-ELSE-ENDIFScribble1349, WHILE-WENDScribble2309, and REPEAT-UNTILScribble1949 conditions now support the logical operators NOT, AND, OR, and XOR. The NOT operator inverts the outcome of a condition, changing false to true, and true to false. The following two IF-THEN conditions are equivalent: -

IF VAR1 <> 100 THEN NotEqual

' Goto notEqual if VAR1 is not 100.

IF NOT VAR1 = 100 THEN NotEqual
' Goto notEqual if VAR1 is not 100.

The operators AND, OR, and XOR join the results of two conditions to produce a single true/false result. AND and OR work the same as they do in everyday speech. Run the example below once with AND (as shown) and again, substituting OR for AND: -

DIM VAR1 AS BYTE

DIM VAR2 AS BYTE

CLS

VAR1 = 5

VAR2 = 9

IF VAR1 = 5 AND VAR2 = 10 THEN Res_True

STOP

Res_True:

PRINT "RESULT IS TRUE."

STOP

The condition "VAR1 = 5 AND VAR2 = 10" is not true. Although VAR1 is 5, VAR2 is not 10. AND works just as it does in plain English, both conditions must be true for the statement to be true. OR also works in a familiar way; if one or the other or both conditions are true, then the statement is true. XOR (short for exclusive-OR) may not be familiar, but it does have an English counterpart: If one condition or the other (but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).
Every compiler has it's quirky rules, and the PROTON+ compiler is no exception. One of its quirks means that parenthesis is not supported in a Boolean condition, or indeed with any of the IF-THEN-ELSE-ENDIF, WHILE-WEND, and REPEAT-UNTIL conditions. Parenthesis in an expression within a condition is allowed however. So, for example, the expression: -

IF (VAR1 + 3) = 10 THEN do something.
Is allowed.
But: -

IF((VAR1 + 3) = 10) THEN do something.
Is NOT allowed.
The Boolean operands do have a precedence in a condition. The AND operand has the highest priority, then the OR, then the XOR. This means that a condition such as: -

IF VAR1 = 2 AND VAR2 = 3 OR VAR3 = 4 THEN do something

Will compare VAR1 and VAR2 to see if the AND condition is true. It will then see if the OR condition is true, based on the result of the AND condition.

THEN operand always required.
The PROTON+ compiler relies heavily on the THEN part. Therefore, if the THEN part of a condition is left out of the code listing, a SYNTAX ERROR will be produced.

MATH OPERATORS

The PROTON+ compiler performs all math operations in full hierarchal order. Which means that there is precedence to the operators. For example, multiplies and divides are performed before adds and subtracts. To ensure the operations are carried out in the correct order use parenthesis to group the operations: -

A = ((B - C) * (D + E)) / F

All math operations are signed or unsigned depending on the variable type used, and performed with 16, or 32-bit precision, again, depending on the variable types and constant values used in the expression.

The operators supported are: -

Addition '+'.

Adds variables and/or constants.
Subtraction '-'.

Subtracts variables and/or constants.

Multiply '*'.

Multiplies variables and/or constants.

Multiply HIGH '**'.

Returns the high 16 bits of the 16-bit multiply result.

Multiply MIDDLE '*/'.

Returns the middle 16 bits of the 16-bit multiply result.

Divide '/'.

Divides variables and/or constants.

Modulus '//'.

Returns the remainder after dividing one value by another.

Bitwise AND '&'.

Returns the bitwise AND of two values.

Bitwise OR '|'.

Returns the bitwise OR of two values.

Bitwise XOR '^'.

Returns the bitwise XOR of two values.

Bitwise SHIFT LEFT '<<'.
Shifts the bits of a value left a specified number of places.
Bitwise SHIFT RIGHT '>>'.
Shifts the bits of a value right a specified number of places.

Bitwise Complement '~'.

Reverses the bits in a variable.
ABS.

Returns the absolute value of a number.

ACOS

Returns the ARC COSINE of a value in RADIANS.

ASIN

Returns the ARC SINE of a value in RADIANS.
ATAN

Returns the ARC TANGENT of a value in RADIANS.

COS.

Returns the COSINE of a value in RADIANS.
DCD.

2 n -power decoder of a four-bit value.
DIG.

Returns the specified decimal digit of a positive value.

EXP

Deduce the exponential function of a value.

LOG

Returns the NATURAL LOG of a value.

LOG10

Returns the LOG of a value.
MAX.

Returns the maximum of two numbers.
MIN.

Returns the minimum of two numbers.

NCD.

Priority encoder of a 16-bit value.

POW

Computes a Variable to the power of another.

REV.

Reverses the order of the lowest bits in a value.

SIN.

Returns the SINE of a value in RADIANS.
SQR.

Returns the SQUARE ROOT of a value.

TAN

Returns the TANGENT of a value in RADIANS.

DIV32.

15-bit x 31 bit divide. (For PBP compatibility only)

ADD '+'.

Syntax

Assignment Variable = Variable + Variable
Overview

Adds variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as floating point.

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = 1575

Value2 = 976

Value1 = Value1 + Value2

' Add the numbers.

PRINT DEC Value1

' Display the result

' 32-bit addition

DIM Value1 as WORD

DIM Value2 as DWORD

Value1 = 1575

Value2 = 9763647

Value2 = Value2 + Value1

' Add the numbers.

PRINT DEC Value1

' Display the result
SUBTRACT '-'.
Syntax

Assignment Variable = Variable - Variable
Overview

Subtracts variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as floating point.

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = 1000

Value2 = 999

Value1 = Value1 - Value2

' Subtract the numbers.

PRINT DEC Value1

' Display the result

' 32-bit subtraction

DIM Value1 as WORD

DIM Value2 as DWORD

Value1 = 1575

Value2 = 9763647

Value2 = Value2 - Value1

' Subtract the numbers.

PRINT DEC Value1

' Display the result

' 32-bit signed subtraction

DIM Value1 as DWORD

DIM Value2 as DWORD

Value1 = 1575

Value2 = 9763647

Value1 = Value1 - Value2

' Subtract the numbers.

PRINT SDEC Value1

' Display the result
MULTIPLY '*'.
Syntax

Assignment Variable = Variable * Variable
Overview

Multiplies variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648 to +2147483647 as well as floating point. If the result of multiplication is larger than 2147483647 when using 32-bit variables, the excess bit will be lost.

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = 1000

Value2 = 19

Value1 = Value1 * Value2

' Multiply Value1 by Value2.

PRINT DEC Value1

' Display the result

' 32-bit multiplication

DIM Value1 as WORD

DIM Value2 as DWORD

Value1 = 100

Value2 = 10000

Value2 = Value2 * Value1

' Multiply the numbers.

PRINT DEC Value1

' Display the result

MULTIPLY HIGH '**'.
Syntax

Assignment Variable = Variable ** Variable
Overview

Multiplies 8 or 16-bit variables and/or constants, returning the high 16 bits of the result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest variable supported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are normally lost. The ** (double-star) operand produces these upper 16 bits.

For example, suppose 65000 ($FDE8) is multiplied by itself. The result is 4,225,000,000 or $FBD46240. The * (star, or normal multiplication) instruction would return the lower 16 bits, $6240. The ** instruction returns $FBD4.

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = $FDE8

Value2 = Value1 ** Value1

' Multiply $FDE8 by itself

PRINT HEX Value2

' Return high 16 bits.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is rather obsolete considering the 32-bit capabilities of the PROTON+ compiler.
MULTIPLY MIDDLE '*/'.
Syntax

Assignment Variable = Variable */ Variable
Overview

Multiplies variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a fraction. The whole number is the upper byte of the multiplier (0 to 255 whole units) and the fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operand allows a workaround for the compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the upper byte of the multiplier, would be 1, and the lower byte (fractional part) would be 128, since 128/256 = 0.5. It may be clearer to express the */ multiplier in HEX as $0180, since hex keeps the contents of the upper and lower bytes separate. Here's an example: -

DIM Value1 as WORD

Value1 = 100

Value1 = Value1 */ $0180

' Multiply by 1.5 [1 + (128/256)]

PRINT DEC Value1

' Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper byte, then use the following formula for the value of the lower byte: -

INT(fraction * 256)

For example, take Pi (3.14159). The upper byte would be $03 (the whole number), and the lower would be INT(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be $0324. This isn't a perfect match for Pi, but the error is only about 0.1%.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is rather obsolete considering the 32-bit capabilities of the PROTON+ compiler.

DIVIDE '/'.
Syntax

Assignment Variable = Variable / Variable
Overview

Divides variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers from -2147483648 to +2147483647 as well as floating point.

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = 1000

Value2 = 5

Value1 = Value1 / Value2

' Divide the numbers.

PRINT DEC Value1

' Display the result (200).

' 32-bit division

DIM Value1 as WORD

DIM Value2 as DWORD

Value1 = 100

Value2 = 10000

Value2 = Value2 / Value1

' Divide the numbers.

PRINT DEC Value1

' Display the result

MODULUS '//'.
Syntax

Assignment Variable = Variable // Variable
Overview

Return the remainder left after dividing one value by another.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a fraction. For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the result, so 1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The division operation left a remainder of 4. The // returns the remainder of a given division operation. Numbers that divide evenly, such as 1000/5, produce a remainder of 0: -

DIM Value1 as WORD

DIM Value2 as WORD

Value1 = 1000

Value2 = 6

Value1 = Value1 // Value2

' Get remainder of Value1 / Value2.

PRINT DEC Value1

' Display the result (4).

' 32-bit modulus

DIM Value1 as WORD

DIM Value2 as DWORD

Value1 = 100

Value2 = 99999

Value2 = Value2 // Value1

' mod the numbers.

PRINT DEC Value1

' Display the result

The modulus operator does not operate with floating point values or variables.

BITWISE AND '&'.
The And operator (&) returns the bitwise AND of two values. Each bit of the values is subject to the following logic: -

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

The result returned by & will contain 1s in only those bit positions in which both input values contain 1s: -

DIM Value1 as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Value1 = %00001111

Value2 = %10101101

Result = Value1 & Value2

PRINT BIN Result

' Display AND result (%00001101)

or

PRINT BIN (%00001111 & %10101101)
' Display AND result (%00001101)

Bitwise operations are not permissible with floating point values or variables.
BITWISE OR '|'.
The OR operator (|) returns the bitwise OR of two values. Each bit of the values is subject to the following logic: -

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which one or the other (or both) input values contain 1s: -

DIM Value1 as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Value1 = %00001111

Value2 = %10101001

Result = Value1 | Value2

PRINT bin Result

' Display OR result (%10101111)

or

PRINT bin (%00001111 | %10101001)

' Display OR result (%10101111)

Bitwise operations are not permissible with floating point values or variables.
BITWISE XOR '^'.
The Xor operator (^) returns the bitwise XOR of two values. Each bit of the values is subject to the following logic: -

0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one or the other (but not both) input values contain 1s: -

DIM Value1 as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Value1 = %00001111

Value2 = %10101001

Result = Value1 ^ Value2

PRINT bin Result

' Display XOR result (%10100110)

or

PRINT bin (%00001111 ^ %10101001)
' Display XOR result (%10100110)

Bitwise operations are not permissible with floating point values or variables.
BITWISE SHIFT LEFT '<<'.
Shifts the bits of a value to the left a specified number of places. Bits shifted off the left end of a number are lost; bits shifted into the right end of the number are 0s. Shifting the bits of a value left n number of times also has the effect of multiplying that number by two to the nth power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent to 100 * 23.

DIM Value1 as WORD

DIM Loop as BYTE

Value1 = %1111111111111111

FOR Loop = 1 TO 16

' Repeat with b0 = 1 to 16.

PRINT bin Value1 << Loop

' Shift Value1 left Loop places.

NEXT

Bitwise operations are not permissible with floating point values or variables.

BITWISE SHIFT RIGHT '>>'.
Shifts the bits of a variable to the right a specified number of places. Bits shifted off the right end of a number are lost; bits shifted into the left end of the number are 0s. Shifting the bits of a value right n number of times also has the effect of dividing that number by two to the nth power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent to 100 / 23.

DIM Value1 as WORD

DIM Loop as BYTE

Value1 = %1111111111111111

FOR Loop = 1 TO 16

' Repeat with b0 = 1 to 16.

PRINT bin Value1 >> Loop

' Shift Value1 right Loop places.

NEXT

BITWISE COMPLEMENT ‘~’
The Complement operator (~) Complements (inverts) the bits of a number. Each bit that contains a 1 is changed to 0 and each bit containing 0 is changed to 1. This process is also known as a "bitwise NOT".

DIM Value1 as WORD

DIM Value2 as WORD

Value2 = %1111000011110000

Value1 = ~Value2

' Complement Value2.

PRINT BIN16 Value1

' Display the result

Complementing can be carried out with all variable types except FLOATs. Attempting to complement a floating point variable will produce a syntax error.

ABS

Syntax

Assignment Variable = ABS Variable
Overview

Return the absolute value of a constant, variable or expression.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

32-bit Example

DEVICE = 16F877

DIM DWD1 AS DWORD
' Declare a DWORD variable

DIM DWD2 AS DWORD
' Declare a DWORD variable

CLS

DWD1 = -1234567

' Load DWD1 with value -1234567

DWD2 = ABS DWD1
' Extract the absolute value from DWD1

PRINT DEC DWD2

' Display the result, which is 1234567

STOP

Floating Point example

DEVICE = 16F877

DIM FLP1 AS FLOAT
' Declare a FLOAT variable

DIM FLP2 AS FLOAT
' Declare a FLOAT variable

CLS

FLP1 = -1234567

' Load FLP1 with value -1234567.123

FLP2 = ABS FLP1

' Extract the absolute value from FLP1

PRINT DEC FLP2

' Display the result, which is 1234567.123

STOP

ACOS

Syntax

Assignment Variable = ACOS Variable
Overview

Deduce the Arc Cosine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC COSINE (Inverse Cosine) extracted. The value expected and returned by the floating point ACOS is in RADIANS. The value must be in the range of -1 to +1

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to ACOS

DIM FLOATOUT AS FLOAT
' Holds the result of the ACOS

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 0.8

' Load the variable

FLOATOUT = ACOS FLOATIN
' Extract the ACOS of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
ACOS is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC COSINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

ASIN

Syntax

Assignment Variable = ASIN Variable
Overview

Deduce the Arc Sine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC SINE (Inverse Sine) extracted. The value expected and returned by ASIN is in RADIANS. The value must be in the range of -1 to +1

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to ASIN

DIM FLOATOUT AS FLOAT
' Holds the result of the ASIN

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 0.8

' Load the variable

FLOATOUT = ASIN FLOATIN
' Extract the ASIN of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
ASIN is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC SINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

ATAN

Syntax

Assignment Variable = ATAN Variable
Overview

Deduce the Arc Tangent of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC TANGENT (Inverse Tangent) extracted. The value expected and returned by the floating point ATAN is in RADIANS.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to ATAN

DIM FLOATOUT AS FLOAT
' Holds the result of the ATAN

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 1

' Load the variable

FLOATOUT = ATAN FLOATIN
' Extract the ATAN of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes

ATAN is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC TANGENT is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

COS

Syntax

Assignment Variable = COS Variable
Overview

Deduce the Cosine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the COSINE extracted. The value expected and returned by COS is in RADIANS.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to COS with

DIM FLOATOUT AS FLOAT
' Holds the result of the COS

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 123

' Load the variable

FLOATOUT = COS FLOATIN
' Extract the COS of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
With 12, and 14-bit core devices, COS returns the 8-bit cosine of a value, compatible with the BASIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). COS starts with a value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point COSINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

DCD

2 n -power decoder of a four-bit value. DCD accepts a value from 0 to 15, and returns a 16-bit number with that bit number set to 1. For example: -

WRD1= DCD 12

' Set bit 12.

PRINT BIN16 WRD1
' Display result (%0001000000000000)

DCD does not (as yet) support DWORDScribble2749, or FLOATScribble2769 type variables. Therefore the highest value obtainable is 65535.

DIG (BASIC Stamp version)

In this form, the DIG operator is compatible with the BASIC STAMP, and the melab's PicBASIC Pro compiler. DIG returns the specified decimal digit of a 16-bit positive value. Digits are numbered from 0 (the rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Example: -

WRD1= 9742

PRINT WRD1 DIG 2

' Display digit 2 (7)

FOR Loop = 0 TO 4

PRINT WRD1 DIG Loop

' Display digits 0 through 4 of 9742.

NEXT

Note

DIG does not support FLOATScribble2769 type variables.

EXP

Syntax

Assignment Variable = EXP Variable
Overview

Deduce the exponential function of a value. This is e to the power of value where e is the base of natural logarithms. EXP 1 is 2.7182818.
Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to EXP with

DIM FLOATOUT AS FLOAT
' Holds the result of the EXP

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 1

' Load the variable

FLOATOUT = EXP FLOATIN
' Extract the EXP of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
EXP is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point exponentials are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

LOG

Syntax

Assignment Variable = LOG Variable
Overview

Deduce the Natural Logarithm a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the NATURAL LOGARITHM extracted.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to LOG with

DIM FLOATOUT AS FLOAT
' Holds the result of the LOG

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 1

' Load the variable

FLOATOUT = LOG FLOATIN
' Extract the LOG of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
LOG is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point NATURAL LOGARITHMS are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

LOG10

Syntax

Assignment Variable = LOG10 Variable
Overview

Deduce the Logarithm a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the LOGARITHM extracted.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to LOG10 with

DIM FLOATOUT AS FLOAT
' Holds the result of the LOG10

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 1

' Load the variable

FLOATOUT = LOG10 FLOATIN
' Extract the LOG10 of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
LOG10 is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point LOGARITHMS are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

MAX

Returns the maximum of two numbers. Its use is to limit numbers to a specific value. Its syntax is: -

' Set VAR2 to the larger of VAR1 and 100 (VAR2 will lie between values ' 100 and 255)

VAR2 = VAR1 MAX 100

MAX does not (as yet) support DWORDScribble2749, or FLOATScribble2769 type variables. Therefore the highest value obtainable is 65535.

MIN

Returns the minimum of two numbers. Its use is to limit numbers to a specific value. Its syntax is: -

' Set VAR2 to the smaller of VAR1 and 100 (VAR2 cannot be greater ' than 100)
VAR2 = VAR1 MIN 100

MIN does not (as yet) support DWORDScribble2749, or FLOATScribble2769 type variables. Therefore the highest value obtainable is 65535.

NCD

Priority encoder of a 16-bit value. NCD takes a 16-bit value, finds the highest bit containing a 1 and returns the bit position plus one (1 through 16). If no bit is set, the input value is 0. NCD returns 0. NCD is a fast way to get an answer to the question "what is the largest power of two that this value is greater than or equal to?" The answer that NCD returns will be that power, plus one. Example: -

WRD1= %1101

' Highest bit set is bit 3.

PRINT DEC NCD WRD1
' Display the NCD of WRD1(4).

NCD does not (as yet) support DWORDScribble2749, or FLOATScribble2769 type variables.

POW

Syntax

Assignment Variable = POW Variable , Pow Variable
Overview
Computes Variable to the power of Pow Variable.

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression.

Pow Variable can be a constant, variable or expression.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM POW_OF as FLOAT

DIM FLOATIN as FLOAT

' Holds the value to POW with

DIM FLOATOUT as FLOAT
' Holds the result of the POW

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

POW_OF = 10

FLOATIN = 2

' Load the variable

FLOATOUT = POW FLOATIN,POW_OF

' Extract the POW of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes.
POW is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point power of is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

REV

Reverses the order of the lowest bits in a value. The number of bits to be reversed is from 1 to 32. Its syntax is: -

VAR1 = %10101100 REV 4
' Sets VAR1 to %10100011
or

DIM DWD AS DWORD

' Sets DWD to %10101010000000001111111110100011

DWD = %10101010000000001111111110101100 REV 4

SIN

Syntax

Assignment Variable = SIN Variable
Overview

Deduce the Sine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the SINE extracted. The value expected and returned by SIN is in RADIANS.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to SIN

DIM FLOATOUT AS FLOAT
' Holds the result of the SIN

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 123

' Load the variable

FLOATOUT = SIN FLOATIN
' Extract the SIN of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes
With 12, and 14-bit core devices, SIN returns the 8-bit sine of a value, compatible with the BASIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). SIN starts with a value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point SINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

SQR

Syntax

Assignment Variable = SQR Variable
Overview

Deduce the Square Root of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the SQUARE ROOT extracted.

Notes
With 12, and 14-bit core devices, SQR returns an integer square root of a value, compatible with the BASIC Stamp syntax. Remember that most square roots have a fractional part that the compiler discards in doing its integer-only math. Therefore it computes the square root of 100 as 10 (correct), but the square root of 99 as 9 (the actual is close to 9.95). Example: -

VAR1 = SQR VAR2

or

PRINT SQR 100

' Display square root of 100 (10).

PRINT SQR 99

' Display of square root of 99 (9 due to truncation)

However, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point SQR is implemented.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DIM FLOATIN AS FLOAT

' Holds the value to SQR

DIM FLOATOUT AS FLOAT
' Holds the result of the SQR

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 600

' Load the variable

FLOATOUT = SQR FLOATIN
' Extract the SQR of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

TAN

Syntax

Assignment Variable = TAN Variable
Overview

Deduce the Tangent of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the TANGENT extracted. The value expected and returned by the floating point TAN is in RADIANS.

Example

INCLUDE "PROTON18_4.INC"
' Use the PROTON board for the demo

DEVICE = 18F452

' Choose a 16-bit core device

DIM FLOATIN AS FLOAT

' Holds the value to TAN

DIM FLOATOUT AS FLOAT
' Holds the result of the TAN

DELAYMS 500

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

FLOATIN = 1

' Load the variable

FLOATOUT = TAN FLOATIN
' Extract the TAN of the value

PRINT DEC FLOATOUT

' Display the result

STOP

Notes

TAN is not implemented with 12, or 14-bit core devices, however, with the extra functionality, and more linear memory offered by the 16-bit core devices, full 32-bit floating point TANGENT is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the PICmicrotm is used with a single operator. This also means that floating point trigonometry is comparatively slow to operate.

DIV32

In order to make the PROTON+ compiler more compatible with code produced for the melab's PicBASIC Pro compiler, the DIV32 operator has been added. The melab's compiler's multiply operand operates as a 16-bit x 16-bit multiply, thus producing a 32-bit result. However, since the compiler only supports a maximum variable size of 16 bits (WORDScribble2729), access to the result had to happen in 2 stages: -

Var = VAR1 * VAR2 returns the lower 16 bits of the multiply

while…

Var = VAR1 ** VAR2 returns the upper 16 bits of the multiply

There was no way to access the 32-bit result as a valid single value.

In many cases it is desirable to be able to divide the entire 32-bit result of the multiply by a 16-bit number for averaging, or scaling. DIV32 is actually limited to dividing a 31-bit unsigned integer (0 - 2147483647) by a 15-bit unsigned integer (0 - 32767). This ought to be sufficient in most situations.

Because the melab's compiler only allows a maximum variable size of 16 bits (0 - 65535), DIV32 relies on the fact that a multiply was performed just prior to the DIV32 command, and that the internal compiler variables still contain the 32-bit result of the multiply. No other operation may occur between the multiply and the DIV32 or the internal variables may be altered, thus destroying the 32-bit multiplication result.

The following example demonstrates the operation of DIV32: -

DIM WRD1 AS WORD

DIM WRD2 AS WORD

DIM WRD3 AS WORD

DIM Fake AS WORD

' Must be a WORD type variable for result

WRD2 = 300

WRD3 = 1000

Fake = WRD2 * WRD3

' Operators ** or */ could also be used instead

WRD1= DIV32 100

PRINT DEC WRD1

The above program assigns WRD2 the value 300 and WRD3 the value 1000. When multiplied together, the result is 300000. However, this number exceeds the 16-bit word size of a variable (65535). Therefore, the dummy variable, FAKE, contains only the lower 16 bits of the result. DIV32 uses the compiler's internal (SYSTEM) variables as the operands.

Notes.
This operand enables a certain compatibility with melab's compiler code, but is rather obsolete considering the 32-bit, and floating point capabilities of the PROTON+ compiler.

Commands and Directives
Commands

and

Directives
ADIN

Read the on-board analogue to digital converter.

ASM-ENDASM
Insert assembly language code section.

BOX

Draw a square on a graphic LCD.

BRANCH

Computed GOTO (equiv. to ON..GOTO).

BRANCHL

BRANCH out of page (long BRANCH).

BREAK

Exit a loop prematurely.

BSTART

Send a START condition to the I2C bus.
BSTOP

Send a STOP condition to the I2C bus.
BRESTART

Send a RESTART condition to the I2C bus.
BUSACK

Send an ACKNOWLEDGE condition to the I2C bus.
BUSIN

Read bytes from an I2C device.

BUSOUT

Write bytes to an I2C device.

BUTTON

Detect and debounce a key press.
CALL

Call an assembly language subroutine.

CDATA

Define initial contents in memory.

CF_INIT

Initialise the interface to a Compact Flash card.

CF_SECTOR
Point to the sector of interest in a Compact Flash card.

CF_READ

Read data from a Compact Flash card.

CF_WRITE

Write data to a Compact Flash card.

CIRCLE

Draw a circle on a graphic LCD.

CLEAR

Place a variable or bit in a low state, or clear all RAM area.

CLEARBIT

Clear a bit of a port or variable, using a variable index.
CLS

Clear the LCD.
CONFIG

Set or Reset programming fuse configurations.

COUNTER

Count the number of pulses occurring on a pin.

CREAD

Read data from code memory.

CURSOR

Position the cursor on the LCD.

CWRITE

Write data to code memory.

DATA

Define initial contents in memory.

DEC

Decrement a variable.
DECLARE

Adjust library routine parameters.

DELAYMS

Delay (1mSec resolution).

DELAYUS

Delay (1uSec resolution).

DEVICE

Choose the type of PICmicrotm to compile with.

DIG

Return the value of a decimal digit.

DIM

Create a variable.

DISABLE

DISABLE software interrupts previously ENABLED.
DTMFOUT

Produce a DTMF Touch Tone note.
EDATA

Define initial contents of on-board EEPROM.

ENABLE

ENABLE software interrupts previously DISABLED.
END

Stop execution of the BASIC program.

EREAD

Read a value from on-board EEPROM.

EWRITE

Write a value to on-board EEPROM.

FOR…TO…NEXT…STEP

Repeatedly execute statements.

FREQOUT

Generate one or two tones, of differing or the same frequencies.
GETBIT

Examine a bit of a port or variable, using a variable index.
GOSUB

Call a BASIC subroutine at a specified label.

GOTO

Continue execution at a specified label.

HBSTART

Send a START condition to the I2C bus using the MSSP module.
HBSTOP

Send a STOP condition to the I2C bus using the MSSP module.
HBRESTART
Send a RESTART condition to the I2C bus using the MSSP module.
HBUSACK

Send an ACK condition to the I2C bus using the MSSP module.
HBUSIN

Read from an I2C device using the MSSP module.
HBUSOUT

Write to an I2C device using the MSSP module.
HIGH

Make a pin or port high.

HPWM

Generate a PWM signal using the CCP module.

HRSIN

Receive data from the serial port on devices that contain a USART.

HRSOUT

Transmit data from the serial port on devices that contain a USART.

HSERIN

Receive data from the serial port on devices that contain a USART.

HSEROUT

Transmit data from the serial port on devices that contain a USART.

HRSIN2

Same as HRSIN but using a 2nd USART if available.
HRSOUT2

Same as HRSOUT but using a 2nd USART if available.

HSERIN2

Same as HSERIN but using a 2nd USART if available.

HSEROUT2

Same as HSEROUT but using a 2nd USART if available.
IF..THEN..ELSEIF..ELSE..ENDIF Conditionally execute statements.

INC

Increment a variable.
INCLUDE

Load a BASIC file into the source code.

INKEY

Scan a keypad.

INPUT

Make pin an input.

 [LET]

Assign the result of an expression to a variable. (Optional command).

LCDREAD

Read a single byte from a Graphic LCD.

LCDWRITE

Write bytes to a Graphic LCD.

LEFT$

Extract n amount of characters

from the left of a String. For 18F devices only.

LDATA

Place information into code memory. For access by LREAD.

LINE

Draw a line in any direction on a graphic LCD.

LINETO

Draw a straight line in any direction on a graphic LCD, starting from the

previous LINE command's end position.

LOADBIT

Set or Clear a bit of a port or variable, using a variable index.
LOOKDOWN
Search a constant lookdown table for a value.

LOOKDOWNL
Search constant or variable lookdown table for a value.

LOOKUP

Fetch a constant value from a lookup table.

LOOKUPL

Fetch a constant or variable value from lookup table.

LOW

Make a pin or port low.

LREAD

Read a value from an LDATA table and place into Variable.

LREAD8, LREAD16, LREAD32
Read a single or multi-byte value from an LDATA table with

more efficiency than LREAD.
MID$

Extract n amount of characters from a String beginning at n characters

from the left. For 18F devices only.

ON INTERRUPT
Execute a subroutine using a SOFTWARE interrupt.

ON_INTERRUPT
Execute an ASSEMBLER subroutine on a HARWARE interrupt.

ON_LOW_INTERRUPT
Execute an ASSEMBLER subroutine when a LOW PRIORITY

HARDWARE interrupt occurs on a 16-bit core device.

ON GOSUB

Call a Subroutine based on an Index value. For 18F devices only.

ON GOTO

Jump to an address in code memory based on an Index value.

(Primarily for smaller PICmicros)

ON GOTOL

Jump to an address in code memory based on an Index value.

(Primarily for larger PICmicros)
OUTPUT

Make a pin an output.

OREAD

Receive data from a device using the Dallas 1-wire protocol.
OWRITE

Send data to a device using the Dallas 1-wire protocol.
ORG

Set Program Origin.

PEEK

Read a byte from a register or variable. Rarely used, now obsolete.

PIXEL

Read a single pixel from a Graphic LCD.

PLOT

Set a single pixel on a Graphic LCD.

POKE

Write a byte to register or variable. Rarely used, now obsolete, command.
POT

Read a potentiometer on specified pin.

PRINT

Display characters on an LCD.

PULSIN

Measure the pulse width on a pin.

PULSOUT

Generate a pulse to a pin.

PWM

Output a pulse width modulated pulse train to pin.

RANDOM

Generate a pseudo-random number.

RCIN

Measure a pulse width on a pin.

READ

Read a value from memory.

REM

Add a remark to the source code.

REPEAT...UNTIL
Execute a block of instructions until a condition is true.
RESTORE

Adjust the position of data to READ.

RESUME

Re-enable software interrupts and return.
RETURN

Continue at the statement following the last GOSUB.

RIGHT$

Extract n amount of characters

from the right of a String. For 18F devices only.

RSIN

Asynchronous serial input from a fixed pin and baud rate.

RSOUT

Asynchronous serial output to a fixed pin and baud rate.

SEED

Seed the random number generator, to obtain a more random result.

SELECT..CASE..ENDSELECT
Conditionally run blocks of code.

SERIN

Receive asynchronous serial data (i.e. RS232 data).
SEROUT

Transmit asynchronous serial data (i.e. RS232 data).
SERVO

Control a servo motor.

SET

Place a variable or bit in a high state.
SET_OSCCAL
Calibrate the internal oscillator found on some PICmicrotm devices.

SETBIT

Set a bit of a port or variable, using a variable index.
SHIN

Synchronous serial input.

SHOUT

Synchronous serial output.

SLEEP

Power down the processor for a period of time.

SNOOZE

Power down the processor for short period of time.

SOUND

Generate a tone or white-noise on a specified pin.

SOUND2

Generate 2 tones from 2 separate pins.

STOP

Stop program execution.

STR

Load a Byte array with values.

STRN

Create a NULL terminated Byte array.

STR$

Convert the contents of a variable to a NULL terminated String.

SWAP

Exchange the values of two variables.

SYMBOL

Create an alias to a constant, port, pin, or register.

TOGGLE

Reverse the state of a port's bit.

TOLOWER

Convert the characters in a String to lower case. For 18F devices only.

TOUPPER

Convert the characters in a String to UPPER case. For 18F devices only.

UNPLOT

Clear a single pixel on a Graphic LCD.

USBINIT

Initialise the USB interrupt on devices that contain a USB module.

USBIN

Receive data via a USB endpoint on devices that contain a USB module.

USBOUT

Transmit data via a USB endpoint on devices that contain a USB module.

VAL

Convert a NULL terminated String to an integer value.

VARPTR

Locate the address of a variable.

WHILE…WEND
Execute statements while condition is true.

XIN

Receive data using the X10 protocol.

XOUT

Transmit data using the X10 protocol.

ADIN
Syntax

Variable = ADIN channel number

Overview

Read the value from the on-board Analogue to Digital Converter.

Operators

Variable is a user defined variable.

Channel number can be a constant or a variable expression.

Example

'Read the value from channel 0 of the ADC and place in variable VAR1.

ADIN_RES = 10

' 10-bit result required

ADIN_TAD = FRC

' RC OSC chosen

ADIN_STIME = 50

' Allow 50us sample time

DIM VAR1 AS WORD

TRISA = %00000001

' Configure AN0 (PORTA.0) as an input

ADCON1 = %10000000

' Set analogue input on PORTA.0

VAR1 = ADIN 0

' Place the conversion into variable VAR1

ADIN Declares

There are three DECLARE directives for use with ADIN. These are: -

DECLARE ADIN_RES 8 , 10 , or 12.

Sets the number of bits in the result.

If this DECLARE is not used, then the default is the resolution of the PICmicrotm type used. For example, the 16F87X range will result in a resolution of 10-bits, along with the 16-bit core devices, while the standard PICmicrotm types will produce an 8-bit result. Using the above DECLARE allows an 8-bit result to be obtained from the 10-bit PICmicrotm types, but NOT 10-bits from the 8-bit types.

DECLARE ADIN_TAD 2_FOSC , 8_FOSC , 32_FOSC , 64_FOSC , or FRC.

Sets the ADC's clock source.

All compatible PICs have four options for the clock source used by the ADC. 2_FOSC, 8_FOSC, 32_FOSC, and 64_FOSC are ratios of the external oscillator, while FRC is the PICmicro's internal RC oscillator. Instead of using the predefined names for the clock source, values from 0 to 3 may be used. These reflect the settings of bits 0-1 in register ADCON0Scribble2674.

Care must be used when issuing this DECLARE, as the wrong type of clock source may result in poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduction in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is the default setting if the DECLARE is not issued in the BASIC listing.

DECLARE ADIN_STIME 0 to 65535 microseconds (us).

Allows the internal capacitors to fully charge before a sample is taken. This may be a value from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in poor conversion speeds without any extra resolution being attained.

A typical value for ADIN_STIME is 50 to 100. This allows adequate charge time without loosing too much conversion speed. But experimentation will produce the right value for your particular requirement. The default value if the DECLARE is not used in the BASIC listing is 50.

Notes

Before the ADIN command may be used, the appropriate TRIS register must be manipulated to set the desired pin to an input. Also, the ADCON1 Scribble2679register must be set according to which pin is required as an analogue input, and in some cases, to configure the format of the conversion's result. See the numerous Microchip datasheets for more information on these registers and how to set them up correctly for the specific device used.

If multiple conversions are being implemented, then a small delay should be used after the ADIN command. This allows the ADC's internal capacitors to discharge fully: -

Again:

VAR1 = ADIN 3
' Place the conversion into variable VAR1

DELAYUS 1

' Wait for 1us

GOTO Again

' Read the ADC forever

[image: image89.wmf]C1

1uF

5 Volts

V+

V+

VCC

GND

MAX232

10

9

12

11

14

15

13

8

7

6

5

4

3

2

1

16

C1+

C1-

C2+

C2-

V-

T1in

T2in

R1out

R2out

T1out

T2out

R1in

R2in

C2

1uF

C3

1uF

C4

1uF

6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

0V

From PIC

Serial Output

To PIC

Serial Input

C5

1uF

The circuit below shows a typical setup for a simple ADC test.

See also :
RCINScribble1889, POTScribble1769.

ASM..ENDASM

Syntax

ASM

assembler mnemonics

ENDASM

or

@ assembler mnemonic
Overview

Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the assembler without the compiler interfering in any way. This allows a great deal of flexibility that cannot always be achieved using BASIC commands alone.

BOX
Syntax

BOX Set_Clear , Xpos Start , Ypos Start , Size

Overview

Draw a square on a graphic LCD.

Operators

Set_Clear may be a constant or variable that determines if the square will set or clear the pixels. A value of 1 will set the pixels and draw a square, while a value of 0 will clear any pixels and erase a square .

Xpos Start may be a constant or variable that holds the X position for the centre of the square. Can be a value from 0 to 127.

Ypos Start may be a constant or variable that holds the Y position for the centre of the square. Can be a value from 0 to 63.

Size may be a constant or variable that holds the Size of the square (in pixels). Can be a value from 0 to 255.

Example

' Draw a square at position 63,32 with a size of 20 pixels

INCLUDE "PROTON_G4.INT"

DIM XPOS as BYTE

DIM YPOS as BYTE

DIM SIZE as BYTE

DIM SET_CLR as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

XPOS = 63

YPOS = 32

SIZE = 20

SET_CLR = 1

BOX SET_CLR , XPOS , YPOS , RADIUS

STOP

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than wide) the square will appear elongated.

See Also :
CIRCLE, LINE, LINETO.
BRANCH

Syntax

BRANCH Index, [Label1 {,...Labeln }]

Overview

Cause the program to jump to different locations based on a variable index. On a PICmicrotm device with only one page of memory.

Operators

Index is a constant, variable, or expression, that specifies the address to branch to.

Label1,...Labeln are valid labels that specify where to branch to. A maximum of 255 labels may be placed between the square brackets, 256 if using a 16-bit core device.

Example

DEVICE 16F84

DIM INDEX AS BYTE

Start:

INDEX = 2

' Assign INDEX a value of 2

' Jump to label 2 (Lab_2) because INDEX = 2

BRANCH INDEX,[Lab_0, Lab_1, Lab_2]

Lab_0:
INDEX = 2

' INDEX now equals 2

GOTO Start

Lab_1:
INDEX = 0

' INDEX now equals 0

GOTO Start

Lab_2:
INDEX = 1

' INDEX now equals 1

GOTO Start

The above example we first assign the index variable a value of 2, then we define our labels. Since the first position is considered 0 and the variable index equals 2 the BRANCH command will cause the program to jump to the third label in the brackets [Lab_2].

Notes

BRANCH operates the same as ON x GOTO. It's useful when you want to organise a structure such as: -

IF VAR1 = 0 THEN GOTO Lab_0
' VAR1 =0: go to label "Lab_0"

IF VAR1 = 1 THEN GOTO Lab_1
' VAR1 =1: go to label "Lab_1"

IF VAR1 = 2 THEN GOTO Lab_2
' VAR1 =2: go to label "Lab_2"

You can use BRANCH to organise this into a single statement: -

BRANCH VAR1, [Lab_0 , Lab_1, Lab_2]

This works exactly the same as the above IF...THEN example. If the value is not in range (in this case if VAR1 is greater than 2), BRANCH does nothing. The program continues with the next instruction..

The BRANCH command is primarily for use with PICmicrotm devices that have one page of memory (0-2047). If larger PICmicro's are used and you suspect that the branch label will be over a page boundary, use the BRANCHL Scribble610command instead.

See also :
BRANCHLScribble610
BRANCHL

Syntax

BRANCHL Index, [Label1 {,...Labeln }]

Overview

Cause the program to jump to different locations based on a variable index. On a PICmicrotm device with more than one page of memory.

Operators

Index is a constant, variable, or expression, that specifies the address to branch to.

Label1,...Labeln are valid labels that specify where to branch to. A maximum of 127 labels may be placed between the square brackets, 256 if using a 16-bit core device.
Example

DEVICE 16F877

DIM INDEX AS BYTE

Start:

INDEX = 2

' Assign INDEX a value of 2

' Jump to label 2 (Lab_2) because INDEX = 2

BRANCHL INDEX,[Lab_0, Lab_1, Lab_2]

Lab_0:
INDEX = 2

' INDEX now equals 2

GOTO Start

Lab_1:
INDEX = 0

' INDEX now equals 0

GOTO Start

Lab_2:
INDEX = 1

' INDEX now equals 1

GOTO Start

The above example we first assign the index variable a value of 2, then we define our labels. Since the first position is considered 0 and the variable index equals 2 the BRANCHL command will cause the program to jump to the third label in the brackets [Lab_2].

Notes

The BRANCHL command is mainly for use with PICmicrotm devices that have more than one page of memory (greater than 2048). It may also be used on any PICmicrotm device, but does produce code that is larger than BRANCHScribble590.

See also :
BRANCHScribble590
BREAK

Syntax

BREAK
Overview

Exit a FOR...NEXT, WHILE...WEND or REPEAT...UNTIL loop prematurely.

Example 1
' Break out of a FOR NEXT loop when the count reaches 10

INCLUDE "PROTON_4.INC"
' Demo using PROTON Dev board

DIM VAR1 as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

FOR VAR1 = 0 TO 39

' Create a loop of 40 revolutions

PRINT AT 1,1,DEC VAR1

' Print the revolutions on the first line of the LCD

IF VAR1 = 10 THEN BREAK
' Break out of the loop when VAR1 = 10

DELAYMS 200

' Delay so we can see what's happening

NEXT

' Close the FOR-NEXT loop

PRINT AT 2,1,"EXITED AT " , DEC VAR1 ' Display the value when the loop was broken

STOP

Example 2

' Break out of a REPEAT-UNTIL loop when the count reaches 10

INCLUDE "PROTON_4.INC"
' Demo using PROTON Dev board

DIM VAR1 as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

VAR1 = 0

REPEAT

' Create a loop

PRINT AT 1,1,DEC VAR1

' Print the revolutions on the first line of the LCD

IF VAR1 = 10 THEN BREAK
' Break out of the loop when VAR1 = 10

DELAYMS 200

' Delay so we can see what's happening

INC VAR1

UNTIL VAR1 > 39

' Close the loop after 40 revolutions

PRINT AT 2,1,"EXITED AT " , DEC VAR1 ' Display the value when the loop was broken

STOP

Example 3

' Break out of a WHILE-WEND loop when the count reaches 10

INCLUDE "PROTON_4.INC"

' Demo using PROTON Dev board

DIM VAR1 as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

VAR1 = 0

WHILE VAR1 < 40

' Create a loop of 40 revolutions

PRINT AT 1,1,DEC VAR1

' Print the revolutions on the first line of the LCD

IF VAR1 = 10 THEN BREAK

' Break out of the loop when VAR1 = 10

DELAYMS 200

' Delay so we can see what's happening

INC VAR1

WEND

' Close the loop

PRINT AT 2,1,"EXITED AT " , DEC VAR1 ' Display the value when the loop was broken

STOP

Notes
The BREAK command is similar to a GOTO but operates internally. When the BREAK command is encountered, the compiler will force a jump to the loop's internal exit label.

If the BREAK command is used outside of a FOR-NEXT REPEAT-UNTIL or WHILE-WEND loop, an error will be produced.

See also :
FOR...NEXT, WHILE...WEND, REPEAT...UNTIL.

BSTART

Syntax

BSTART

Overview
Send a START condition to the I2C bus.

Notes

Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard BUSIN, and BUSOUT commands were found lacking somewhat. Therefore, individual pieces of the I2C protocol may be used in association with the new structure of BUSIN, and BUSOUT. See relevant sections for more information.

Example

 ' Interface to a 24LC32 serial eeprom

DEVICE = 16F877

DIM Loop AS BYTE

DIM Array[10] AS BYTE

' Transmit bytes to the I2C bus

BSTART

' Send a START condition

BUSOUT %10100000

' Target an eeprom, and send a WRITE command

BUSOUT 0

' Send the HIGHBYTE of the address

BUSOUT 0

' Send the LOWBYTE of the address

FOR LOOP = 48 TO 57

' Create a loop containing ASCII 0 to 9

BUSOUT LOOP

' Send the value of LOOP to the eeprom

NEXT

' Close the loop

BSTOP

' Send a STOP condition

DELAYMS 10

' Wait for the data to be entered into eeprom matrix

' Receive bytes from the I2C bus

BSTART

' Send a START condition

BUSOUT %10100000

' Target an eeprom, and send a WRITE command

BUSOUT 0

' Send the HIGHBYTE of the address

BUSOUT 0

' Send the LOWBYTE of the address

BRESTART

' Send a RESTART condition

BUSOUT %10100001

' Target an eeprom, and send a READ command

FOR Loop = 0 TO 9

' Create a loop

Array[Loop] = BUSIN

' Load an array with bytes received

IF Loop = 9 THEN BSTOP : ELSE BUSACK
' ACK or STOP ?

NEXT

' Close the loop

PRINT AT 1,1, STR Array

' Display the Array as a STRING

STOP
See also:
BSTOPScribble625, BRESTARTScribble627, BUSACKScribble629, BUSINScribble649, BUSOUTScribble669, HBSTARTScribble1169, HBRESTARTScribble1209, HBUSACKScribble1229, HBUSINScribble1249, HBUSOUTScribble1269.

BSTOP

Syntax
BSTOP
Overview

Send a STOP condition to the I2C bus.
BRESTART

Syntax

BRESTART
Overview

Send a RESTART condition to the I2C bus.
BUSACK

Syntax

BUSACK
Overview

Send an ACKNOWLEDGE condition to the I2C bus.

See also:
BSTOPScribble625, BSTARTScribble620, BRESTARTScribble627, BUSINScribble649, BUSOUTScribble669, HBSTARTScribble1169, HBRESTARTScribble1209, HBUSACKScribble1229, HBUSINScribble1249, HBUSOUTScribble1269.
BUSIN

Syntax

Variable = BUSIN Control , { Address }

or

Variable = BUSIN

or

BUSIN Control , { Address }, [Variable {, Variable…}]
or

BUSIN Variable
Overview

Receives a value from the I2C bus, and places it into variable/s. If structures TWO or FOUR (see above) are used, then NO ACKNOWLEDGE, or STOP is sent after the data. Structures ONE and THREE first send the control and optional address out of the clock pin (SCL), and data pin (SDA).

Operators
Variable is a user defined variable or constant.

Control may be a constant value or a BYTEScribble2709 sized variable expression.

Address may be a constant value or a variable expression.

The four variations of the BUSIN command may be used in the same BASIC program. The SECOND and FOURTH types are useful for simply receiving a single byte from the bus, and must be used in conjunction with one of the low level commands. i.e. BSTARTScribble620, BRESTARTScribble627, BUSACKScribble629, or BSTOPScribble625. The FIRST, and THIRD types may be used to receive several values and designate each to a separate variable, or variable type.

The BUSIN command operates as an I2C master, using the PICmicro's MSSP module, and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from the eeprom. Note that this bit is automatically set by the BUSIN command, regardless of its initial setting.

Example

' Receive a byte from the I2C bus and place it into variable VAR1.

DIM VAR1 AS BYTE

' We'll only read 8-bits

DIM ADDRESS AS WORD

' 16-bit address required

SYMBOL Control %10100001

' Target an eeprom

ADDRESS = 20

' Read the value at address 20

VAR1 = BUSIN Control , ADDRESS
' Read the byte from the eeprom

or

BUSIN Control , ADDRESS, [VAR1]
' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this position, the size of address is dictated by the size of the variable used (BYTEScribble2709 or WORDScribble2729). In the case of the previous eeprom interfacing, the 24C32 eeprom requires a 16-bit address. While the smaller types require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation three, which only receives a BYTEScribble2709 (8-bits). For example: -

DIM WRD AS WORD

' Declare a WORD size variable

WRD = BUSIN Control , Address

Will receive a 16-bit value from the bus. While: -

DIM VAR1 AS BYTE

' Declare a BYTE size variable

VAR1 = BUSIN Control , Address

Will receive an 8-bit value from the bus.

Using the THIRD variation of the BUSIN command allows differing variable assignments. For example: -

DIM VAR1 AS BYTE

DIM WRD AS WORD

BUSIN Control , Address , [VAR1 , WRD]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of variable VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WRD which has been declared as a word. Of course, BITScribble2689 type variables may also be used, but in most cases these are not of any practical use as they still take up a byte within the eeprom.

The SECOND and FOURTH variations allow all the subtleties of the I2C protocol to be exploited, as each operation may be broken down into its constituent parts. It is advisable to refer to the datasheet of the device being interfaced to fully understand its requirements. See section on BSTARTScribble620, BRESTARTScribble627, BUSACKScribble629, or BSTOPScribble625, for example code.

Declares

See BUSOUT Scribble669for declare explanations.

Notes

When the BUSOUT Scribble669command is used, the appropriate SDA and SCL Port and Pin are automatically setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7K to 10Kwill suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must remember that several different devices may be attached to a single bus, each having a unique slave address. Which means there is usually no need to use up more than two pins on the PICmicrotm, in order to interface to many devices.

STR modifier with BUSIN
Using the STR modifier allows variations THREE and FOUR of the BUSIN command to transfer the bytes received from the I2C bus directly into a byte array. If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. An example of each is shown below: -

DIM Array[10] AS BYTE

' Define an array of 10 bytes

DIM Address AS BYTE

' Create a word sized variable

BUSIN %10100000 , Address , [STR Array]
' Load data into all the array

' Load data into only the first 5 elements of the array

BUSIN %10100000 , Address , [STR Array\5]

BSTART

' Send a START condition

BUSOUT %10100000

' Target an eeprom, and send a WRITE command

BUSOUT 0

' Send the HIGHBYTE of the address

BUSOUT 0

' Send the LOWBYTE of the address

BRESTART

' Send a RESTART condition

BUSOUT %10100001

' Target an eeprom, and send a READ command

BUSIN STR Array

' Load all the array with bytes received

BSTOP

' Send a STOP condition

An alternative ending to the above example is: -

BUSIN STR Array\5

' Load data into only the first 5 elements of the array

BSTOP

' Send a STOP condition

See also :
BUSACKScribble629, BSTARTScribble620, BRESTARTScribble627, BSTOPScribble625, BUSOUTScribble669, HBSTARTScribble1169, HBRESTARTScribble1209,

HBUSACKScribble1229, HBUSINScribble1249, HBUSOUTScribble1269.
BUSOUT

Syntax

BUSOUT Control , { Address } , [Variable {, Variable…}]
or

BUSOUT Variable
Overview

Transmit a value to the I2C bus, by first sending the control and optional address out of the clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the BUSOUT command, a single value will be transmitted, along with an ACK reception.

Operators
Variable is a user defined variable or constant.

Control may be a constant value or a BYTEScribble2709 sized variable expression.

Address may be a constant, variable, or expression.

The BUSOUT command operates as an I2C master and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify that we wish to write to the eeprom. Note that this bit is automatically cleared by the BUSOUT command, regardless of its initial value.

Example

' Send a byte to the I2C bus.

DIM VAR1 AS BYTE

' We'll only read 8-bits

DIM Address AS WORD

' 16-bit address required

SYMBOL Control = %10100000

' Target an eeprom

Address = 20

' Write to address 20

VAR1 = 200

' The value place into address 20

BUSOUT Control , Address , [VAR1]
' Send the byte to the eeprom

DELAYMS 10

' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this position, the size of address is dictated by the size of the variable used (BYTEScribble2709 or WORDScribble2729). In the case of the above eeprom interfacing, the 24C32 eeprom requires a 16-bit address. While the smaller types require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you may not achieve the results you intended.

The value sent to the bus depends on the size of the variables used. For example: -

DIM WRD AS WORD

' Declare a WORD size variable

BUSOUT Control , Address , [WRD]

Will send a 16-bit value to the bus. While: -

DIM VAR1 AS BYTE

' Declare a BYTE size variable

BUSOUT Control , Address , [VAR1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For example: -

DIM VAR1 AS BYTE

DIM WRD AS WORD

BUSOUT Control , Address , [VAR1 , WRD]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WRD which has been declared as a word. Of course, BITScribble2689 type variables may also be used, but in most cases these are not of any practical use as they still take up a byte within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

BUSOUT Control , Address , ["Hello World" , VAR1 , WRD]

Using the second variation of the BUSOUT command, necessitates using the low level commands i.e. BSTARTScribble620, BRESTARTScribble627, BUSACKScribble629, or BSTOPScribble625.

Using the BUSOUT command with only one value after it, sends a byte of data to the I2C bus, and returns holding the ACKNOWLEDGE reception. This acknowledge indicates whether the data has been received by the slave device.

The ACK reception is returned in the PICmicro's CARRY flag, which is STATUS.0, and also SYSTEM variable PP4.0. A value of zero indicates that the data was received correctly, while a one indicates that the data was not received, or that the slave device has sent a NACK return. You must read and understand the datasheet for the device being interfacing to, before the ACK return can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom

DIM PP4 AS BYTE SYSTEM
‘ Bring the system variable into the BASIC program

BSTART

' Send a START condition

BUSOUT %10100000

' Target an eeprom, and send a WRITE command

BUSOUT 0

' Send the HIGHBYTE of the address

BUSOUT 0

' Send the LOWBYTE of the address

BUSOUT "A"

' Send the value 65 to the bus

IF PP4.0 = 1 THEN GOTO Not_Received
' Has ACK been received OK ?

BSTOP

' Send a STOP condition

DELAYMS 10

' Wait for the data to be entered into eeprom matrix

STR modifier with BUSOUT.
The STR modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

MYARRAY [0] = "A"

' Load the first 4 bytes of the array

MYARRAY [1] = "B"

' With the data to send

MYARRAY [2] = "C"

MYARRAY [3] = "D"

BUSOUT %10100000 , Address , [STR MYARRAY \4] ' Send 4-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the program would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE
' Create a 10-byte array.

STR MYARRAY = "ABCD"

' Load the first 4 bytes of the array

BSTART

' Send a START condition

BUSOUT %10100000

' Target an eeprom, and send a WRITE command

BUSOUT 0

' Send the HIGHBYTE of the address

BUSOUT 0

' Send the LOWBYTE of the address

BUSOUT STR MYARRAY \4
' Send 4-byte string.

BSTOP

' Send a STOP condition

The above example, has exactly the same function as the previous one. The only differences are that the string is now constructed using the STR as a command instead of a modifier, and the low-level HBUS commands have been used.

Declares

There are three DECLARE Scribble869directives for use with BUSOUT.

These are: -

DECLARE SDA_PIN PORT . PIN

Declares the port and pin used for the data line (SDA). This may be any valid port on the PICmicrotm. If this declare is not issued in the BASIC program, then the default Port and Pin is PORTA.0

DECLARE SCL_PIN PORT . PIN

Declares the port and pin used for the clock line (SCL). This may be any valid port on the PICmicrotm. If this declare is not issued in the BASIC program, then the default Port and Pin is PORTA.1

These declares, as is the case with all the DECLARES, may only be issued once in any single program, as they setup the I2C library code at design time.

DECLARE SLOW_BUS ON - OFF or 1 - 0

Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs, which will result in intermittent transactions, or in some cases, no transactions at all. Therefore, use this DECLARE if you are not sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

Notes

When the BUSOUT command is used, the appropriate SDA and SCL Port and Pin are automatically setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7K to 10K will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must remember that several different devices may be attached to a single bus, each having a unique slave address. Which means there is usually no need to use up more than two pins on the PICmicrotm, in order to interface to many devices.

A typical use for the I2C commands is for interfacing with serial eeproms. Shown below is the connections to the I2C bus of a 24C32 serial eeprom.

[image: image90.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

22pf

C1

10uf

C2

0.1uf

R1

4.7k

+5 Volts

C3

22pf

4MHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0v

1

2

3

6

5

4

7

8

9

0

#

*

R2-R5

470

COLUMNS

R

O

W

S

See also :
BUSACKScribble629, BSTARTScribble620, BRESTARTScribble627, BSTOPScribble625, BUSINScribble649, HBSTARTScribble1169, HBRESTARTScribble1209,

HBUSACKScribble1229, HBUSINScribble1249, HBUSOUTScribble1269.
BUTTON

Syntax

BUTTON Pin , DownState , Delay , Rate , Workspace , TargetState , Label
Overview

Debounce button input, perform auto-repeat, and branch to address if button is in target state.

Button circuits may be active-low or active-high.
Operators

Pin is a PORT.BIT, constant, or variable (0 - 15), that specifies the I/O pin to use. This pin will

automatically be set to input.
DownState is a variable, constant, or expression (0 or 1) that specifies which logical state occurs when the button is pressed.

Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be pressed before auto-repeat starts. The delay is measured in cycles of the BUTTON routine. Delay has two special settings: 0 and 255. If Delay is 0, BUTTON performs no debounce or auto-repeat. If Delay is 255, BUTTON performs debounce, but no auto-repeat.

Rate is a variable, constant, or expression (0 – 255) that specifies the number of cycles between auto-repeats. The rate is expressed in cycles of the BUTTON routine.

Workspace is a byte variable used by BUTTON for workspace. It must be cleared to 0 before being used by BUTTON for the first time and should not be adjusted outside of the BUTTON command.

TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button should be in for a branch to occur. (0 = not pressed, 1 = pressed).

Label is a label that specifies where to branch if the button is in the target state.
Example

DIM BTNVAR AS BYTE

' Workspace for BUTTON instruction.

Loop:
' Go to NoPress unless BTNVAR = 0.

BUTTON 0 , 0 , 255 , 250 , BTNVAR, 0 , NoPress

PRINT "* "

NoPress:

GOTO Loop
Notes

When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst

of noise occurs as the contacts scrape and bounce against each other. BUTTON’s debounce

feature prevents this noise from being interpreted as more than one switch action.

BUTTON also reacts to a button press the way a computer keyboard does to a key press. When a key is pressed, a character immediately appears on the screen. If the key is held down, there’s a delay, then a rapid stream of characters appears on the screen. BUTTON’s auto-repeat function can be set up to work much the same way.

BUTTON is designed for use inside a program loop. Each time through the loop, BUTTON checks the state of the specified pin. When it first matches DownState, the switch is debounced. Then, as dictated by TargetState, it either branches to address (TargetState = 1) or doesn’t (TargetState = 0).

If the switch stays in DownState, BUTTON counts the number of program loops that execute. When this count equals Delay, BUTTON once again triggers the action specified by TargetState and address. Thereafter, if the switch remains in DownState, BUTTON waits Rate number of cycles between actions. The Workspace variable is used by BUTTON to keep track of how many cycles have occurred since the pin switched to TargetState or since the last auto-repeat.

BUTTON does not stop program execution. In order for its delay and auto repeat functions to work properly, BUTTON must be executed from within a program loop.

Two suitable circuits for use with BUTTON are shown below.

[image: image91.wmf]DS1820

VDD

DQ

GND

3

1

2

R1

4.7k

+5 Volts

0v

To RA1

1

2

3

DS1820

1..GND

2..DQ

3..VCC

CALL

Syntax

CALL Label

Overview

Execute the assembly language subroutine named label.

Operators

Label must be a valid label name.

Example

' Call an assembler routine

CALL Asm_Sub

ASM

Asm_Sub

{mnemonics}

Return

ENDASM

Notes

The GOSUB command is usually used to execute a BASIC subroutine. However, if your subroutine happens to be written in assembler, the CALL command should be used. The main difference between GOSUB and CALL is that when CALL is used, the label's existence is not checked until assembly time. Using CALL, a label in an assembly language section can be accessed that would otherwise be inaccessible to GOSUB. This also means that any errors produced will be assembler types.

The CALL command adds PAGE and BANK switching instructions prior to actually calling the subroutine, however, if CALL is used in an all assembler environment, the extra mnemonics preceding the command can interfere with carefully sculptured code such as bit tests etc. By wrapping the subroutine's name in parenthesis, the BANK and PAGE instructions are suppressed, and the CALL command becomes the CALL mnemonic.

CALL (SUBROUTINE_NAME)
Only use the mnemonic variation of CALL, if you know that your destination is within the same PAGE as the section of code calling it. This is not an issue if using 16-bit core devices, as they have a more linear memory organisation.

See also :
GOSUBScribble1129, GOTOScribble1149

CDATA

Syntax

CDATA { alphanumeric data }

Overview

Place information directly into memory for access by CREAD Scribble789and CWRITEScribble829.

Operators
alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or numeric data without quotes.

Example

DEVICE 16F877

' Use a 16F877 PICmicro

DIM VAR1 AS BYTE

VAR1 = CREAD 2000
' Read the data from address 2000

ORG 2000

' Set the address of the CDATA command

CDATA 120

' Place 120 at address 2000

In the above example, the data is located at address 2000 within the PICmicrotm, then it's read using the CREAD Scribble789command.

Notes

CDATA is only available on the newer PICmicrotm types that have self-modifying features, such as the 16F87x range and the 16-bit core devices, and offer an efficient use of precious code space.

The CREAD Scribble789and CWRITE Scribble829 commands can also use a label address as a location variable. For example: -

DEVICE 16F877

' A device with code modifying features

DIM DByte AS BYTE

DIM Loop AS BYTE

FOR Loop = 0 TO 9

' Create a loop of 10

DByte = CREAD Address + Loop

' Read memory location ADDRESS + LOOP

PRINT Dbyte

' Display the value read

NEXT

STOP
ADDRESS: CDATA "HELLO WORLD"

' Create a string of text in FLASH memory

The program above reads and displays 10 values from the address located by the LABEL accompanying the CDATA command. Resulting in "HELLO WORL" being displayed.

Using the new in-line commands structure, the CREAD Scribble789 and PRINT parts of the above program may be written as: -

' Read and display memory location ADDRESS + LOOP

PRINT CREAD Address + Loop

The CWRITE command uses the same technique for writing to memory: -

DEVICE 16F877

' A device with code modifying features

DIM DByte AS BYTE

DIM Loop AS BYTE

' Write a string to FLASH memory at location ADDRESS

CWRITE Address , ["HELLO WORLD"]

FOR Loop = 0 TO 9

' Create a loop of 10

' Read and display memory location ADDRESS + LOOP

PRINT CREAD Address + Loop

NEXT

STOP

' Reserve 10 spaces in FLASH memory

ADDRESS: CDATA 32 , 32 , 32 , 32 , 32 , 32 , 32 , 32 , 32 , 32

Notice the string text now allowed in the CWRITE Scribble829command. This allows the whole PICmicrotm to be used for data storage and retrieval if desired.

Important Note
Take care not to overwrite existing code when using the CWRITE Scribble829command, and also remember that the all PICmicrotm devices have a finite amount of write cycles (approx 1000). A single program can easily exceed this limit, making that particular memory cell or cells inaccessible.

The configuration fuse setting WRTE Scribble749must be enabled before CDATA, CREAD Scribble789and CWRITE Scribble829 may be used. This enables the self-modifying feature. If the CONFIG Scribble749directive is used, then the WRTE_ON fuse setting must be included in the list: -

CONFIG WDT_ON , XT_OSC , WRTE_ON

Because the 14-bit core devices are only capable of holding 14 bits to a WORDScribble2729, values greater than 16383 ($3FFF) cannot be stored.

16-bit device requirements.
Because the 16-bit core devices are BYTEScribble2709 oriented, as opposed to the 14-bit types which are WORDScribble2729 oriented. The CDATA tables should contain an even number of values, or corruption may occur on the last value read. For example: -

EVEN:
CDATA 1,2,3,"123"

ODD:

CDATA 1,2,3,"12"

Formatting a CDATA table with a 16-bit core device.
Sometimes it is necessary to create a data table with a known format for its values. For example all values will occupy 4 bytes of data space even though the value itself would only occupy 1 or 2 bytes. Formatters are not supported with 14-bit core devices, because they can only hold a maximum value of $3FFF (16383). i.e. 14-bits.

CDATA 100000 , 10000 , 1000 , 100 , 10 , 1

The above line of code would produce an uneven code space usage, as each value requires a different amount of code space to hold the values. 100000 would require 4 bytes of code space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using CREAD would cause problems because there is no way of knowing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of bytes. These are: -

BYTE

WORD

DWORD

FLOAT
Placing one of these formatters before the value in question will force a given length.

CDATA
DWORD 100000 , DWORD 10000 , DWORD 1000 ,_

DWORD 100 , DWORD 10 , DWORD 1

BYTE will force the value to occupy one byte of code space, regardless of it's value. Any values above 255 will be truncated to the least significant byte.

WORD will force the value to occupy 2 bytes of code space, regardless of its value. Any values above 65535 will be truncated to the two least significant bytes. Any value below 255 will be padded to bring the memory count to 2 bytes.

DWORD will force the value to occupy 4 bytes of code space, regardless of its value. Any value below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown above uses the DWORD formatter to ensure all the values in the CDATA table occupy 4 bytes of code space.

FLOAT will force a value to its floating point equivalent, which always takes up 4 bytes of code space.

If all the values in an CDATA table are required to occupy the same amount of bytes, then a single formatter will ensure that this happens.

CDATA AS DWORD 100000 , 10000 , 1000 , 100 , 10 , 1

The above line has the same effect as the formatter previous example using separate DWORD formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters can be used with the AS keyword.

The example below illustrates the formatters in use.

' Convert a DWORD value into a string array

' Using only BASIC commands

' Similar principle to the STR$ command

INCLUDE "PROTON18_4.INC"

' Use a 16-bit core device

DIM P10 AS DWORD

' Power of 10 variable

DIM CNT AS BYTE

DIM J AS BYTE

DIM VALUE AS DWORD

' Value to convert

DIM STRING1[11] AS BYTE

' Holds the converted value

DIM PTR AS BYTE

' Pointer within the Byte array

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

CLEAR

' Clear all RAM before we start

VALUE = 1234576

' Value to convert

GOSUB DWORD_TO_STR
' Convert VALUE to string

PRINT STR STRING1

' Display the result

STOP
'---

' Convert a DWORD value into a string array

' Value to convert is placed in 'VALUE'

' Byte array 'STRING1' is built up with the ASCII equivalent

DWORD_TO_STR:

PTR = 0

J = 0

REPEAT

P10 = CREAD DWORD_TBL + (J * 4)

CNT = 0

WHILE VALUE >= P10

VALUE = VALUE - P10

INC CNT

WEND

IF CNT <> 0 THEN

STRING1[PTR] = CNT + "0"

INC PTR

ENDIF

INC J

UNTIL J > 8

STRING1[PTR] = VALUE + "0"

INC PTR

STRING1[PTR] = 0

' Add the NULL to terminate the string

RETURN
' CDATA table is formatted for all 32 bit values.

' Which means each value will require 4 bytes of code space

DWORD_TBL:

CDATA AS DWORD 1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000,_

100, 10

Label names as pointers.

If a label's name is used in the list of values in a CDATA table, the labels address will be used. This is useful for accessing other tables of data using their address from a lookup table. See example below.

Note that this is not always permitted with 14-bit core devices, because they may not be able to hold the value in a 14-bit word.

' Display text from two CDATA tables

' Based on their address located in a separate table

INCLUDE "PROTON18_4.INC"

' Use a 16-bit core device

DIM ADDRESS AS WORD

DIM LOOP AS WORD

DIM DATA_BYTE AS BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

ADDRESS = CREAD ADDR_TABLE
' Locate the address of the first string

WHILE 1 = 1

' Create an infinite loop

DATA_BYTE = CREAD ADDRESS
' Read each character from the CDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP
' Exit if NULL found

PRINT DATA_BYTE

' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP:

CURSOR 2,1

' Point to line 2 of the LCD

ADDRESS = CREAD ADDR_TABLE + 2 ' Locate the address of the second string

WHILE 1 = 1

' Create an infinite loop

DATA_BYTE = CREAD ADDRESS
' Read each character from the CDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP2 ' Exit if NULL found

PRINT DATA_BYTE

' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP2:

STOP
ADDR_TABLE:

' Table of address's

CDATA WORD STRING1,WORD STRING2

STRING1:

CDATA "HELLO",0

STRING2:

CDATA "WORLD",0

See also :
CONFIGScribble749, CREADScribble789, CWRITE, DATA, LDATA, LREAD, READ. Scribble829
CF_INIT

Syntax

CF_INIT
Overview

Initialise the lines used for Compact Flash access by CF_SECTOR, CF_READ Scribble789and CF_WRITEScribble829.
Notes
CF_INIT sets the pins used for the Compact Flash card to inputs and outputs accordingly. And must be issued before any Compact Flash commands are used in the program.
Essentially what the CF_INIT command does can be shown by the BASIC code listed below: -

Low CF_DTPORT

‘ Set Data lines to output low

Low CF_ADPORT

‘ Set Address lines to output low

Output CF_WEPIN

‘ Set the CF WE pin to output

Low CF_CE1PIN

‘ Set the CF CE1 pin to output low

Output CF_OEPIN

‘ Set the CF OE pin to output

Input CF_CD1PIN

‘ Set the CF CD1 pin to input

Input CF_RDYPIN

‘ Set the CF RDY_BSY pin to input

High CF_RSTPIN

‘ Set the CF RESET pin to output high

Delayus 1

‘ Delay between toggles

Low CF_RSTPIN

‘ Set the CF RESET pin to output low
If the CF_RSTPIN DECLARE is not issued in the BASIC program, then the CF_RSTPIN’s port.bit is not set up and no reset will occur through software. However, you must remember to tie the Compact Flash RESET pin to ground.

The same applies to the CE1PIN. If the CF_CE1PIN DECLARE is not issued in the BASIC program, then this pin is not manipulated in any way, and you must remember to tie the Compact Flash CE1 pin to ground
See Also
CF_SECTOR (for a suitable circuit), CF_READ, CF_WRITE (for declares).
CF_SECTOR

Syntax

CF_SECTOR Sector Number , Operation , {Amount of Sectors}
Overview

Setup the sector in the Compact Flash card that is to be written or read by the commands CF_READ and CF_WRITE.
Operators

Sector Number is the sector of interest in the Compact Flash card. This may be a constant value, variable, or expression. However, remember that there are potentially hundreds of thousands of sectors in a Compact Flash card so this variable will usually be a WORD or DWORD type.

Operation is the operation required by the Compact Flash card, this may either be the texts WRITE or READ. Or the values $30 or $20 which correspond to the texts accordingly.

Amount of Sectors is an optional parameter that informs the Compact Flash card as to how many sectors will be read or written in a single operation. This may be a constant value, variable, or expression. However, according to the Compact Flash data sheet, this may only be a value of 1 to 127, and is normally set to 1. The parameter is optional because it is usually only required once per READ or WRITE operation.

Example

‘ Write 20 sectors on a compact flash card then read them back and display serially

Device = 18F452

‘ We’ll use a 16-bit core device

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate for USART serial coms

HSERIAL_RCSTA = %10010000
' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100100
' Enable transmit and asynchronous mode

'---

' CF Card Declarations

CF_DTPORT = PORTD

‘ Assign the CF data port to PORTD

CF_ADPORT = PORTE

‘ Assign the CF address port to PORTE

CF_WEPIN = PORTC.5

‘ Assign the CF WE pin to PORTC.5

CF_CE1PIN = PORTC.0

‘ Assign the CF CE1 pin to PORTC.0

CF_RDYPIN = PORTC.4

‘ Assign the CF RDY_BSY pin to PORTC.4

CF_OEPIN = PORTC.1

‘ Assign the CF OE pin to PORTC.1

CF_RSTPIN = PORTC.3

‘ Assign the CF RESET pin to PORTC.3

CF_CD1PIN = PORTA.5

‘ Assign the CF CD1 pin to PORTA.5

CF_ADPORT_MASK = False

‘ No masking of address data required

CF_READ_WRITE_INLINE = False
‘ Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5

‘ Alias the CD1 pin to PORTA.5

'---

' Variable Declarations

Dim DATA_IO
 as Byte
‘ Bytes read/written to CF card

Dim BUFFER_SIZE
 as Word
‘ Internal counter of bytes in sector (i.e.512)

Dim SECTOR_NUMBER as Dword
‘ Sector of interest

'---

‘ Main Program Starts Here

Delayms 100

ALL_DIGITAL = True

CF_INIT

' Initialise the CF card's IO lines

While CF_CD1 = 1 : Wend

' Is the Card inserted?

'---

' WRITE 8-bit values from sector 0 to sector 20
WRITE_CF:

DATA_IO = 0

‘ Clear the data to write to the card

SECTOR_NUMBER = 0

‘ Start at sector 0

' Set up the CF card for Writing 1 sector at a time in LBA mode

 CF_SECTOR SECTOR_NUMBER,WRITE,1

Repeat

‘ Form a loop for the sectors

BUFFER_SIZE = 0

Hserout ["WRITING SECTOR ",Dec SECTOR_NUMBER,13]

Repeat

‘ Form a loop for bytes in sector

CF_WRITE [DATA_IO]

‘ Write a byte to the CF card

Inc BUFFER_SIZE

‘ Move up a byte

Inc DATA_IO

‘ Increment the data to write

Until BUFFER_SIZE = 512

‘ Until all bytes are written

Inc SECTOR_NUMBER

' Move up to the next sector

' And Set up the CF card for Writing in LBA mode

CF_SECTOR SECTOR_NUMBER,WRITE

Until SECTOR_NUMBER > 20
‘ Until all sectors are written

'---

' READ 8-bit values from sector 0 to sector 20

' And display serially In columns and rows format
READ_CF:

SECTOR_NUMBER = 0

‘ Start at sector 0

' Set up the CF card for reading 1 sector at a time in LBA mode

CF_SECTOR SECTOR_NUMBER,READ,1

Repeat

‘ Form a loop for the sectors

BUFFER_SIZE = 1

Hserout ["SECTOR ",Dec SECTOR_NUMBER,13]

Repeat

‘ Form a loop for bytes in sector

DATA_IO = CF_READ

‘ Read a byte from the CF card

Hserout [HEX2 DATA_IO," "]

‘ Display it in Hexadecimal

If BUFFER_SIZE // 32 = 0 Then Hserout [13]
‘ Check if row finished

Inc BUFFER_SIZE

‘ Move up a byte

Until BUFFER_SIZE > 512

‘ Until all bytes are read

Hserout [Rep "-"\95,13]

' Draw a line under each sector

Inc SECTOR_NUMBER

' Move up to the next sector

' And set up the CF card for reading in LBA mode

CF_SECTOR SECTOR_NUMBER,READ

Until SECTOR_NUMBER > 20

‘ Until all sectors are read

Stop
Example 2

‘ Display a summary of the Compact Flash

Device = 18F452

‘ We’ll use a 16-bit core device

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate for USART serial coms

HSERIAL_RCSTA = %10010000
' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100100
' Enable transmit and asynchronous mode

' CF Card Declarations

CF_DTPORT = PORTD

‘ Assign the CF data port to PORTD

CF_ADPORT = PORTE

‘ Assign the CF address port to PORTE

CF_WEPIN = PORTC.5

‘ Assign the CF WE pin to PORTC.5

CF_CE1PIN = PORTC.0

‘ Assign the CF CE1 pin to PORTC.0

CF_RDYPIN = PORTC.4

‘ Assign the CF RDY_BSY pin to PORTC.4

CF_OEPIN = PORTC.1

‘ Assign the CF OE pin to PORTC.1

CF_RSTPIN = PORTC.3

‘ Assign the CF RESET pin to PORTC.3

CF_CD1PIN = PORTA.5

‘ Assign the CF CD1 pin to PORTA.5

CF_ADPORT_MASK = False

‘ No masking of address data required

CF_READ_WRITE_INLINE = False
‘ Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5

‘ Alias the CD1 pin to PORTA.5

' Variable Declarations

Dim DATA_IO as Word

‘ Words read from CF card

Dim SER_LOOP as Word

‘ Internal counter of bytes

Dim SECTORS_PER_CARD as Dword
‘ The amount of sectors in the CF card

Delayms 100

ALL_DIGITAL = True

CF_INIT

' Initialise the CF card's IO lines

While CF_CD1 = 1 : Wend

' Is the Card inserted?

CF_Write 7,[$EC]

' Write CF execute identify drive command

CF_Write $20,[]

' Set address for READ SECTOR

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["General configuration = ",Hex4 DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Default number of cylinders = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Reserved = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Default number of heads = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Number of unformatted bytes per track = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Number of unformatted bytes per sector = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Default number of sectors per track = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

SECTORS_PER_CARD.HighWord = DATA_IO

DATA_IO = CF_Read

‘ Read from the CF card

SECTORS_PER_CARD.LowWord = DATA_IO

Hserout ["Number of sectors per card = ",Dec SECTORS_PER_CARD,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Vendor Unique = ",Dec DATA_IO,13]

Hserout ["Serial number in ASCII (Right Justified) = "]

For SER_LOOP = 0 to 19

DATA_IO.LowByte = CF_Read

‘ Read from the CF card

Hserout [DATA_IO.LowByte]

Next

Hserout [13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Buffer type = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["Buffer size in 512 byte increments = ",Dec DATA_IO,13]

DATA_IO = CF_Read

‘ Read from the CF card

Hserout ["# of ECC bytes passed on Read/Write Long Commands = ",_

 Dec DATA_IO,13]

Stop
The above example will display on the serial terminal, some details concerning the Compact Flash card being interfaced. This is ideal for testing if the circuit is working, but is also useful for ascertaining how many sectors the Compact Flash card contains.

Notes
Accessing a compact flash card is not the same as accessing standard memory. In so much as a complete sector must be written. i.e. all 512 bytes in a single operation. Reading from a compact flash card is more conventional in that once the sector is chosen using the CF_SECTOR command, any of the 512 bytes may be read from that sector.

The compiler’s Compact Flash access commands operate in what is called LBA (Logical Block Address) mode. Which means that it is accessed sector by sector instead of the more involved Cylinder/Head/Sector mode. LBA mode makes accessing Compact Flash easier and more intuitive. However, it is important to read and understand the CF+ and Compact Flash specifications document which can be obtained via the internet at www.compactflash.org.
A typical circuit for interfacing a Compact Flash card is shown below: -

[image: image92.wmf]Xpos 0 - 127

Ypos 0 - 63

lsb

Line 0

Line 1

Line 2

Line 3

msb

The circuit shown overleaf can be used with the code examples listed earlier.

The RESET and CE1 lines are not essential to the operation of interfacingThe RESET line and the CE1 line must be connected to ground. However, the CE1 line is useful if multiplexing is used as the Compact Flash card will ignore all commands if the CE1 line is set high. And the RESET line is useful for a clean start up of the Compact Flash card.

The CF commands were written and tested only on the more modern “higher speed” compact flash cards. These operate at up to 40 times faster than conventional Compact Flash and also, more importantly, operate from a 3.3 Volt and 5 Volt power source. However, the low level routines used by the commands, when not in inline mode, are contained in a separate INC file located inside the compiler’s INC folder. The file is named CF_CMS.INC, and can be altered if slower access is required. It is simply a matter of adding more NOP mnemonics inside the CF@WR and CF@RD subroutines.
See Also
CF_INIT, CF_READ, CF_WRITE (for declares).
CF_READ

Syntax

Variable = CF_READ
Overview

Read data from a Compact Flash card.
Operators

Variable can be a BIT, BYTE, WORD, DWORD or FLOAT type variable that will be loaded with data read from the Compact Flash card.

Example

‘ Read 16-bit values from 20 sectors in a compact flash card and display serially

Device = 16F877

‘ We’ll use a 14-bit core device

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate for USART serial coms

HSERIAL_RCSTA = %10010000
' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100100
' Enable transmit and asynchronous mode

'---

' CF Card Declarations

CF_DTPORT = PORTD

‘ Assign the CF data port to PORTD

CF_ADPORT = PORTE

‘ Assign the CF address port to PORTE

CF_WEPIN = PORTC.5

‘ Assign the CF WE pin to PORTC.5

CF_CE1PIN = PORTC.0

‘ Assign the CF CE1 pin to PORTC.0

CF_RDYPIN = PORTC.4

‘ Assign the CF RDY_BSY pin to PORTC.4

CF_OEPIN = PORTC.1

‘ Assign the CF OE pin to PORTC.1

CF_RSTPIN = PORTC.3

‘ Assign the CF RESET pin to PORTC.3

CF_CD1PIN = PORTA.5

‘ Assign the CF CD1 pin to PORTA.5

CF_ADPORT_MASK = False

‘ No masking of address data required

CF_READ_WRITE_INLINE = False
‘ Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5

‘ Alias the CD1 pin to PORTA.5

'---

' Variable Declarations

Dim DATA_IO
 as Word
‘ Words read from CF card

Dim BUFFER_SIZE
 as Word
‘ Internal counter of bytes in sector (i.e.512)

Dim SECTOR_NUMBER as Dword
‘ Sector of interest

'---

‘ Main Program Starts Here

Delayms 100

ALL_DIGITAL = True

CF_INIT

' Initialise the CF card's IO lines

While CF_CD1 = 1 : Wend

' Is the Card inserted?

'---

' READ 8-bit values from sector 0 to sector 20

' And display serially In columns and rows format
READ_CF:

SECTOR_NUMBER = 0

‘ Start at sector 0

' Set up the CF card for reading 1 sector at a time in LBA mode

CF_SECTOR SECTOR_NUMBER,READ,1

Repeat

‘ Form a loop for the sectors

BUFFER_SIZE = 1

Hserout ["SECTOR ",Dec SECTOR_NUMBER,13]

Repeat

‘ Form a loop for words in sector

DATA_IO = CF_READ

‘ Read a Word from the CF card

Hserout [HEX4 DATA_IO," "]

‘ Display it in Hexadecimal

If BUFFER_SIZE // 32 = 0 Then Hserout [13]
‘ Check if row finished

Inc BUFFER_SIZE

‘ Move up a word

Until BUFFER_SIZE > 256

‘ Until all words are read

Hserout [Rep "-"\95,13]

' Draw a line under each sector

Inc SECTOR_NUMBER

' Move up to the next sector

' And set up the CF card for reading in LBA mode

CF_SECTOR SECTOR_NUMBER,READ

Until SECTOR_NUMBER > 20

‘ Until all sectors are read

Stop
Notes

The amount of bytes read from the Compact Card depends on the variable type used as the assignment. i.e. the variable before the equals operator: -

A BIT type variable will read 1 byte from the Compact Flash card.

A BYTE type variable will also read 1 byte from the Compact Flash card.

A WORD type variable will read 2 bytes from the Compact Flash card Least Significant Byte First (LSB).

A DWORD type variable will read 4 bytes from the Compact Flash card Least Significant Byte First (LSB).

A FLOAT type variable will also read 4 bytes from the Compact Flash card in the correct format for a floating point variable.

Accessing Compact Flash memory is not the same as conventional memory. There is no mechanism for choosing the address of the data in question. You can only choose the sector then sequentially read the data from the card. In essence, the sector is the equivalent of the address in a conventional piece of memory, but instead of containing 1 byte of data, it contains 512 bytes.

Once the sector is chosen using the CF_SECTOR command, any amount of the 512 bytes available can be read from the card. Once a read has been accomplished, the Compact Flash card automatically increments to the next byte in the sector ready for another read. So that a simple loop as shown below will read all the bytes in a sector: -

BUFFER_SIZE = 0

Repeat

‘ Form a loop for bytes in sector

DATA_IO = CF_READ

‘ Read a Byte from the CF card

Inc BUFFER_SIZE

‘ Increment the byte counter

Until BUFFER_SIZE = 512

‘ Until all Bytes are read

In order to extract a specific piece of data from a sector, a similar loop can be used, but with a condition attached that will drop out at the correct position: -

BUFFER_SIZE = 0

While 1 = 1

‘ Form an infinite loop

DATA_IO = CF_READ

‘ Read a Byte from the CF card

If BUFFER_SIZE = 20 Then Break

‘ Exit when correct position reached

Inc BUFFER_SIZE

‘ Increment the byte counter

Wend

‘ Close the loop
The snippet above will exit the loop when the 20th byte has been read from the card.
Of course Arrays can also be loaded from a Compact Flash card in a similar way, but remember, the maximum size of an array in PROTON BASIC is 256 elements. The snippets below show two possible methods of loading an array with the data read from a Compact Flash card.

Dim AR1[256] as Byte

‘ Create a 256 element array

Dim BUFFER_SIZE
 as Word

‘ Internal counter of bytes in sector

BUFFER_SIZE = 0

Repeat

‘ Form a loop for bytes in sector

AR1[BUFFER_SIZE] = CF_READ
‘ Read a Byte from the CF card

Inc BUFFER_SIZE

‘ Increment the byte counter

Until BUFFER_SIZE = 256

‘ Until all Bytes are read

Large arrays such as the one above are best suited to the 16-bit core devices. Not only because they generally have more RAM, but because their RAM is accessed more linearly and there are no BANK boundaries when using arrays. Also, by accessing some low level registers in a 16-bit core device it is possible to efficiently place all 512 bytes from a sector into 2 arrays:

Device = 18F452

‘ Choose a 16-bit core device

Dim AR1[256] as Byte

‘ Create a 256 element array

Dim AR2[256] as Byte

‘ Create another 256 element array

Dim BUFFER_SIZE
 as Word

‘ Internal counter of bytes in sector

Dim FSR0 as FSR0L.Word

‘ Combine FSR0L/H as a 16-bit register

BUFFER_SIZE = 0

FSR0 = Varptr(AR1)

‘ Get the address of AR1 into FSR0L/H

Repeat

‘ Form a loop for bytes in sector

POSTINC0 = CF_READ

‘ Read a Byte from the CF card and place

‘ directly into memory, then increment to

‘ the next address in PIC RAM

Inc BUFFER_SIZE

‘ Increment the byte counter

Until BUFFER_SIZE = 512

‘ Until all Bytes are read

When the above loop is finished, arrays AR1 and AR2 will hold the data read from the Compact Flash card’s sector. Of course you will need to pad out the snippets with the appropriate declares and the CF_SECTOR command.

See Also
CF_INIT, CF_SECTOR (for a suitable circuit), CF_WRITE (for declares).
CF_WRITE

Syntax

CF_WRITE {Address Data} , [Variable {Variable {, Variable etc}]
Overview

Write data to a Compact Flash card.
Operators
Address Data is an optional value that is placed on the Compact Flash card’s Address lines. This is not always required when writing to a card.
Variable can be a BIT, BYTE, WORD, DWORD, FLOAT, or STRING type variable that will be written to the Compact Flash card. More than one variable can be placed between the square braces if more than one write is required in a single operation.

The variable part of the CF_WRITE command is also optional, as some configurations only require the card’s address lines to be loaded. In this case, use the syntax: -

CF_WRITE Address Data , []
See example 2 in the CF_SECTOR section for an example of its use.
Example

‘ Write 20 sectors on a compact flash card

Device = 18F452

‘ We’ll use a 16-bit core device

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate for USART serial coms

HSERIAL_RCSTA = %10010000
' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100100
' Enable transmit and asynchronous mode

'---

' CF Card Declarations

CF_DTPORT = PORTD

‘ Assign the CF data port to PORTD

CF_ADPORT = PORTE

‘ Assign the CF address port to PORTE

CF_WEPIN = PORTC.5

‘ Assign the CF WE pin to PORTC.5

CF_CE1PIN = PORTC.0

‘ Assign the CF CE1 pin to PORTC.0

CF_RDYPIN = PORTC.4

‘ Assign the CF RDY_BSY pin to PORTC.4

CF_OEPIN = PORTC.1

‘ Assign the CF OE pin to PORTC.1

CF_RSTPIN = PORTC.3

‘ Assign the CF RESET pin to PORTC.3

CF_CD1PIN = PORTA.5

‘ Assign the CF CD1 pin to PORTA.5

CF_ADPORT_MASK = False

‘ No masking of address data required

CF_READ_WRITE_INLINE = False
‘ Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5

‘ Alias the CD1 pin to PORTA.5

'---

' Variable Declarations

Dim DATA_IO
 as Byte
‘ Bytes written to CF card

Dim BUFFER_SIZE
 as Word
‘ Internal counter of bytes in sector (i.e.512)

Dim SECTOR_NUMBER as Dword
‘ Sector of interest

'---

‘ Main Program Starts Here

Delayms 100

ALL_DIGITAL = True

CF_INIT

' Initialise the CF card's IO lines

While CF_CD1 = 1 : Wend

' Is the Card inserted?

'---

' WRITE 8-bit values from sector 0 to sector 20
WRITE_CF:

DATA_IO = 0

‘ Clear the data to write to the card

SECTOR_NUMBER = 0

‘ Start at sector 0

' Set up the CF card for Writing 1 sector at a time in LBA mode

CF_SECTOR SECTOR_NUMBER,WRITE,1

Repeat

‘ Form a loop for the sectors

BUFFER_SIZE = 0

Hserout ["WRITING SECTOR ",Dec SECTOR_NUMBER,13]

Repeat

‘ Form a loop for bytes in sector

CF_WRITE [DATA_IO]

‘ Write a byte to the CF card

Inc BUFFER_SIZE

‘ Move up a byte

Inc DATA_IO

‘ Increment the data to write

Until BUFFER_SIZE = 512

‘ Until all bytes are written

Inc SECTOR_NUMBER

' Move up to the next sector

' And Set up the CF card for Writing in LBA mode

CF_SECTOR SECTOR_NUMBER,WRITE

Until SECTOR_NUMBER > 20
‘ Until all sectors are written

Stop
Notes
The amount of bytes written to the Compact Card depends on the variable type used between the square braces: -

A BIT type variable will write 1 byte to the Compact Flash card.

A BYTE type variable will also write 1 byte to the Compact Flash card.

A WORD type variable will write 2 bytes to the Compact Flash card Least Significant Byte First (LSB).

A DWORD type variable will write 4 bytes to the Compact Flash card Least Significant Byte First (LSB).

A FLOAT type variable will also write 4 bytes to the Compact Flash card in the correct format of a floating point variable.

Accessing Compact Flash memory is not the same as conventional memory. There is no mechanism for choosing the address of the data in question. You can only choose the sector then sequentially write the data to the card. In essence, the sector is the equivalent of the address in a conventional piece of memory, but instead of containing 1 byte of data, it contains 512 bytes.

Once the sector is chosen using the CF_SECTOR command and a write operation is started, all 512 bytes contained in the sector must be written before they are transferred to the card’s flash memory.

Once a single write has been accomplished, the Compact Flash card automatically increments to the next byte in the sector ready for another write. So that a simple loop as shown below will write all the bytes in a sector: -

BUFFER_SIZE = 0

Repeat

‘ Form a loop for bytes in sector

CF_WRITE [DATA_IO]

‘ Write a Byte to the CF card

Inc BUFFER_SIZE

‘ Increment the byte counter

Until BUFFER_SIZE = 512

‘ Until all Bytes are written
Compact Flash Interface Declares
There are several declares that need to be manipulated when interfacing to a Compact Flash card. There are the obvious port pins, but there are also some declares that optimise or speed up access to the card.

DECLARE CP_DTPORT PORT

This declare assigns the Compact Flash card’s data lines. The data line consists of 8-bits so it is only suitable for ports that contain 8-bits such as PORTB, PORTC, PORTD etc.

DECLARE LCD_ADPORT PORT

This declare assigns the Compact Flash card’s address lines. The address line consists of 3-bits, but A0 of the compact flash card must be attached to bit-0 of whatever port is used. For example, if the Compact Flash card’s address lines were attached to PORTA of the PICmicrotm, then A0 of the CF card must attach to PORTA.0, A1 or the CF card must attach to PORTA.1, and A2 of the CF card must attach to PORTA.2.

The CF access commands will mask the data before transferring it to the particular port that is being used so that the rest of it’s pins are not effected. PORTE is perfect for the address lines as it contains only 3 pins on a 40-pin device, and the compiler can make full use of this by using the CF_ADPORT_MASK declare.
DECLARE CF_ADPORT_MASK = ON or OFF, or TRUE or FALSE, or 1, 0

Both the CF_WRITE and CF_SECTOR commands write to the Compact Flash card’s address lines. However, these only contain 3-bits, so the commands need to ensure that the other bits of the PICmicro’s PORT are not effected. This is accomplished by masking the unwanted data before transferring it to the address lines. This takes a little extra code space, and thus a little extra time to accomplish. However, there are occasions when the condition of the other bits on the PORT are not important, or when a PORT is used that only has 3-bits to it. i.e. PORTE with a 40-pin device. Issuing the CF_ADPORT_MASK declare and setting it FALSE, will remove the masking mnemonics, thus reducing code used and time taken.
DECLARE CF_RDYPIN PORT . PIN

Assigns the Compact Flash card’s RDY/BSY line.

DECLARE CF_OEPIN PORT . PIN
Assigns the Compact Flash card’s OE line.

DECLARE CF_WEPIN PORT . PIN

Assigns the Compact Flash card’s WE line.
DECLARE CF_CD1PIN PORT . PIN

Assigns the Compact Flash card’s CD1 line. The CD1 line is not actually used by any of the commands, but is set to input if the declare is issued in the BASIC program. The CD1 line is used to indicate whether the card is inserted into its socket.

DECLARE CF_RSTPIN PORT . PIN

Assigns the Compact Flash card’s RESET line. The RESET line is not essential for interfacing to a Compact Flash card, but is useful if a clean power up is required. If the declare is not issued in the BASIC program, all reference to it is removed from the CF_INIT command. If the RESET line is not used for the card, ensure that it is tied to ground.
DECLARE CF_CE1PIN PORT . PIN

Assigns the Compact Flash card’s CE1 line. As with the RESET line, the CE1 line is not essential for interfacing to a Compact Flash card, but is useful when multiplexing pins, as the card will ignore all commands when the CE1 line is set high. If the declare is not issued in the BASIC program, all reference to it is removed from the CF_INIT command. If the CE1 line is not used for the card, ensure that it is tied to ground.

DECLARE CF_READ_WRITE_INLINE = ON or OFF, or TRUE or FALSE, or 1, 0

Sometimes, speed is of the essence when accessing a Compact Flash card, especially when interfacing to the new breed of card which is 40 times faster than the normal type. Because of this, the compiler has the ability to create the code used for the CF_WRITE and CF_READ commands inline, which means it does not call its library subroutines, and can tailor itself when reading or writing WORD, DWORD, or FLOAT variables. However, this comes at a price of code memory, as each command is stretched out for speed, not optimisation. It also means that the inline type of commands are really only suitable for the higher speed Compact Flash cards.

If the declare is not used in the BASIC program, the default is not to use inline commands.

CIRCLE

Syntax

CIRCLE Set_Clear , Xpos , Ypos , Radius

Overview

Draw a circle on a graphic LCD.

Operators

Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels. A value of 1 will set the pixels and draw a circle, while a value of 0 will clear any pixels and erase a circle.

Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be a value from 0 to 127.

Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be a value from 0 to 63.

Radius may be a constant or variable that holds the Radius of the circle. Can be a value from 0 to 255.

Example

' Draw a circle at position 63,32 with a radius of 20 pixels

INCLUDE "PROTON_G4.INT"

DIM XPOS as BYTE

DIM YPOS as BYTE

DIM RADIUS as BYTE

DIM SET_CLR as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

XPOS = 63

YPOS = 32

RADIUS = 20

SET_CLR = 1

CIRCLE SET_CLR , XPOS , YPOS , RADIUS

STOP

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than wide) the circle will appear elongated.

See Also :
BOX, LINE.
CLEAR

Syntax

CLEAR Variable or Variable.Bit

CLEAR
Overview

Place a variable or bit in a low state. For a variable, this means filling it with 0's. For a bit this means setting it to 0.

CLEAR has another purpose. If no variable is present after the command, all RAM area on the PICmicrotm used is cleared.

Operators

Variable can be any variable or register.

Variable.Bit can be any variable and bit combination.

Example

CLEAR

' Clear ALL RAM area

CLEAR VAR1.3

' Clear bit 3 of VAR1

CLEAR VAR1

' Load VAR1 with the value of 0

CLEAR STATUS.0

' Clear the carry flag high

Notes

There IS a major difference between the CLEAR and LOW Scribble1569command. CLEAR does not alter the TRIS register if a PORT is targeted.

See Also :
SETScribble2119, LOWScribble1569, HIGHScribble1289
CLEARBIT

Syntax

CLEARBIT Variable , Index

Overview

Clear a bit of a variable or register using a variable index to the bit of interest.

Operators

Variable is a user defined variable, of type BYTEScribble2709, WORDScribble2729, or DWORDScribble2749.

Index is a constant, variable, or expression that points to the bit within Variable that requires clearing.

Example

' Clear then Set each bit of variable EX_VAR

DEVICE = 16F877

XTAL = 4

DIM EX_VAR AS BYTE

DIM INDEX AS BYTE

CLS

EX_VAR = %11111111

AGAIN:

FOR INDEX = 0 TO 7

' Create a loop for 8 bits

CLEARBIT EX_VAR,INDEX

' Clear each bit of EX_VAR

PRINT AT 1,1,BIN8 EX_VAR

' Display the binary result

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

FOR INDEX = 7 TO 0 STEP -1

' Create a loop for 8 bits

SETBIT EX_VAR,INDEX

' Set each bit of EX_VAR

PRINT AT 1,1,BIN8 EX_VAR

' Display the binary result

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

GOTO AGAIN

' Do it forever

Notes
There are many ways to clear a bit within a variable, however, each method requires a certain amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using the FSRScribble2649, and INDF Scribble2669registers. Each method has its merits, but requires a certain amount of knowledge to accomplish the task correctly. The CLEARBIT command makes this task extremely simple using a register rotate method, however, this is not necessarily the quickest method, or the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to experience.

To CLEAR a known constant bit of a variable or register, then access the bit directly using PORT.n.

PORTA.1 = 0

or

VAR1.4 = 0

If a PORT is targeted by CLEARBIT, the TRIS Scribble2659register is NOT affected.

See also :
GETBITScribble1119, LOADBITScribble1479, SETBITScribble724.
CLS

Syntax

CLS

Overview

Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1, position 1

Example

CLS

' Clear the LCD

PRINT "HELLO"
' Display the word "HELLO" on the LCD

CURSOR 2 , 1
' Move the cursor to line 2, position 1

PRINT "WORLD"
' Display the word "WORLD" on the LCD

In the above example, the LCD is cleared using the CLS command, which also places the cursor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

See also :
CURSORScribble809, PRINTScribble1789
CONFIG

Syntax

CONFIG { configuration fuse settings }

Overview

Enable or Disable particular fuse settings for the PICmicrotm type used.

Operators

configuration fuse settings vary from PICmicrotm to PICmicrotm, however, certain settings are standard to most PICmicrotm types. Refer to the PICmicro’s datasheet for details.

Example

' Disable the Watchdog timer and specify an HS_OSC etc, on a PIC16F877 device

CONFIG HS_OSC , WDT_OFF , PWRTE_ON , BODEN_OFF , LVP_OFF , _

 WRTE_ON , CP_OFF , DEBUG_OFF

Important.
Because of the complexity that the16-bit core devices require for adjusting their fuse settings, the CONFIG directive is not compatible with these devices directly. If the fuse settings requires altering, then dropping into assembler will be required, either by using the ASM - END_ASM directives, or the @ character. Alternatively, the fuse settings may be altered at programming time.

The example below will set the fuses for a 18F452 device: -

@ CONFIG_REQ

@ __CONFIG CONFIG1H, OSCS_OFF_1 & HS_OSC_1

@ __CONFIG CONFIG2L, BOR_ON_2 & BORV_20_2 & PWRT_ON_2

@ __CONFIG CONFIG2H, WDT_OFF_2 & WDTPS_128_2

@ __CONFIG CONFIG3H, CCP2MX_ON_3

@ __CONFIG CONFIG4L, STVR_ON_4 & LVP_OFF_4 & DEBUG_OFF_4

The fuse names may be found at the end of the PICmicro's .LPB file, situated within the INC folder of the compiler's directory.

Notes

If the CONFIG directive is not used within the BASIC program then default values are used. These may be found in the .LPB files in the INC folder.

When using the CONFIG directive, always use all the fuse settings for the particular PICmicrotm used.

Any fuse names that are omitted from the CONFIG list will normally assume an OFF or DISABLED state. However, this is not always the case, and unpredictable results may occur, or the PICmicrotm may refuse to start up altogether..

Before programming the PICmicrotm, always check the fuse settings at programming time to ensure that the settings are correct.

Always read the datasheet for the particular PICmicrotm of interest, before using this directive.
COUNTER

Syntax

Variable = COUNTER Pin , Period
Overview

Count the number of pulses that appear on pin during period, and store the result in variable.

Operators

Variable is a user-defined variable.

Pin is a Port.Pin constant declaration i.e. PORTA.0.

Period may be a constant, variable, or expression.

Example

' Count the pulses that occur on PORTA.0 within a 100ms period

‘ and displays the results.

DIM WRD AS WORD

' Declare a word size variable

SYMBOL Pin = PORTA.0

' Assign the input pin to PORTA.0

CLS

Loop:

WRD = COUNTER Pin , 100
' Variable WRD now contains the Count

CURSOR 1 , 1

PRINT DEC WRD , " "

' Display the decimal result on the LCD

GOTO Loop

' Do it indefinitely

Notes

The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declaration, DECLARE XTAL.

COUNTER checks the state of the pin in a concise loop, and counts the rising edge of a transition (low to high).

With a 4MHz oscillator, the pin is checked every 20us, and every 4us with a 20MHz oscillator. From this we can determine that the highest frequency of pulses that may be counted is: -

25KHz using a 4MHz oscillator.

125KHz using a 20MHz oscillator.

See also :
PULSIN, Scribble869RCIN.Scribble1889
CREAD

Syntax

Variable = CREAD Address
Overview

Read data from anywhere in memory.

Operators

Variable is a user defined variable, of type BYTEScribble2709, WORDScribble2729, or DWORDScribble2749.

Address is a constant, variable, label, or expression that represents any valid address within the PICmicrotm.

Example

' Read memory locations within the PICmicro

DEVICE 16F877

' Needs to be a 16F87x type PICmicro

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM Address AS WORD

Address = 1000

' Address now holds the base address

VAR1 = CREAD 1000

' Read 8-bit data at address 1000 into VAR1

WRD = CREAD Address+10
' Read 14-bit data at address 1000+10

Notes

The CREAD command takes advantage of the new self-modifying feature that is available in the newer 16F87x, and 18 series devices.

If a WORDScribble2729 size variable is used as the assignment, then a 14-bit WORD will be read. If a BYTE sized variable is used as the assignment, then 8-bits will be read.

Because the 14-bit core devices are only capable of holding 14 bits to a WORDScribble2729, values greater than 16383 ($3FFF) cannot be read. However, the 16-bit core devices may hold values up to 65535 ($FFFF).

The configuration fuse setting WRTE Scribble749must be enabled before CDATAScribble689, CREAD, and CWRITE Scribble829may be used, this is the default setting. This enables the self-modifying feature. If the CONFIG Scribble749directive is used, then the WRTE_ON fuse setting must be included in the list: -

 CONFIG WDT_ON , XT_OSC , WRTE_ON

See also :
DATA, CDATAScribble689, CONFIGScribble749, CWRITE, LDATA, LREAD, READ, RESTORE Scribble829.Scribble1629
CURSOR

Syntax

CURSOR Line , Position

Overview

Move the cursor position on the LCD to a specified line and position.

Operators

Line is a constant, variable, or expression that corresponds to the line number from 1 to maximum lines.

Position is a constant, variable, or expression that moves the position within the line chosen, from 1 to maximum position.

Example 1

DIM Line AS BYTE

DIM Xpos AS BYTE

Line = 2

Xpos = 1

CLS

' Clear the LCD

PRINT "HELLO"

' Display the word "HELLO" on the LCD

CURSOR Line , Xpos
' Move the cursor to line 2, position 1

PRINT "WORLD"

' Display the word "WORLD" on the LCD

In the above example, the LCD is cleared using the CLS Scribble729command, which also places the cursor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2

DIM Xpos AS BYTE

DIM Ypos AS BYTE

Again:

Ypos = 1

' Start on line 1

FOR Xpos = 1 TO 16

' Create a loop of 16

CLS

' Clear the LCD

CURSOR Ypos , Xpos

' Move the cursor to position Ypos,Xpos

PRINT "*"

' Display the character

DELAYMS 100

NEXT

Ypos = 2

' Move to line 2

FOR Xpos = 16 TO 1 STEP -1
' Create another loop, this time reverse

CLS

' Clear the LCD

CURSOR Ypos , Xpos

' Move the cursor to position Ypos,Xpos

PRINT "*"

' Display the character

DELAYMS 100

NEXT

GOTO Again

' Repeat forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 character LCD.

See also :
CLSScribble729, PRINTScribble1789
CWRITE

Syntax

CWRITE Address , [Variable { , Variable…}]

Overview

Write data to anywhere in memory.

Operators

Variable can be a constant, variable, or expression.

Address is a constant, variable, label, or expression that represents any valid address within the PICmicrotm.

Example

' Write to memory location 2000+ within the PICmicro

DEVICE 16F877

' Needs to be a 16F87x type PICmicro

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM Address AS WORD

Address = 2000

' Address now holds the base address

VAR1 = 234

 WRD = 1043

CWRITE Address, [10, VAR1, WRD]
' Write to address 2000 +

ORG 2000

Notes

The CWRITE command takes advantage of the new self-modifying feature that is available in the newer 16F87x, and 18 series devices.

If a WORDScribble2729 size variable is used as the assignment, then a 14-bit WORDScribble2729 will be written. If a BYTEScribble2709 sized variable is used as the assignment, then 8-bits will be written.

Because the 14-bit core devices are only capable of holding 14 bits to a WORDScribble2729, values greater than 16383 ($3FFF) cannot be written. However, the 16-bit core devices may hold values up to 65535 ($FFFF).

The configuration fuse setting WRTE Scribble749must be enabled before CDATAScribble689, CREADScribble789, and CWRITE may be used, this is the default setting. This enables the self-modifying feature. If the CONFIG Scribble749directive is used, then the WRTE_ON fuse setting must be included in the list: -

 CONFIG WDT_ON , XT_OSC , WRTE_ON

See also :
CDATAScribble689, CONFIGScribble749, CREADScribble789, ORG.Scribble1629
DATA

Syntax

DATA { alphanumeric data }

Overview

Place information into code memory using the RETLW Scribble2665 instruction when used with 14-bit core devices, and FLASH memory when using a 16-bit core device. For access by READScribble1909.

Operators
alphanumeric data can be a 8,16, 32 bit value, or floating point values, or any alphabetic character or string enclosed in quotes.

Example

DIM VAR1 AS BYTE

DATA 5 , 8 , "fred" , 12

RESTORE

READ VAR1

' Variable VAR1 will now contain the value 5

READ VAR1

' Variable VAR1 will now contain the value 8

' Pointer now placed at location 4 in our data table i.e. "r"

RESTORE 3

' VAR1 will now contain the value 114 i.e. the 'r' character in decimal

READ VAR1

The data table is defined with the values 5,8,102,114,101,100,12 as "fred" equates to f:102, r:114, e:101, d:100 in decimal. The table pointer is immediately restored to the beginning of the table. This is not always required but as a general rule, it is a good idea to prevent table reading from overflowing.

The first READ VAR1, takes the first item of data from the table and increments the table pointer. The next READ VAR1 therefore takes the second item of data. RESTORE 3 moves the table pointer to the fourth location (first location is pointer position 0) in the table - in this case where the letter 'r' is. READ VAR1 now retrieves the decimal equivalent of 'r' which is 114.

Notes

DATA tables should be placed near the beginning of your program. Attempts to read past the end of the table will result in errors and unpredictable results.

Only one instance of DATA is allowed per program, however, they be of any length. If the alphanumeric contents of the DATA statement will not fit on one line then the extra information must be placed directly below using another DATA statement: -

DATA "HELLO "

DATA "WORLD"

 is the same as: -

DATA "HELLO WORLD"

16-bit device requirements.
The compiler uses a different method of holding information in a DATA statement when using 16-bit core devices. It uses the unique capability of these devices to read 16-bit values from their own code space, which offers optimisations when values larger than 8-bits are stored. However, because the 16-bit core devices are BYTEScribble2709 oriented, as opposed to the 14-bit types which are WORDScribble2729 oriented. The DATA table should contain an even number of values, or corruption may occur on the last value read. For example: -

DATA 1,2,3,"123"

DATA 1,2,3,"12"

A DATA table containing an ODD amount of values will produce a compiler WARNING message.

See also:
CDATA, CREAD, CWRITE, LDATA, LREAD, READ Scribble1909, RESTORE.

DEC

Syntax

DEC Variable
Overview

Decrement a variable i.e. VAR1 = VAR1 - 1
Operators

Variable is a user defined variable

Example

VAR1 = 11

REPEAT

DEC VAR1

PRINT DEC VAR1 , " "

DELAYMS 200

UNTIL VAR1 = 0

The above example shows the equivalent to the FOR-NEXTScribble1089 loop: -

FOR VAR1 = 10 TO 0 STEP -1 : NEXT

See also :
INCScribble1379.
 Scribble1969
DECLARE

Syntax

[DECLARE] code modifying directive = modifying value

Overview

Adjust certain aspects of the produced code, i.e. Crystal frequency, LCD port and pins, serial baud rate etc.

Operators

code modifying directive is a set of pre-defined words. See list below.

modifying value is the value that corresponds to the command. See list below.

The DECLARE directive is an indispensable part of the compiler. It moulds the library subroutines, and passes essential user information to them. However, the DECLARE part of a declare directive is optional.

For example, instead of using: -

DECLARE XTAL 4

The text: -

XTAL = 4

May be used.

Notice that there is an optional equals character separating the declare command and the value to pass. The structure will still be referred to as a DECLARE in the manual, help file, and any future projects.

MISC Declares.

DECLARE WATCHDOG = ON or OFF, or TRUE or FALSE, or 1, 0

The WATCHDOG DECLARE directive enables or disables the watchdog timer. It also sets the PICmicro's CONFIG fuses for no watchdog. In addition, it removes any CLRWDT mnemonics from the assembled code, thus producing slightly smaller programs. The default for the compiler is WATCHDOG OFF, therefore, if the watchdog timer is required, then this DECLARE will need to be invoked.

The WATCHDOG DECLARE can be issued multiple times within the BASIC code, enabling and disabling the watchdog timer as and when required.

DECLARE BOOTLOADER = ON or OFF, or TRUE or FALSE, or 1, 0

The BOOTLOADER DECLARE directive enables or disables the special settings that a serial bootloader requires at the start of code space. This directive is ignored if a PICmicrotm without bootloading capabilities is targeted.

Disabling the bootloader will free a few bytes from the code produced. This doesn't seem a great deal, however, these few bytes may be the difference between a working or non-working program. The default for the compiler is BOOTLOADER ON
DECLARE SHOW_SYSTEM_VARIABLES = ON or OFF, or TRUE or FALSE, or 1, 0

When using the PROTEUS VSM to simulate BASIC code, it is sometimes beneficial to observe the behaviour of the compiler's SYSTEM variables that are used for its library routines. The SHOW_SYSTEM_VARIABLES DECLARE enables or disables this option.

DECLARE FSR_CONTEXT_SAVE = ON or OFF, or TRUE or FALSE, or 1, 0

When using HARDWARE interrupts, it is not always necessary to save the FSR register. So in order to save code space and time spent within the interrupt handler, the FSR_CONTEXT_SAVE DECLARE can enable or disable the auto CONTEXT saving and restoring of the FSR register.

For 16-bit core devices, this will enable/disable FSR0 context handling. If STRING variables are used in the BASIC program, the FSR1L/H register pair will also be saved/restored. And FSR2L/H registers will be saved/restored if a stack is implemented.

DECLARE PLL_REQ = ON or OFF, or TRUE or FALSE, or 1, 0

Most 16-bit core devices have a built in PLL (Phase Locked Loop) that can multiply the oscillator by a factor of 4. This is set by the fuses at programming time, and the PLL_REQ DECLARE enables or disables the PLL fuse. Using the PLL fuse allows a 1:1 ratio of instructions to clock cycles instead of the normal 4:1 ratio. It can be used with XTAL settings from 4 to 10MHz. Note that the compiler will automatically set it's frequency to a multiple of 4 if the PLL_REQ DECLARE is used to enable the PLL fuse. For example, if a 4MHz XTAL setting is declared, and the PLL_REQ DECLARE is used in the BASIC program, the compiler will automatically set itself up as using a 16MHz XTAL. i.e. 4 * 4. Thus keeping the timings for library functions correct.

DECLARE WARNINGS = ON or OFF, or TRUE or FALSE, or 1, 0

The WARNINGS DECLARE directive enables or disables the compiler's warning messages. This can have disastrous results if a warning is missed or ignored, so use this directive sparingly, and at your own peril.

The WARNINGS DECLARE can be issued multiple times within the BASIC code, enabling and disabling the warning messages at key points in the code as and when required.

DECLARE REMINDERS = ON or OFF, or TRUE or FALSE, or 1, 0

The REMINDERS DECLARE directive enables or disables the compiler's reminder messages. The compiler issues a reminder for a reason, so use this directive sparingly, and at your own peril.

The REMINDERS DECLARE can be issued multiple times within the BASIC code, enabling and disabling the warning messages at key points in the code as and when required.

DECLARE LABEL_BANK_RESETS = ON or OFF, or TRUE or FALSE, or 1, 0

The compiler has very intuitive RAM bank handling, however, if you think that an anomaly is occurring due to misplaced or mishandled RAM bank settings, you can issue this DECLARE and it will reset the RAM bank on every BASIC label, which will force the compiler to re-calculate its bank settings. If nothing else, it will reassure you that bank handling is not the cause of the problem, and you can get on with finding the cause of the programming problem. However, if it does cure a problem then please let me know and I will make sure the anomaly is fixed as quickly as possible.

Using this DECLARE will increase the size of the code produced, as it will place BCF mnemonics in the case of a 12 or 14-bit core device, and a MOVLB mnemonic in the case of a 16-bit core device.

The LABEL_BANK_RESETS DECLARE can be issued multiple times within the BASIC code, enabling and disabling the bank resets at key points in the code as and when required. See LINE LABELS for more information.

DECLARE FLOAT_DISPLAY_TYPE = LARGE or STANDARD

By default, the compiler uses a relatively small routine for converting floating point values to decimal, ready for RSOUT, PRINT, STR$ etc. However, because of its size, it does not perform any rounding of the value first, and is only capable of converting relatively small values. i.e. approx 6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a larger routine. This is implemented by using the above DECLARE.

Using the LARGE model for the above DECLARE will trigger the compiler into using the more accurate floating point to decimal routine. Note that even though the routine is larger than the standard converter, it actually operates much faster.

The compiler defaults to STANDARD if the DECLARE is not issued in the BASIC program.

DECLARE ICD_REQ = ON or OFF, or TRUE or FALSE, or 1, 0

When the ICD_REQ DECLARE is set to ON, the compiler configures itself so that the Microchip ICD2 In-Circuit-Debugger can be used. The ICD2 is very invasive to the program, in so much that it requires certain RAM areas for itself. This can be up to 26 bytes on some PICmicros. It also requires 2 call-stack levels, so be careful when using a 14-bit core device or you may overflow the call-stack with disastrous results.

With a 14-bit core device, the top of BANK0 RAM is reserved for the ICD, for 16-bit core devices, the RAM usage is not so noticeable because of its linear nature, but it still requires 12 bytes reserved at the end of RAM.

The list below highlights the requirements for the ICD2 with the most recent PICmicros that support it.

Device

RAM Usage
P12F675

$54 - $5F

P12F629

$54 - $5F

P16F627A

$70 - $7F

P16F628A

$70 - $7F

P16F648A

$70 - $7F

P16F630

$54 - $5F

P16F676

$54 - $5F

P16F87

$70 - $7F

P16F88

$70 - $7F

P16F818

$65 - $7F

P16F819

$65 - $7F

P16F870

$70 - $7F, $B5 - $BF

P16F871

$70 - $7F, $B5 - $BF

P16F872

$70 - $7F, $B5 - $BF

P16F873/873A
$74 - $7F

P16F874/874A
$74 - $7F

P16F876/876A
$70 - $7F

P16F877/877A
$70 - $7F

P18F242/442
$02F4 - $02FF

P18F252/452
$05F4 - $05FF

P18F248/448
$02F4 - $02FF

P18F258/458
$05F4 - $05FF

P18F1220

$F4 - $FF

P18F1320

$F4 - $FF

P18F2220/4220
$01F4 - $01FF

P18F2320/4320
$01F4 - $01FF

P18F2331/4331
$02F4 - $02FF

P18F2431/4431
$02F4 - $02FF

P18F2680/4680
$0CF4 - $0CFF

P18F6520/8520
$0EF4 - $0EFF

P18F6620/8620
$0EF4 - $0EFF

P18F6720/8720
$0EF4 - $0EFF

Whenever ICD2 compatibility is enabled, the compiler will automatically deduct the reserved RAM from the available RAM within the PICmicrotm, therefore you must take this into account when declaring variables. Remember, there aren't as many variables available with the ICD enabled.

If the ICD is enabled along with hardware interrupts, the compiler will also reserve the RAM required for context saving and restoring. This also will be reflected in the amount of RAM available within the PICmicrotm.

Note that the above list will increase as new PICmicrotm devices are released. Therefore, the help file will contain the most up to date listing of compatible devices.

TRIGONOMETRY Declares.

When using a 16-bit core device, the compiler defaults to using floating point trigonometry functions SIN and COS, as well as SQR . However, if only the BASIC Stamp compatible integer functions are required, they can be enabled by the following three declares. Note that by enabling the integer type function, the floating point function will be disabled permanently within the BASIC code. As with most of the declares, only one of any type is recognised per program.

DECLARE STAMP_COMPATIBLE_COS = ON or OFF, or TRUE or FALSE, or 1, 0

Enable/Disable floating point COS function in favour of the BASIC Stamp compatible integer COS function.

DECLARE STAMP_COMPATIBLE_SIN = ON or OFF, or TRUE or FALSE, or 1, 0

Enable/Disable floating point SIN function in favour of the BASIC Stamp compatible integer SIN function.

DECLARE STAMP_COMPATIBLE_SQR = ON or OFF, or TRUE or FALSE, or 1, 0

Enable/Disable floating point SQR (square root) function in favour of the BASIC Stamp compatible integer SQR function.

ADIN Declares.

DECLARE ADIN_RES 8 , 10 , or 12.

Sets the number of bits in the result.

If this DECLARE is not used, then the default is the resolution of the PICmicrotm type used. For example, the new 16F87X range will result in a resolution of 10-bits, while the standard PICmicrotm types will produce an 8-bit result. Using the above DECLARE allows an 8-bit result to be obtained from the 10-bit PICmicrotm types, but NOT 10-bits from the 8-bit types.

DECLARE ADIN_TAD 2_FOSC , 8_FOSC , 32_FOSC , or FRC.

Sets the ADC's clock source.

All compatible PICmicros have four options for the clock source used by the ADC; 2_FOSC, 8_FOSC, and 32_FOSC, are ratios of the external oscillator, while FRC is the PICmicro's internal RC oscillator. Instead of using the predefined names for the clock source, values from 0 to 3 may be used. These reflect the settings of bits 0-1 in register ADCON0.

Care must be used when issuing this DECLARE, as the wrong type of clock source may result in poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduction in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is the default setting if the DECLARE is not issued in the BASIC listing.

DECLARE ADIN_STIME 0 to 65535 microseconds (us).

Allows the internal capacitors to fully charge before a sample is taken. This may be a value from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in poor conversion speeds without any extra resolution being attained.

A typical value for ADIN_STIME is 50 to 100. This allows adequate charge time without loosing too much conversion speed.

But experimentation will produce the right value for your particular requirement. The default value if the DECLARE is not used in the BASIC listing is 50.

BUSIN - BUSOUT Declares.

DECLARE SDA_PIN PORT . PIN

Declares the port and pin used for the data line (SDA). This may be any valid port on the PICmicrotm. If this declare is not issued in the BASIC program, then the default Port and Pin is PORTA.0

DECLARE SCL_PIN PORT . PIN

Declares the port and pin used for the clock line (SCL). This may be any valid port on the PICmicrotm. If this declare is not issued in the BASIC program, then the default Port and Pin is PORTA.1

DECLARE SLOW_BUS ON - OFF or 1 - 0

Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs, which will result in intermittent writes or reads, or in some cases, none at all. Therefore, use this DECLARE if you are not sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

DECLARE BUS_SCL ON - OFF, 1 - 0 or TRUE - FALSE
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines, however, this is not always possible due to circuit restrictions etc, so once the BUS_SCL ON DECLARE is issued at the top of the program, the resistor on the SCL line can be omitted from the circuit. The default for the compiler if the BUS_SCL DECLARE is not issued, is that a pull-up resistor is required.

HBUSIN - HBUSOUT Declare.

DECLARE HBUS_BITRATE Constant 100, 400, 1000 etc.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. The above DECLARE allows the I2C bus speed to be increased or decreased. Use this DECLARE with caution, as too high a bit rate may exceed the device's specs, which will result in intermittent transactions, or in some cases, no transactions at all. The datasheet for the device used will inform you of its bus speed. The default bit rate is the standard 100KHz.

HSERIN, HSEROUT, HRSIN and HRSOUT Declares.

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE is not included in the program listing is 2400 baud.
DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicrotm hardware register RCSTA, to the value in the DECLARE. See the Microchip data sheet for the device used for more information regarding this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicrotm hardware register, TXSTA, to the value in the DECLARE. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL_TXSTA to a value of $24 instead of the default $20. Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information.

DECLARE HSERIAL_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For HRSIN, HRSOUT, HSERIN and HSEROUT. The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN

' Use if even parity desired

DECLARE HSERIAL_PARITY = ODD

' Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF

Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are not read from it often enough. When this occurs, the USART stops accepting any new characters, and requires resetting. This overflow error can be reset by strobing the CREN bit within the RCSTA register. Example: -

RCSTA.4 = 0

RCSTA.4 = 1

or

CLEAR RCSTA.4

SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even if no error occurred. However, the program will not know if an error occurred while reading, therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Second USART Declares for use with HRSIN2, HSERIN2, HRSOUT2 and HSEROUT2.

DECLARE HSERIAL2_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE is not included in the program listing is 2400 baud.

DECLARE HSERIAL2_RCSTA Constant value (0 to 255)

HSERIAL2_RCSTA, sets the respective PICmicrotm hardware register RCSTA2, to the value in the DECLARE. See the Microchip data sheet for the device used for more information regarding this register. Refer to the upgrade manual pages for a description of the RCSTA2 register.

DECLARE HSERIAL2_TXSTA Constant value (0 to 255)

HSERIAL2_TXSTA, sets the respective PICmicrotm hardware register, TXSTA2, to the value in the DECLARE. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH2 bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL2_TXSTA to a value of $24 instead of the default $20. Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information. Refer to the upgrade manual pages for a description of the TXSTA2 register.

DECLARE HSERIAL2_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For HRSOUT2, HRSIN2, HSEROUT2 and HSERIN2. The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL2_PARITY declare.

DECLARE HSERIAL2_PARITY = EVEN
' Use if even parity desired

DECLARE HSERIAL2_PARITY = ODD

' Use if odd parity desired

DECLARE HSERIAL2_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are not read from it often enough. When this occurs, the USART stops accepting any new characters, and requires resetting. This overflow error can be reset by strobing the CREN bit within the RCSTA2 register. Example: -

RCSTA2.4 = 0

RCSTA2.4 = 1

or

CLEAR RCSTA2.4

SET RCSTA2.4

Alternatively, the HSERIAL2_CLEAR declare can be used to automatically clear this error, even if no error occurred. However, the program will not know if an error occurred while reading, therefore some characters may be lost.

DECLARE HSERIAL2_CLEAR = ON

HPWM Declares.

Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used for HPWM. The following DECLARES allow the use of different pins: -

DECLARE CCP1_PIN PORT . PIN
' Select HPWM port and bit for CCP1 module. i.e. ch 1

DECLARE CCP2_PIN PORT . PIN
' Select HPWM port and bit for CCP2 module. i.e. ch 2

LCD PRINT Declares.

DECLARE LCD_DTPIN PORT . PIN

Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the PICmicrotm using either a 4-bit bus or an 8-bit bus. If an 8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either the bottom 4 or top 4 bits of one port. For example: -

DECLARE LCD_DTPIN PORTB.4
' Used for 4-line interface.

DECLARE LCD_DTPIN PORTB.0
' Used for 8-line interface.

In the above examples, PORTB is only a personal preference. The LCD's DT lines can be attached to any valid port on the PICmicrotm. If the DECLARE is not used in the program, then the default Port and Pin is PORTB.4, which assumes a 4-line interface.

DECLARE LCD_ENPIN PORT . PIN

Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic LCD's EN pin, however, the default value remains the same as for the alphanumeric type, so this will require changing.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.2.

DECLARE LCD_RSPIN PORT . PIN

Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic LCD's RS pin, however, the default value remains the same as for the alphanumeric type, so this will require changing.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.3.

DECLARE LCD_INTERFACE 4 or 8

Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the DECLARE is not used in the program, then the default interface is a 4-line type.

DECLARE LCD_LINES 1 , 2 , or 4

Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. However, there are 4-line types as well. Simply place the number of lines that the particular LCD has into the declare.

If the DECLARE is not used in the program, then the default number of lines is 2.

GRAPHIC LCD Declares.

DECLARE LCD_TYPE 1 or 0 , GRAPHIC or ALPHA

Inform the compiler as to the type of LCD that the PRINT command will output to. If GRAPHIC or 1 is chosen then any output by the PRINT command will be directed to a graphic LCD based on the Samsung S6B0108 chipset. A value of 0 or ALPHA, or if the DECLARE is not issued will target the standard alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as PLOT, UNPLOT, LCDREAD, and LCDWRITE.

DECLARE LCD_DTPORT PORT

Assign the port that will output the 8-bit data to the graphic LCD.

If the DECLARE is not used, then the default port is PORTB.

DECLARE LCD_RWPIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.0.

DECLARE LCD_CS1PIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.0.

DECLARE LCD_CS2PIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.0.

DECLARE INTERNAL_FONT ON - OFF, 1 or 0

The graphic LCD's that are compatible with PROTON+ are non-intelligent types, therefore, a separate character set is required. This may be in one of two places, either externally, in an I2C eeprom, or internally in a CDATA table.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL pins (as dictated by DECLARE SDA and DECLARE SCL).

If an internal font is chosen, it must be on a PICmicrotm device that has self modifying code features, such as the 16F87X, or 18XXXX range.

The CDATA table that contains the font must have a label, named FONT: preceding it. For example: -

FONT: CDATA $7E , $11 , $11 , $11 , $7E , $0

' Chr "A"

CDATA $7F , $49 , $49 , $49 , $36 , $0

' Chr "B"

{ rest of font table }

The font table may be anywhere in memory, however, it is best placed after the main program code.

If the DECLARE is omitted from the program, then an external font is the default setting.

DECLARE FONT_ADDR 0 to 7

Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is chosen, it may be on any one of 8 eeproms attached to the I2C bus. So as not to interfere with any other eeproms attached, the slave address of the eeprom carrying the font code may be chosen.

If the DECLARE is omitted from the program, then address 0 is the default slave address of the font eeprom.

DECLARE GLCD_CS_INVERT ON - OFF, 1 or 0

Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays left hand data on the right side, and vice-versa. The GLCD_CS_INVERT DECLARE, adjusts the library LCD handling library subroutines to take this into account.

DECLARE GLCD_STROBE_DELAY 0 to 65535 us (microseconds).

Create a delay of n microseconds between strobing the EN line of the graphic LCD. This can help noisy, or badly decoupled circuits overcome random bits appearing on the LCD. The default if the DECLARE is not used in the BASIC program is a delay of 0.

KEYPAD Declare.

DECLARE KEYPAD_PORT PORT

Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB which comes equipped with internal pull-ups. If the DECLARE is not used in the program, then PORTB is the default Port.

RSIN - RSOUT Declares.

DECLARE RSOUT_PIN PORT . PIN

Assigns the Port and Pin that will be used to output serial data from the RSOUT command. This may be any valid port on the PICmicrotm.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.0.

DECLARE RSIN_PIN PORT . PIN

Assigns the Port and Pin that will be used to input serial data by the RSIN command. This may be any valid port on the PICmicrotm.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.1.

DECLARE RSOUT_MODE INVERTED , TRUE or 1 , 0

Sets the serial mode for the data transmitted by RSOUT. This may be inverted or true. Alternatively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the DECLARE is not used in the program, then the default mode is INVERTED.

DECLARE RSIN_MODE INVERTED , TRUE or 1 , 0

Sets the serial mode for the data received by RSIN. This may be inverted or true. Alternatively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the DECLARE is not used in the program, then the default mode is INVERTED.

DECLARE SERIAL_BAUD 0 to 65535 bps (baud)

Informs the RSIN and RSOUT routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds, namely: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an increase in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the DECLARE is not used in the program, then the default baud is 9600.

DECLARE RSOUT_PACE 0 to 65535 microseconds (us)

Implements a delay between characters transmitted by the RSOUT command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver to catch, this results in missed characters. To alleviate this, a delay may be implemented between each individual character transmitted by RSOUT.

If the DECLARE is not used in the program, then the default is no delay between characters.

DECLARE RSIN_TIMEOUT 0 to 65535 milliseconds (ms)

Sets the time, in ms, that RSIN will wait for a start bit to occur.

RSIN waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then it will wait forever.

The RSIN command has the option of jumping out of the loop if no start bit is detected within the time allocated by timeout.

If the DECLARE is not used in the program, then the default timeout value is 10000ms which is 10 seconds.

SERIN - SEROUT Declare.

If communications are with existing software or hardware, its speed and mode will determine the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands SERIN and SEROUT have the option of still using a parity bit with 4 to 8 data bits. This is through the use of a DECLARE: -

With parity disabled (the default setting): -

DECLARE SERIAL_DATA 4 ' Set SERIN and SEROUT data bits to 4

DECLARE SERIAL_DATA 5 ' Set SERIN and SEROUT data bits to 5

DECLARE SERIAL_DATA 6 ' Set SERIN and SEROUT data bits to 6

DECLARE SERIAL_DATA 7 ' Set SERIN and SEROUT data bits to 7

DECLARE SERIAL_DATA 8 ' Set SERIN and SEROUT data bits to 8 (default)

With parity enabled: -

DECLARE SERIAL_DATA 5 ' Set SERIN and SEROUT data bits to 4

DECLARE SERIAL_DATA 6 ' Set SERIN and SEROUT data bits to 5

DECLARE SERIAL_DATA 7 ' Set SERIN and SEROUT data bits to 6

DECLARE SERIAL_DATA 8 ' Set SERIN and SEROUT data bits to 7 (default)

DECLARE SERIAL_DATA 9 ' Set SERIN and SEROUT data bits to 8

SERIAL_DATA data bits may range from 4 bits to 8 (the default if no DECLARE is issued). Enabling parity uses one of the number of bits specified.

Declaring SERIAL_DATA as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity bit received, the serial receiver assumes that the data was received correctly. Of course, this is not necessarily true, since two incorrectly received bits could make parity seem correct when the data was wrong, or the parity bit itself could be bad when the rest of the data was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to receive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

SHIN - SHOUT Declare.

DECLARE SHIFT_DELAYUS 0 - 65535 microseconds (us)

Extend the active state of the shift clock.

The clock used by SHIN and SHOUT runs at approximately 45KHz dependent on the oscillator. The active state is held for a minimum of 2 microseconds. By placing this declare in the program, the active state of the clock is extended by an additional number of microseconds up to 65535 (65.535 milliseconds) to slow down the clock rate.

If the DECLARE is not used in the program, then the default is no clock delay.

Compact Flash Interface Declares
There are several declares that need to be manipulated when interfacing to a Compact Flash card. There are the obvious port pins, but there are also some declares that optimise or speed up access to the card.

DECLARE CP_DTPORT PORT

This declare assigns the Compact Flash card’s data lines. The data line consists of 8-bits so it is only suitable for ports that contain 8-bits such as PORTB, PORTC, PORTD etc.

DECLARE LCD_ADPORT PORT

This declare assigns the Compact Flash card’s address lines. The address line consists of 3-bits, but A0 of the compact flash card must be attached to bit-0 of whatever port is used. For example, if the Compact Flash card’s address lines were attached to PORTA of the PICmicrotm, then A0 of the CF card must attach to PORTA.0, A1 or the CF card must attach to PORTA.1, and A2 of the CF card must attach to PORTA.2.

The CF access commands will mask the data before transferring it to the particular port that is being used so that the rest of it’s pins are not effected. PORTE is perfect for the address lines as it contains only 3 pins on a 40-pin device, and the compiler can make full use of this by using the CF_ADPORT_MASK declare.

DECLARE CF_ADPORT_MASK = ON or OFF, or TRUE or FALSE, or 1, 0

Both the CF_WRITE and CF_SECTOR commands write to the Compact Flash card’s address lines. However, these only contain 3-bits, so the commands need to ensure that the other bits of the PICmicro’s PORT are not effected. This is accomplished by masking the unwanted data before transferring it to the address lines. This takes a little extra code space, and thus a little extra time to accomplish. However, there are occasions when the condition of the other bits on the PORT are not important, or when a PORT is used that only has 3-bits to it. i.e. PORTE with a 40-pin device. Issuing the CF_ADPORT_MASK declare and setting it FALSE, will remove the masking mnemonics, thus reducing code used and time taken.

DECLARE CF_RDYPIN PORT . PIN

Assigns the Compact Flash card’s RDY/BSY line.

DECLARE CF_OEPIN PORT . PIN

Assigns the Compact Flash card’s OE line.

DECLARE CF_WEPIN PORT . PIN

Assigns the Compact Flash card’s WE line.

DECLARE CF_CD1PIN PORT . PIN

Assigns the Compact Flash card’s CD1 line. The CD1 line is not actually used by any of the commands, but is set to input if the declare is issued in the BASIC program. The CD1 line is used to indicate whether the card is inserted into its socket.

DECLARE CF_RSTPIN PORT . PIN

Assigns the Compact Flash card’s RESET line. The RESET line is not essential for interfacing to a Compact Flash card, but is useful if a clean power up is required. If the declare is not issued in the BASIC program, all reference to it is removed from the CF_INIT command. If the RESET line is not used for the card, ensure that it is tied to ground.

DECLARE CF_CE1PIN PORT . PIN

Assigns the Compact Flash card’s CE1 line. As with the RESET line, the CE1 line is not essential for interfacing to a Compact Flash card, but is useful when multiplexing pins, as the card will ignore all commands when the CE1 line is set high. If the declare is not issued in the BASIC program, all reference to it is removed from the CF_INIT command. If the CE1 line is not used for the card, ensure that it is tied to ground.

DECLARE CF_READ_WRITE_INLINE = ON or OFF, or TRUE or FALSE, or 1, 0

Sometimes, speed is of the essence when accessing a Compact Flash card, especially when interfacing to the new breed of card which is 40 times faster than the normal type. Because of this, the compiler has the ability to create the code used for the CF_WRITE and CF_READ commands inline, which means it does not call its library subroutines, and can tailor itself when reading or writing WORD, DWORD, or FLOAT variables. However, this comes at a price of code memory, as each command is stretched out for speed, not optimisation. It also means that the inline type of commands are really only suitable for the higher speed Compact Flash cards.

If the declare is not used in the BASIC program, the default is not to use inline commands.

CRYSTAL Frequency Declare.

DECLARE XTAL 4, 8, 10, 12, 16, or 20. For 12-bit core devices.

DECLARE XTAL 3, 4, 8, 10, 12, 14, 16, 20, or 24. For 14-bit core devices.

DECLARE XTAL 3, 4, 8, 10, 12, 14, 16, 20, 24, 25, 32, 33, or 40. For 16-bit core devices.

Inform the compiler as to what frequency crystal is being used.

Some commands are very dependant on the oscillator frequency, RSIN, RSOUT, DELAYMS, and DELAYUS being just a few. In order for the compiler to adjust the correct timing for these commands, it must know what frequency crystal is being used.

The XTAL frequencies 3 and 14 are for 3.58MHz and 14.32MHz respectively. 14.32MHz is a 4x multiply of 3.58MHz.

If the DECLARE is not used in the program, then the default frequency is 4MHz.

Notes

The DECLARE directive alters the corresponding library subroutine at runtime. This means that once the DECLARE is added to the BASIC program, it cannot be UNDECLARED later, or changed in any way.

The DECLARE directive is also capable of passing information to an assembly routine. For example: -

DECLARE USE_THIS_PIN PORTA , 1

Notice the use of a comma, instead of a point for separating the register and bit number. This is because it is being passed directly to the assembler as a #DEFINE directive.

DELAYMS

Syntax

DELAYMS Length

Overview

Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 seconds) long.

Operators

Length can be a constant, variable, or expression.

Example

XTAL = 4

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

VAR1 = 50

WRD1= 1000

DELAYMS 100

' Delay for 100ms

DELAYMS VAR1

' Delay for 50ms

DELAYMS WRD1

' Delay for 1000ms

DELAYMS WRD1+ 10
' Delay for 1010ms

Notes

DELAYMS is oscillator independent, as long as you inform the compiler of the crystal frequency to use, using the DECLARE Scribble869directive.

See also :
DELAYUSScribble909, SLEEPScribble2189, SNOOZEScribble2169.
DELAYUS

Syntax

DELAYUS Length

Overview

Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milliseconds) long.

Operators

Length can be a constant, variable, or expression.

Example

DECLARE XTAL 20

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

VAR1 = 50

WRD1= 1000

DELAYUS 1

' Delay for 1us

DELAYUS 100

' Delay for 100us

DELAYUS VAR1

' Delay for 50us

DELAYUS WRD1

' Delay for 1000us

DELAYUS WRD1+ 10
' Delay for 1010us

Notes

DELAYUS is oscillator independent, as long as you inform the compiler of the crystal frequency to use, using the XTAL Scribble869directive.

If a constant is used as length, then delays down to 1us can be achieved, however, if a variable is used as length, then there's a minimum delay time depending on the frequency of the crystal used: -

 CRYSTAL FREQ
MINIMUM DELAY

4MHz

24us

8MHz

12us

10MHz

8us

16MHz

5us

20MHz

2us

24MHz

2us

25MHz

2us

32MHz

2us

33MHz

2us

40MHz

2us

See also :
DECLAREScribble869, DELAYMSScribble889, SLEEPScribble2189, SNOOZEScribble2169
DEVICE

Syntax

DEVICE Device number

Overview

Inform the compiler which PICmicrotm device is being used.

Operators

Device number can be a 12-bit, 14-bit, or 16-bit core device.

Example

DEVICE = 16F877

' Produce code for a 16F877 PICmicro device

 or

DEVICE = 16F84

' Produce code for a 16F84 PICmicro device

or

DEVICE = 12C508

' Produce code for a 12-bit core 12C508 PICmicro device

or

DEVICE = 18F452

' Produce code for a 18F452 PICmicro device

DEVICE should be the first command placed in the program.

If the DEVICE directive is not used in the BASIC program, the code produced will default to the ever-popular (but now outdated) 16F84 device.

For an up-to-date list of compatible devices refer to the help file.
DIG

Syntax

Variable = DIG Value , Digit number

Overview

Returns the value of a decimal digit.

Operators

Value is a constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit number is to be extracted.

Digit number is a constant, variable, or expression, that represents the digit to extract from value. (0 - 4 with 0 being the rightmost digit).

Example

DIM VAR1 AS BYTE

DIM VAR2 AS BYTE

VAR1 = 124

VAR2 = DIG VAR1 , 1
' Extract the second digit's value

PRINT DEC VAR2

' Display the value, which is 2
DIM

Syntax

DIM Variable { as } { Size }

Overview

All user-defined variables must be declared using the DIM statement.

Operators

Variable can be any alphanumeric character or string.

as is required when the size of the variable is stated.

Size is the physical size of the variable, it may be BIT, BYTE, WORD, DWORD, FLOAT, or STRING.

Example 1

' Declare the variables all as BYTE sized

DIM A , B , My_VAR1 , fred , cat , zz

Example 1 only applies to BYTEScribble2709 sized variables, and is merely a left over from a previous version of the compiler. But is too commonly used to remove it.

Example 2

' Declare different sized variables

DIM VAR1 AS BYTE

' Declare an 8-bit BYTE sized variable

DIM WRD1 AS WORD

' Declare a 16-bit WORD sized variable

DIM DWRD1 AS DWORD

' Declare a 32-bit DWORD sized variable

DIM BITVAR AS BIT

' Declare a 1-bit BIT sized variable

DIM FLT AS FLOAT

' Create a 32-bit floating point variable

DIM STRNG AS STRING*20
‘ Create a 20 character string variable
Notes

Any variable that is declared without the 'AS' text after it, will assume an 8-bit BYTEScribble2709 type.

DIM should be placed near the beginning of the program. Any references to variables not declared or before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.

DIM MyVar AS BYTE

or

DIM MY_VAR AS WORD

or

DIM My_Var2 AS BIT

Variable names may start with an underscore, but must NOT start with a number. They can be no more than 32 characters long. Any characters after this limit will be ignored.

DIM 2MyVar
is NOT allowed.

Variable names are case insensitive, which means that the variable: -

DIM MYVAR

Is the same as…

DIM MYVAR

DIM can also be used to create constants i.e. numbers: -

DIM Num AS 100

' NUM now represents the value 100

DIM BigNum AS 1000

' BIGNUM now represents 1000

DIM VeryBigNum AS 1000000
' VERYBIGNUM now represents 1000,000

Constant values differ to their variable counterparts because they do not take up any RAM space. They are simply ALIAS's to numbers.

Numeric constants may contain complex equations: -

DIM Complex AS ((2000 / 54) << 2) & 255)

Floating point constants may also be created using DIM by simply adding a decimal point to a value.

DIM PI AS 3.14

' Create a floating point constant named PI

DIM FL_NUM AS 5.0

' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

DIM QUANTA AS 5.0 / 1024
' Create a floating point constant holding the result of the expression

DIM can also be used to create ALIAS's to other variables or constants: -

DIM VAR1 AS BYTE

' Declare a BYTE sized variable

DIM VAR_BIT AS VAR1.1

' VAR_BIT now represents Bit-1 of VAR1

ALIAS's, as in the case of constants, do not require any RAM space, because they point to a variable, or part of a variable that has already been declared.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list below illustrates this.

STRING

Requires the specified length of characters + 1.

FLOAT

Requires 4 bytes of RAM.

DWORD

Requires 4 bytes of RAM.

WORD

Requires 2 bytes of RAM.

BYTE

Requires 1 byte of RAM.

BIT

Requires 1 byte of RAM for every 8 BIT variables used.

Each type of variable may hold a different minimum and maximum value.

STRING type variables are only useable with 16-bit core devices, and can hold a maximum of 255 characters.

FLOAT type variables may theoretically hold a value from -1e37 to +1e38, but because of the 32-bit architecture of the compiler, a maximum and minimum value should be thought of as -2147483646.999 to +2147483646.999 making this the most accurate of the variable family types. However, more so than DWORD types, this comes at a price as FLOAT calculations and comparisons will use more code space within the PICmicrotm. Use this type of variable sparingly, and only when strictly necessary. Smaller floating point values offer more accuracy.

DWORD type variables may hold a value from -2147483648 to +2147483647 making this one of the largest of the variable family types. This comes at a price however, as DWORDScribble2749 calculations and comparisons will use more code space within the PICmicrotm. Use this type of variable sparingly, and only when necessary.

WORD type variables may hold a value from 0 to 65535, which is usually large enough for most applications. It still uses more memory, but not nearly as much as a DWORDScribble2749 type.

BYTE type variables may hold a value for 0 to 255, and are the usual work horses of most programs. Code produced for BYTE sized variables is very low compared to WORDScribble2729, or DWORDScribble2749 types, and should be chosen if the program requires faster, or more efficient operation.

BIT type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring a single BIT type variable in a program will not save RAM space, but it will save code space, as BIT type variables produce the most efficient use of code for comparisons etc.

There are modifiers that may also be used with variables. These are HIGHBYTE, LOWBYTE, BYTE0, BYTE1, BYTE2, and BYTE3.

BYTE2, and BYTE3 may only be used in conjunction with a 32-bit DWORDScribble2749 type variable.

HIGHBYTE and BYTE1 are one and the same thing, when used with a WORDScribble2729 type variable, they refer to the High byte of a WORDScribble2729 type variable: -

DIM WRD AS WORD

' Declare a WORD sized variable

DIM WRD_HI AS WRD.HIGHBYTE

' WRD_HI now represents the HIGHBYTE of variable WRD

Variable WRD_HI is now accessed as a BYTEScribble2709 sized type, but any reference to it actually alters the high byte of WRD.

However, if BYTE1 is used in conjunction with a DWORDScribble2749 type variable, it will extract the second byte. HIGHBYTE will still extract the high byte of the variable, as will BYTE3.

The same is true of LOWBYTE and BYTE0, but they refer to the Low Byte of a WORDScribble2729 type variable: -

DIM WRD AS WORD

' Declare a WORD sized variable

DIM WRD_LO AS WRD.LOWBYTE

' WRD_LO now represents the LOWBYTE of variable WRD

Variable WRD_LO is now accessed as a BYTEScribble2709 sized type, but any reference to it actually alters the low byte of WRD.

The modifier BYTE2 will extract the 3rd byte from a 32-bit DWORDScribble2749 type variable, as an alias. Likewise BYTE3 will extract the high byte of a 32-bit variable.

RAM space for variables is allocated within the PICmicrotm in the order that they are placed in the BASIC code. For example: -

DIM VAR1 AS BYTE

DIM VAR2 AS BYTE

Places VAR1 first, then VAR2: -

VAR1 EQU n

VAR2 EQU n

This means that on a PICmicrotm with more than one BANK, the first n variables will always be in BANK0 (the value of n depends on the specific PICmicrotm used).

The position of the variable within BANKs is usually of little importance if BASIC code is used, however, if assembler routines are being implemented, always assign any variables used within them first.

Problems may also arise if a WORDScribble2729, or DWORDScribble2749 variable crosses a BANK boundary. If this happens, a warning message will be displayed in the error window. Most of the time, this will not cause any problems, however, to err on the side of caution, try and ensure that WORDScribble2729, or DWORDScribble2749 type variables are fully inside a BANK. This is easily accomplished by placing a dummy BYTEScribble2709 variable before the offending WORDScribble2729, or DWORDScribble2749 type variable, or relocating the offending variable within the list of DIM Scribble969statements.

See Also :
ALIASES, DECLARING ARRAYS, ARRAYS, CONSTANTS Floating Point

Math SYMBOL, SYMBOLS, Creating and using Strings .
DISABLE

DISABLE interrupt processing that was previously ENABLED following this instruction.

DISABLE and ENABLE, and RESUME are not actually commands in the truest sense of the word, but flags that the compiler uses internally. They do not produce any code.

DEVICE 16F877

OPTION_REG = %00000111

INTCON = %00100000

SYMBOL LED = PORTD.0

' Enable software interrupts, and point to interrupt handler

ON INTERRUPT GOTO My_Int

Fin:

DELAYMS 1

GOTO Fin

DISABLE

' Disable interrupts in the handler

My_Int:

TOGGLE LED

' Toggle an LED when interrupted

RESUME

' Return to main program

ENABLE

' Enable interrupts after the handler

See also :
SOFTWARE INTERRUPTS in BASICScribble540, ENABLEScribble545, RESUME.

DTMFOUT
Syntax

DTMFOUT Pin , { OnTime } , { OffTime, } [Tone {, Tone…}]
Overview

Produce a DTMF Touch Tone sequence on Pin.
Operators

Pin is a PORT.BIT constant that specifies the I/O pin to use. This pin will be set to output during

generation of tones and set to input after the command is finished.

OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms

OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of silent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime parameter is not used, then the default time is 50ms

Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate. Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12 through 15 are the fourth-column tones used by phone test equipment and in some radio applications.

Example

DTMFOUT PORTA.0 , [7 , 4 , 9 , 9 , 9 , 0]

' Call Crownhill.
If the PICmicrotm was connected to the phone line correctly, the above command would dial 666-709. If you wanted to slow down the dialling in order to break through a noisy phone line or radio link, you could use the optional OnTime and OffTime values: -
‘Set the OnTime to 500ms and OffTime to 100ms

DTMFOUT PORTA.0 , 500 , 100 , [7 , 4 , 9 , 9 , 9 , 0] ' Call Crownhill Slowly.

[image: image93.wmf]Xpos 0 - 127

Ypos 0 - 63

0

0

63

0

127

63

0

127

Line 0

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Notes DTMF tones are used to dial a telephone, or remotely control pieces of radio equipment. The PICmicrotm can generate these tones digitally using the DTMFOUT command. However, to achieve the best quality tones, a higher crystal frequency is required. A 4MHz type will work but the quality of the sound produced will suffer. The circuits illustrate how to connect a speaker or audio amplifier to hear the tones produced.

The PICmicrotm is a digital device, however, DTMF tones are analogue waveforms, consisting of a mixture of two sine waves at different audio frequencies. So how can a digital device generate an analogue output? The PICmicrotm creates and mixes two sine waves mathematically, then uses the resulting stream of numbers to control the duty cycle of an extremely fast pulse-width modulation (PWM) routine. Therefore, what’s actually being produced from the I/O pin is a rapid stream of pulses. The purpose of the filtering arrangements illustrated above is to smooth out the high-frequency PWM, leaving behind only the lower frequency audio. You should keep this in mind if you wish to interface the PICmicro’s DTMF output to radios and other equipment that could be adversely affected by the presence of high-frequency noise on the input. Make sure to filter the DTMF output scrupulously. The circuits above are only a foundation; you may want to use an active low-pass filter with a cut-off frequency of approximately 2KHz.
EDATA

Syntax

EDATA Constant1 { ,...Constantn etc }

Overview

Places constants or strings directly into the on-board eeprom memory of compatible PICmicro's

Operators

Constant1,Constantn are values that will be stored in the on-board eeprom. When using an EDATA statement, all the values specified will be placed in the eeprom starting at location 0. The EDATA statement does not allow you to specify an eeprom address other than the beginning location at 0. To specify a location to write or read data from the eeprom other than 0 refer to the EREAD, EWRITE commands.

Example

' Stores the values 1000,20,255,15, and the ASCII values for

' H','e','l','l','o' in the eeprom starting at memory position 0.

EDATA 1000 , 20 , $FF , %00001111 , "Hello"

Notes

16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are placed LSB first (LOWEST SIGNIFICANT BYTE). For example, if 1000 is placed into an EDATA statement, then the order is: -

EDATA 1000

In eeprom it looks like 232, 03

Alias's to constants may also be used in an EDATA statement: -

SYMBOL Alias = 200

EDATA Alias , 120 , 254 , "Hello World"

Addressing an EDATA table.

Eeprom data starts at address 0 and works up towards the maximum amount that the PICmicrotm will allow. However, it is rarely the case that the information stored in eeprom memory is one continuous piece of data. Eeprom memory is normally used for storage of several values or strings of text, so a method of accessing each piece of data is essential. Consider the following piece of code: -

EDATA "HELLO"

EDATA "WORLD"

Now we know that eeprom memory starts at 0, so the text "HELLO" must be located at address 0, and we also know that the text "HELLO" is built from 5 characters with each character occupying a byte of eeprom memory, so the text "WORLD" must start at address 5 and also contains 5 characters, so the next available piece of eeprom memory is located at address 10. To access the two separate text strings we would need to keep a record of the start and end address's of each character placed in the tables.

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few EDATA tables are used in the program, but it can become tedious if multiple values and strings are needing to be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the EDATA table will allow the compiler to do the byte counting for you. The compiler will store the eeprom address associated with the table in the identifying name as a constant value. For example: -

HELLO_TEXT
EDATA "HELLO"

WORLD_TEXT
EDATA "WORLD"

The name HELLO_TEXT is now recognised as a constant with the value of 0, referring to address 0 that the text string "HELLO" starts at. The WORLD_TEXT is a constant holding the value 5, which refers to the address that the text string "WORLD" starts at.

Note that the identifying text MUST be located on the same line as the EDATA directive or a syntax error will be produced. It must also NOT contain a postfix colon as does a line label or it will be treat as a line label. Think of it as an alias name to a constant.

Any EDATA directives MUST be placed at the head of the BASIC program as is done with SYMBOLS, so that the name is recognised by the rest of the program as it is parsed. There is no need to jump over EDATA directives as you have to with LDATA or CDATA, because they do not occupy code memory, but reside in high DATA memory.

The example program below illustrates the use of eeprom addressing.

' Display two text strings held in eeprom memory

INCLUDE "PROTON_4.INC"
' Demo on a PROTON development board

DIM CHAR AS BYTE

' Holds the character read from eeprom

DIM CHARPOS AS BYTE

' Holds the address within eeprom memory

' Create a string of text in eeprom memory. NULL terminated

HELLO EDATA "HELLO ",0

' Create another string of text in eeprom memory. NULL terminated

WORLD EDATA "WORLD",0

DELAYMS 200

' Wait for the PICmicro to stabilise

CLS

' Clear the LCD

CHARPOS = HELLO

' Point CHARPOS to the start of text "HELLO"

GOSUB DISPLAY_TEXT

' Display the text "HELLO"

CHARPOS = WORLD

' Point CHARPOS to the start of text "WORLD"

GOSUB DISPLAY_TEXT

' Display the text "WORLD"

STOP

' We're all done

' Subroutine to read and display the text held at the address in CHARPOS

DISPLAY_TEXT:

WHILE 1 = 1

' Create an infinite loop

CHAR = EREAD CHARPOS
' Read the eeprom data

IF CHAR = 0 THEN BREAK
' Exit when NULL found

PRINT CHAR

' Display the character

INC CHARPOS

' Move up to the next address

WEND

' Close the loop

RETURN

' Exit the subroutine

Formatting an EDATA table.

Sometimes it is necessary to create a data table with a known format for its values. For example all values will occupy 4 bytes of data space even though the value itself would only occupy 1 or 2 bytes.

EDATA 100000 , 10000 , 1000 , 100 , 10 , 1

The above line of code would produce an uneven data space usage, as each value requires a different amount of data space to hold the values. 100000 would require 4 bytes of eeprom space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using EREAD would cause problems because there is no way of knowing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of bytes.

These are: -

BYTE

WORD

DWORD

FLOAT
Placing one of these formatters before the value in question will force a given length.

EDATA
DWORD 100000 , DWORD 10000 ,_

DWORD 1000 , DWORD 100 , DWORD 10 , DWORD 1

BYTE will force the value to occupy one byte of eeprom space, regardless of it's value. Any values above 255 will be truncated to the least significant byte.

WORD will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any values above 65535 will be truncated to the two least significant bytes. Any value below 255 will be padded to bring the memory count to 2 bytes.

DWORD will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any value below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown above uses the DWORD formatter to ensure all the values in the EDATA table occupy 4 bytes of eeprom space.

FLOAT will force a value to its floating point equivalent, which always takes up 4 bytes of eeprom space.

If all the values in an EDATA table are required to occupy the same amount of bytes, then a single formatter will ensure that this happens.

EDATA AS DWORD 100000 , 10000 , 1000 , 100 , 10 , 1

The above line has the same effect as the formatter previous example using separate DWORD formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters can be used with the AS keyword.

The example below illustrates the formatters in use.

' Convert a DWORD value into a string array

' Using only BASIC commands

' Similar principle to the STR$ command

INCLUDE "PROTON_4.INC"

DIM P10 AS DWORD

' Power of 10 variable

DIM CNT AS BYTE

DIM J AS BYTE

DIM VALUE AS DWORD

' Value to convert

DIM STRING1[11] AS BYTE

' Holds the converted value

DIM PTR AS BYTE

' Pointer within the Byte array

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

CLEAR

' Clear all RAM before we start

VALUE = 1234576

' Value to convert

GOSUB DWORD_TO_STR

' Convert VALUE to string

PRINT STR STRING1

' Display the result

STOP
'---

' Convert a DWORD value into a string array

' Value to convert is placed in 'VALUE'

' Byte array 'STRING1' is built up with the ASCII equivalent

DWORD_TO_STR:

PTR = 0

J = 0

REPEAT

P10 = EREAD J * 4

CNT = 0

WHILE VALUE >= P10

VALUE = VALUE - P10

INC CNT

WEND

IF CNT <> 0 THEN

STRING1[PTR] = CNT + "0"

INC PTR

ENDIF

INC J

UNTIL J > 8

STRING1[PTR] = VALUE + "0"

INC PTR

STRING1[PTR] = 0

' Add the NULL to terminate the string

RETURN
' EDATA table is formatted for all 32 bit values.

' Which means each value will require 4 bytes of eeprom space

EDATA AS DWORD 1000000000, 100000000, 10000000, 1000000,100000, 10000, 1000,_

100, 10

Label names as pointers in an EDATA table.

If a label's name is used in the list of values in an EDATA table, the labels address will be used. This is useful for accessing other tables of data using their address from a lookup table. See example below.

' Display text from two CDATA tables

' Based on their address located in a separate table

INCLUDE "PROTON_4.INC"

' Use a 14-bit core device

DIM ADDRESS AS WORD

DIM DATA_BYTE AS BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

ADDRESS = EREAD 0

' Locate the address of the first string

While 1 = 1

' Create an infinite loop

DATA_BYTE = CREAD ADDRESS
' Read each character from the CDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP
' Exit if NULL found

PRINT DATA_BYTE

' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP:

CURSOR 2,1

' Point to line 2 of the LCD

ADDRESS = EREAD 2

' Locate the address of the second string

While 1 = 1

' Create an infinite loop

DATA_BYTE = CREAD ADDRESS
' Read each character from the CDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP2 ' Exit if NULL found

PRINT DATA_BYTE

 ' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP2:

STOP
' Table of address's located in eeprom memory

EDATA AS WORD STRING1, STRING2

STRING1:

CDATA "HELLO",0

STRING2:

CDATA "WORLD",0

See also :
EREAD, EWRITE.
ENABLE

ENABLE interrupt processing that was previously DISABLED following this instruction.

DISABLE Scribble545and ENABLE, and RESUME Scribble549are not actually commands in the truest sense of the word, but flags that the compiler uses internally. They do not produce any code.

DEVICE 16F877

OPTION_REG = %00000111

INTCON = %00100000

SYMBOL LED = PORTD.0

' Enable software interrupts, and point to interrupt handler

ON INTERRUPT GOTO My_Int

Fin:

DELAYMS 1

GOTO Fin

DISABLE

' Disable interrupts in the handler

My_Int:

TOGGLE LED

' Toggle an LED when interrupted

RESUME

' Return to main program

ENABLE

' Enable interrupts after the handler

See also :
SOFTWARE INTERRUPTS in BASICScribble540, DISABLEScribble545, RESUME. Scribble549
Software Interrupts in BASIC

Although the most efficient method of using an interrupt is in assembler, hardware interrupts and BASIC are poor bedfellows. By far the easiest way to write an interrupt handler is to write it in BASIC, in combination with the ON INTERRUPT statement. This is not the same as the compiler's ON_INTERRUPT statement, which initiates a HARDWARE interrupt. ON INTERRUPT (two separate words.. ON INTERRUPT) informs the compiler to activate its internal interrupt handling and to jump to the BASIC interrupt handler as soon as it's capable, after receiving an interrupt. However, there's no such thing as a free lunch, and there are some penalties to pay for the ease of use that this method brings.

The statement ON_HARDWARE_INTERRUPT are also recognised by the compiler in order to clarify which type of interrupt is being implemented.

When ON INTERRUPT is used, the compiler simply flags that the interrupt has happened and immediately goes back to what it was doing, before it was rudely interrupted. Unlike a hardware interrupt, it does not immediately jump to the interrupt handler. And since the compiler's commands are non re-entrant, there could be a considerable delay before the interrupt is actually handled.

For example, if the program has just started to execute a DELAYMS Scribble8892000 command when an interrupt occurs, the compiler will flag the interrupt and continue with the delay. It could be as much as 2 seconds later before the interrupt handler is executed. Any time critical routines dependant on the interrupt occurring regularly will be ruined. For example, multiplexing seven segment display.

To minimise the above problem, use only statements that don't take long to execute. For example, instead of DELAYMS Scribble8892000, use DELAYMS Scribble8891 in a FOR..NEXTScribble1089, or REPEAT..UNTILScribble1949 loop. This will allow the compiler to complete each command more quickly and handle any awaiting interrupts: -

FOR VAR1 = 0 TO 199 : DELAYMS 1 : NEXT
' Delay for 200ms

If interrupt processing needs to occur more regularly, then there is no choice but to use a hardware interrupt, with all it's quirks.

Exactly what happens when ON INTERRUPT is used is this: A short interrupt handler is placed at location 4 in the PICmicrotm. This interrupt handler is simply a RETURNScribble1989. What this does is send the program back to what it was doing before the interrupt occurred. It does not require any processor context saving. What it doesn't do is re-enable Global Interrupts as happens when using a RETFIEScribble2664 instruction.

A Call to a short subroutine is placed before each command in the BASIC program once an ON INTERRUPT statement is encountered. This short subroutine checks the state of the Global Interrupt Enable bit (GIEScribble2666). If it's off, an interrupt is awaiting so it vectors to the users interrupt handler. Which is essentially a BASIC subroutine.

If it is still set, the program continues with the next BASIC statement, after which, the GIE Scribble2666 bit is checked again, and so forth.

See also
: ENABLE, DISABLE, RESUME.
END

Syntax

END

Overview

The END statement stops compilation of source, and creates an infinite loop.

Notes

END stops the PICmicrotm processing by placing it into a continuous loop. The port pins remain the same and the device is placed in low power mode.

See also :
STOPScribble2229, SLEEPScribble2189, SNOOZEScribble2169.
EREAD

Syntax

Variable = EREAD Address

Overview

Read information from the on-board eeprom available on some PICmicrotm types.

Operators

Variable is a user defined variable.

Address is a constant, variable, or expression, that contains the address of interest within eeprom memory.

Example

DEVICE 16F84

' A PICmicro with on-board eeprom

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

DIM DWRD1 AS DWORD

EDATA 10 , 354 , 123456789

' Place some data into the eeprom

VAR1 = EREAD 0

' Read the 8-bit value from address 0

WRD1= EREAD 1

' Read the 16-bit value from address 1

DWRD1 = EREAD 3

' Read the 32-bit value from address 3

Notes

If a FLOATScribble2769, or DWORDScribble2749 type variable is used as the assignment variable, then 4-bytes will be read from the eeprom. Similarly, if a WORDScribble2729 type variable is used as the assignment variable, then a 16-bit value (2-bytes)will be read from eeprom, and if a BYTEScribble2709 type variable is used, then 8-bits will be read. To read an 8-bit value while using a WORDScribble2729 sized variable, use the LOWBYTE modifier: -

WRD1.LOWBYTE = EREAD 0
' Read an 8-bit value

WRD1.HIGHBYTE = 0

' Clear the high byte of WRD

If a 16-bit (WORDScribble2729) size value is read from the eeprom, the address must be incremented by two for the next read. Also, if a FLOAT Scribble2769or DWORDScribble2749 type variable is read, then the address must be incremented by 4.

Most of the Flash PICmicrotm types have a portion of memory set aside for storage of information. The amount of memory is specific to the individual PICmicrotm type, some, such as the 16F84, has 64 bytes, the 16F877 device has 256 bytes, and some of the 16-bit core devices have upwards of 512 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information, or tables of values.

Reading data with the EREAD command is almost instantaneous, but writing data to the eeprom can take up to 10ms per byte.

See also : EDATAScribble1009, EWRITEScribble1069
EWRITE

Syntax

EWRITE Address , [Variable {, Variable…etc }]

Overview

Write information to the on-board eeprom available on some PICmicrotm types.

Operators

Address is a constant, variable, or expression, that contains the address of interest within eeprom memory.

Variable is a user defined variable.

Example

DEVICE 16F628

' A PICmicro with on-board eeprom

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

DIM ADDRESS AS BYTE

VAR1 = 200

WRD1= 2456

ADDRESS = 0

' Point to address 0 within the eeprom

EWRITE ADDRESS , [WRD , VAR1]
' Write a 16-bit then an 8-bit value

Notes

If a DWORDScribble2749 type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom. Similarly, if a WORDScribble2729 type variable is used, then a 16-bit value (2-bytes) will be written to eeprom, and if a BYTEScribble2709 type variable is used, then 8-bits will be written. To write an 8-bit value while using a WORDScribble2729 sized variable, use the LOWBYTE modifier: -

EWRITE ADDRESS , [WRD.LOWBYTE , VAR1]

If a 16-bit (WORDScribble2729) size value is written to the eeprom, the address must be incremented by two before the next write: -

FOR ADDRESS = 0 TO 64 STEP 2

EWRITE ADDRESS , [WRD]

NEXT

Most of the Flash PICmicrotm types have a portion of memory set aside for storage of information. The amount of memory is specific to the individual PICmicrotm type, some, such as the 16F84, has 64 bytes, while the newer 16F877, and 18FXXX devices have 256 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information, or tables of values.

Writing data with the EWRITE command can take up to 10ms per byte, but reading data from the eeprom is almost instantaneous,.

See also : EDATAScribble1009, EREADScribble1049
FOR...NEXT...STEP

Syntax

FOR Variable = Startcount TO Endcount [STEP { Stepval }]

{code body}

NEXT
Overview

The FOR…NEXT loop is used to execute a statement, or series of statements a predetermined amount of times.

Operators

Variable refers to an index variable used for the sake of the loop. This index variable can itself be used in the code body but beware of altering its value within the loop as this can cause many problems.

Startcount is the start number of the loop, which will initially be assigned to the variable. This does not have to be an actual number - it could be the contents of another variable.

Endcount is the number on which the loop will finish. This does not have to be an actual number, it could be the contents of another variable, or an expression.

Stepval is an optional constant or variable by which the variable increases or decreases with each trip through the FOR-NEXT loop. If startcount is larger than endcount, then a minus sign must precede stepval.

Example 1

' Display in decimal, all the values of WRD within an upward loop

DIM WRD AS WORD

FOR WRD = 0 TO 2000 STEP 2

' Perform an upward loop

PRINT DEC WRD ," "

' Display the value of WRD

NEXT

' Close the loop

Example 2

' Display in decimal, all the values of WRD within a downward loop

DIM WRD AS WORD

FOR WRD = 2000 TO 0 STEP -2

' Perform a downward loop

PRINT DEC WRD ," "

' Display the value of WRD

NEXT

' Close the loop

Example 3

' Display in decimal, all the values of DWRD within a downward loop

DIM DWRD AS DWORD

FOR DWRD = 200000 TO 0 STEP -200
' Perform a downward loop

PRINT DEC DWRD ," "

' Display the value of DWRD

NEXT

' Close the loop

Example 4

' Display all the values of WRD1 using a expressions as parts of the FOR-NEXT construct

DIM WRD1 AS WORD

DIM WRD2 AS WORD

WRD2 = 1000

FOR WRD1= WRD2 + 10 TO WRD2 +1000
' Perform a loop

PRINT DEC WRD1," "

' Display the value of WRD1

NEXT

' Close the loop

Notes

You may have noticed from the above examples, that no variable is present after the NEXT command. A variable after NEXT is purely optional.

FOR-NEXT loops may be nested as deeply as the memory on the PICmicrotm will allow. To break out of a loop you may use the GOTO command without any ill effects: -

FOR VAR1 = 0 TO 20

‘ Create a loop of 21

IF VAR1 = 10 THEN GOTO BREAK_OUT
‘ Break out of loop when VAR1 is 10

NEXT

‘ Close the loop
BREAK_OUT:

STOP

See also :
WHILE...WENDScribble2309, REPEAT...UNTILScribble1949.
FREQOUT

Syntax

FREQOUT Pin , Period , Freq1 { , Freq2}

Overview

Generate one or two sine-wave tones, of differing or the same frequencies, for a specified period.

Operators

Pin is a PORT-BIT combination that specifies which I/O pin to use.

Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to generate the tone(s).

Freq1 may be a variable, constant, or expression (0 - 32767) specifying frequency of the first tone.

Freq2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the second tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example

' Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit 0 of PORTA.

FREQOUT PORTA.0 , 1000 , 2500

' Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.

FREQOUT PORTA.0 , 1000 , 2500 , 30000

Notes

FREQOUT generates one or two sine waves using a pulse-width modulation algorithm. FREQOUT will work with a 4MHz crystal, however, it is best used with higher frequency crystals, and operates best with a 20MHz type. The raw output from FREQOUT requires filtering, to eliminate most of the switching noise. The circuits shown below will filter the signal in order to play the tones through a speaker or audio amplifier.

[image: image94.wmf]To

I/O Pin

5-50k

0.1uF

The two circuits shown above, work by filtering out the high-frequency PWM used to generate the sine waves. FREQOUT works over a very wide range of frequencies (0 to 32767KHz) so at the upper end of its range, the PWM filters will also filter out most of the desired frequency. You may need to reduce the values of the parallel capacitors shown in the circuit, or to create an active filter for your application.

Example 2

‘ Play a tune using FREQOUT to generate the notes

DEVICE 16F877
DECLARE XTAL 20

DIM Loop AS BYTE

' Counter for notes.

DIM Freq1 AS WORD

' Frequency1.

DIM Freq2 AS WORD

' Frequency2

SYMBOL C = 2092

' C note

SYMBOL D = 2348

' D note

SYMBOL E = 2636

' E note

SYMBOL G = 3136

' G note

SYMBOL R = 0

' Silent pause.

SYMBOL Pin = PORTA.0

' Sound output pin

ADCON1 = 7

' Set PORTA and PORTE to all digital

Loop = 0

REPEAT

' Create a loop for 29 notes within the LOOKUPL table.

Freq1 = LOOKUPL Loop , [E,D,C,D,E,E,E,R,D,D,D,R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]

IF Freq1 = 0 THEN Freq2 = 0 : ELSE Freq2 = Freq1 - 8

FREQOUT Pin , 225 , Freq1 , Freq2

INC Loop

UNTIL Loop > 28

STOP
See also :
DTMFOUTScribble989, SOUNDScribble2209, SOUND2Scribble2219.
GETBIT

Syntax

Variable = GETBIT Variable , Index

Overview

Examine a bit of a variable, or register.

Operators

Variable is a user defined variable, of type BYTEScribble2709, WORDScribble2729, or DWORDScribble2749.

Index is a constant, variable, or expression that points to the bit within Variable that requires examining.

Example

' Examine and display each bit of variable EX_VAR

DEVICE = 16F877

XTAL = 4

DIM EX_VAR AS BYTE

DIM INDEX AS BYTE

DIM VAR1 AS BYTE

EX_VAR = %10110111

AGAIN:

CLS

PRINT AT 1,1,BIN8 EX_VAR

' Display the original variable

CURSOR 2,1

' Position the cursor at line 2

FOR INDEX = 7 TO 0 STEP -1

' Create a loop for 8 bits

VAR1 = GETBIT EX_VAR,INDEX
' Examine each bit of EX_VAR

PRINT DEC1 VAR1

' Display the binary result

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

GOTO AGAIN

' Do it forever
See also :
CLEARBITScribble719, LOADBITScribble1479, SETBIT.Scribble724
GOSUB

Syntax

GOSUB Label
or

GOSUB Label [Variable, {Variable, Variable... etc}] , Receipt Variable

Overview

GOSUB jumps the program to a defined label and continues execution from there. Once the program hits a RETURN command the program returns to the instruction following the GOSUB that called it and continues execution from that point.

If using a 16-bit core device, parameters can be pushed onto a software stack before the call is made, and a variable can be popped from the stack before continuing execution of the next commands.

Operators

Label is a user-defined label placed at the beginning of a line which must have a colon ':' directly after it.

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, FLOAT, or STRING, or constant value, that will be pushed onto the stack before the call to a subroutine is performed.

Receipt Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, FLOAT, or STRING, that will hold a value popped from the stack after the subroutine has returned.

Example 1
' Implement a standard subroutine call

GOTO Start

' Jump over the subroutines

SubA:
{ subroutine A code

……

……

}

RETURN

SubB:
{ subroutine B code

……

……

}

RETURN

' Actual start of the main program

Start:
GOSUB SubA

GOSUB SubB

STOP

Example 2
' Call a subroutine with parameters

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 20

' Create a small stack capable of holding 20 bytes

DIM WRD1 as WORD

' Create a WORD variable

DIM WRD2 as WORD

' Create another WORD variable

DIM RECEIPT as WORD

' Create a variable to hold result

WRD1 = 1234

' Load the WORD variable with a value

WRD2 = 567

' Load the other WORD variable with a value

' Call the subroutine and return a value

GOSUB ADD_THEM [WRD1 , WRD2] , RECEIPT

PRINT DEC RECEIPT

' Display the result as decimal

STOP
' Subroutine starts here. Add the two parameters passed and return the result

ADD_THEM:

DIM ADD_WRD1 as WORD

' Create two uniquely named variables

DIM ADD_WRD2 as WORD

POP ADD_WRD2

' Pop the last variable pushed

POP ADD_WRD1

' Pop the first variable pushed

ADD_WRD1 = ADD_WRD1 + ADD_WRD2
' Add the values together

RETURN ADD_WRD1

' Return the result of the addition

In reality, what's happening with the GOSUB in the above program is simple, if we break it into its constituent events: -

PUSH WRD1

PUSH WRD2

GOSUB ADD_THEM

POP RECEIPT

Notes

Only one parameter can be returned from the subroutine, any others will be ignored.

If a parameter is to be returned from a subroutine but no parameters passed to the subroutine, simply issue a pair of empty square braces: -

GOSUB LABEL [] , RECEIPT

The same rules apply for the parameters as they do for PUSH, which is after all, what is happening.

PROTON+ allows any amount of GOSUBs in a program, but the 14-bit PICmicrotm architecture only has an 8-level return address stack, which only allows 8 GOSUBs to be nested. The compiler only ever uses a maximum of 4-levels for it's library subroutines, therefore do not use more than 4 GOSUBs within subroutines. The 16-bit core devices however, have a 28-level return address stack which allows any combination of up to 28 GOSUBS to occur.

A subroutine must always end with a RETURN command.

What is a STACK?

All microprocessors and most microcontrollers have access to a STACK, which is an area of RAM allocated for temporary data storage. But this is sadly lacking on a PICmicrotm device. However, the 16-bit core devices have an architecture and low-level mnemonics that allow a STACK to be created and used very efficiently.

A stack is first created in high memory by issuing the STACK_SIZE Declare.

STACK_SIZE = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any BASIC command, other than PUSH and POP. This means that it is a safe place for temporary variable storage.

Taking the above line of code as an example, we can examine what happens when a variable is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicrotm device is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0 to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for normal variable storage.

Pushing.
When a WORD variable is pushed onto the stack, the memory map would look like the diagram below: -

Top of Memory
|................Empty RAM.............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can see, the stack grows in an upward direction whenever a PUSH is implemented, which means it shrinks back down whenever a POP is implemented.

If we were to PUSH a DWORD variable on to the stack as well as the WORD variable, the stack memory would look like: -

Top of Memory
|................Empty RAM.............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of DWORD variable
| Address 1500

| Mid1 Byte address of DWORD variable| Address 1499

| Mid2 Byte address of DWORD variable| Address 1498

| High Byte address of DWORD variable| Address 1497

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

Popping.
When using the POP command, the same variable type that was pushed last must be popped first, or the stack will become out of phase and any variables that are subsequently popped will contain invalid data. For example, using the above analogy, we need to POP a DWORD variable first. The DWORD variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte, then lastly the High Byte. This will ensure that the same value pushed will be reconstructed correctly when placed into its recipient variable. After the POP, the stack memory map will look like: -

Top of Memory
|................Empty RAM.............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

If a WORD variable was then popped, the stack will be empty, however, what if we popped a BYTE variable instead? the stack would contain the remnants of the WORD variable previously pushed. Now what if we popped a DWORD variable instead of the required WORD variable? the stack would underflow by two bytes and corrupt any variables using those address's . The compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that proper stack management is carried out. The same is true if the stack overflows. i.e. goes beyond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack. Incrementing because it grows upwards in memory. Last-In First-Out because the last variable pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's hardware register, and an underflow will simply overwrite RAM immediately below the Start of Stack memory. If a circular operating stack is required, it will need to be coded in the main BASIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incremented for every BYTE pushed, and decremented for every BYTE popped. Therefore checking the FSR2 registers in the BASIC program will give an indication of the stack's condition if required. This also means that the BASIC program cannot use the FSR2 register pair as part of its code, unless for manipulating the stack. Note that none of the compiler's commands, other than PUSH and POP, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only the stack pointer is moved. Therefore, the above diagrams are not quite true when they show empty RAM, but unless you have use of the remnants of the variable, it should be considered as empty, and will be overwritten by the next PUSH command.

See also :
CALL, GOTO, PUSH, POP.Scribble1149
GOTO

Syntax

GOTO Label

Overview

Jump to a defined label and continue execution from there.

Operators

Label is a user-defined label placed at the beginning of a line which must have a colon ':' directly after it.

Example

IF VAR1 = 3 THEN GOTO Jumpover

{

code here executed only if VAR1<>3

……

……

}

Jumpover:

{continue code execution}

In this example, if VAR1=3 then the program jumps over all the code below it until it reaches the label JUMPOVER where program execution continues as normal.
See also :
CALLScribble560, GOSUB.Scribble1129
HBSTART

Syntax

HBSTART
Overview

Send a START condition to the I2C bus using the PICmicro's MSSP module.

Notes

Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard HBUSINScribble1249, and HBUSOUT Scribble1269commands were found lacking. Therefore, individual pieces of the I2C protocol may be used in association with the new structure of HBUSINScribble1249, and HBUSOUTScribble1269. See relevant sections for more information.

Example

' Interface to a 24LC32 serial eeprom

DEVICE = 16F877

' Use a device with an MSSP module

DIM Loop AS BYTE

DIM Array[10] AS BYTE

' Transmit bytes to the I2C bus

HBSTART

' Send a START condition

HBUSOUT %10100000

' Target an eeprom, and send a WRITE command

HBUSOUT 0

' Send the HIGHBYTE of the address

HBUSOUT 0

' Send the LOWBYTE of the address

FOR LOOP = 48 TO 57

' Create a loop containing ASCII 0 to 9

HBUSOUT LOOP

' Send the value of LOOP to the eeprom

NEXT

' Close the loop

HBSTOP

' Send a STOP condition

DELAYMS 10

' Wait for the data to be entered into eeprom matrix

' Receive bytes from the I2C bus

HBSTART

' Send a START condition

HBUSOUT %10100000

' Target an eeprom, and send a WRITE command

HBUSOUT 0

' Send the HIGHBYTE of the address

HBUSOUT 0

' Send the LOWBYTE of the address

HBRESTART

' Send a RESTART condition

HBUSOUT %10100001

' Target an eeprom, and send a READ command

FOR Loop = 0 TO 9

' Create a loop

Array[Loop] = HBUSIN

' Load an array with bytes received

IF Loop = 9 THEN HBSTOP : ELSE HBUSACK
' ACK or STOP ?

NEXT

' Close the loop

PRINT AT 1,1, STR Array

' Display the Array as a STRING

See also :
HBUSACKScribble1229, HBRESTARTScribble1209, HBSTOPScribble1189, HBUSINScribble1249, HBUSOUTScribble1269.
HBSTOP

Syntax

HBSTOP
Overview

Send a STOP condition to the I2C bus using the PICmicro's MSSP module.

HBRESTART

Syntax

HBRESTART
Overview

Send a RESTART condition to the I2C bus using the PICmicro's MSSP module.

HBUSACK

Syntax

HBUSACK
Overview

Send an ACKNOWLEDGE condition to the I2C bus using the PICmicro's MSSP module.

See also :
HBSTARTScribble1169, HBRESTARTScribble1209, HBSTOPScribble1189, HBUSINScribble1249, HBUSOUTScribble1269.
HBUSIN

Syntax

Variable = HBUSIN Control , { Address }

or

Variable = HBUSIN

or

HBUSIN Control , { Address }, [Variable {, Variable…}]
or

HBUSIN Variable
Overview

Receives a value from the I2C bus using the MSSP module, and places it into variable/s. If structures TWO or FOUR (see above) are used, then NO ACKNOWLEDGE, or STOP is sent after the data. Structures ONE and THREE first send the control and optional address out of the clock pin (SCL), and data pin (SDA).

Operators
Variable is a user defined variable or constant.

Control may be a constant value or a BYTEScribble2709 sized variable expression.

Address may be a constant value or a variable expression.

The four variations of the HBUSIN command may be used in the same BASIC program. The SECOND and FOURTH types are useful for simply receiving a single byte from the bus, and must be used in conjunction with one of the low level commands. i.e. HBSTARTScribble1169, HBRESTARTScribble1209, HBUSACKScribble1229, or HBSTOPScribble1189. The FIRST, and THIRD types may be used to receive several values and designate each to a separate variable, or variable type.

The HBUSIN command operates as an I2C master, using the PICmicro's MSSP module, and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from the eeprom. Note that this bit is automatically set by the HBUSIN command, regardless of its initial setting.

Example

' Receive a byte from the I2C bus and place it into variable VAR1.

DIM VAR1 AS BYTE

' We'll only read 8-bits

DIM ADDRESS AS WORD

' 16-bit address required

SYMBOL Control %10100001

' Target an eeprom

ADDRESS = 20

' Read the value at address 20

VAR1 = HBUSIN Control , Address
' Read the byte from the eeprom

or

HBUSIN Control , ADDRESS, [VAR1]
' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this position, the size of address is dictated by the size of the variable used (BYTEScribble2709 or WORDScribble2729). In the case of the previous eeprom interfacing, the 24C32 eeprom requires a 16-bit address. While the smaller types require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation three, which only receives a BYTEScribble2709 (8-bits). For example: -

DIM WRD AS WORD

' Declare a WORD size variable

WRD = HBUSIN Control , Address

Will receive a 16-bit value from the bus. While: -

DIM VAR1 AS BYTE

' Declare a BYTE size variable

VAR1 = HBUSIN Control , Address

Will receive an 8-bit value from the bus.

Using the THIRD variation of the HBUSIN command allows differing variable assignments. For example: -

DIM VAR1 AS BYTE

DIM WRD AS WORD

HBUSIN Control , Address , [VAR1 , WRD]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of variable VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WRD which has been declared as a word. Of course, BITScribble2689 type variables may also be used, but in most cases these are not of any practical use as they still take up a byte within the eeprom.

The SECOND and FOURTH variations allow all the subtleties of the I2C protocol to be exploited, as each operation may be broken down into its constituent parts. It is advisable to refer to the datasheet of the device being interfaced to fully understand its requirements. See section on HBSTARTScribble1169, HBRESTARTScribble1209, HBUSACKScribble1229, or HBSTOPScribble1189, for example code.

HBUSIN Declare
DECLARE HBUS_BITRATE Constant 100, 400, 1000

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. The above DECLARE Scribble869allows the I2C bus speed to be increased or decreased. Use this DECLARE Scribble869with caution, as too high a bit rate may exceed the device's specs, which will result in intermittent transactions, or in some cases, no transactions at all. The datasheet for the device used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Notes

Not all PICmicrotm devices contain an MSSP module, some only contain an SSP type, which only allows I2C SLAVE operations. These types of devices may not be used with any of the HBUS commands. Therefore, always read and understand the datasheet for the PICmicrotm device used.

When the HBUSIN command is used, the appropriate SDA and SCL Port and Pin are automatically setup as inputs. The SDA, and SCL lines are predetermined as hardware pins on the PICmicrotm i.e. For a 16F877 device, the SCL pin is PORTC.3, and SDA is PORTC.4. Therefore, there is no need to pre-declare these.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7K to 10K will suffice.

STR modifier with HBUSIN

Using the STR modifier allows variations THREE and FOUR of the HBUSIN command to transfer the bytes received from the I2C bus directly into a byte array. If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. An example of each is shown below: -

DIM Array[10] AS BYTE

' Define an array of 10 bytes

DIM ADDRESS AS BYTE

' Create a word sized variable

HBUSIN %10100000 , ADDRESS, [STR Array]
' Load data into all the array

' Load data into only the first 5 elements of the array

HBUSIN %10100000 , ADDRESS, [STR Array\5]

HBSTART

' Send a START condition

HBUSOUT %10100000

' Target an eeprom, and send a WRITE command

HBUSOUT 0

' Send the HIGHBYTE of the address

HBUSOUT 0

' Send the LOWBYTE of the address

HBRESTART

' Send a RESTART condition

HBUSOUT %10100001

' Target an eeprom, and send a READ command

HBUSIN STR Array

' Load all the array with bytes received

HBSTOP

' Send a STOP condition

An alternative ending to the above example is: -

HBUSIN STR Array\5

' Load data into only the first 5 elements of the array

HBSTOP

' Send a STOP condition

See also :
HBUSACKScribble1229, HBRESTARTScribble1209, HBSTOPScribble1189, HBSTARTScribble1169, HBUSOUTScribble1269.
HBUSOUT

Syntax

HBUSOUT Control , { Address } , [Variable {, Variable…}]
or

HBUSOUT Variable
Overview

Transmit a value to the I2C bus using the PICmicro's on-board MSSP module, by first sending the control and optional address out of the clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the HBUSOUT command, a single value will be transmitted, along with an ACK reception.

Operators
Variable is a user defined variable or constant.

Control may be a constant value or a BYTEScribble2709 sized variable expression.

Address may be a constant, variable, or expression.

The HBUSOUT command operates as an I2C master and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify that we wish to write to the eeprom. Note that this bit is automatically cleared by the HBUSOUT command, regardless of its initial value.

Example

' Send a byte to the I2C bus.

DIM VAR1 AS BYTE

' We'll only read 8-bits

DIM ADDRESS AS WORD

' 16-bit address required

SYMBOL Control = %10100000

' Target an eeprom

ADDRESS = 20

' Write to address 20

VAR1 = 200

' The value place into address 20

HBUSOUT Control , ADDRESS, [VAR1]
' Send the byte to the eeprom

DELAYMS 10

' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this position, the size of address is dictated by the size of the variable used (BYTEScribble2709 or WORDScribble2729). In the case of the above eeprom interfacing, the 24C32 eeprom requires a 16-bit address. While the smaller types require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you may not achieve the results you intended.

The value sent to the bus depends on the size of the variables used. For example: -

DIM WRD AS WORD

' Declare a WORD size variable

HBUSOUT Control , Address , [WRD]

Will send a 16-bit value to the bus. While: -

DIM VAR1 AS BYTE

' Declare a BYTE size variable

HBUSOUT Control , Address , [VAR1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For example: -

DIM VAR1 AS BYTE

DIM WRD AS WORD

HBUSOUT Control , Address , [VAR1 , WRD]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WRD which has been declared as a word. Of course, BITScribble2689 type variables may also be used, but in most cases these are not of any practical use as they still take up a byte within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

HBUSOUT Control , Address , ["Hello World" , VAR1 , WRD]

Using the second variation of the HBUSOUT command, necessitates using the low level commands i.e. HBSTARTScribble1169, HBRESTARTScribble1209, HBUSACKScribble1229, or HBSTOPScribble1189.

Using the HBUSOUT command with only one value after it, sends a byte of data to the I2C bus, and returns holding the ACKNOWLEDGE reception. This acknowledge indicates whether the data has been received by the slave device.

The ACK reception is returned in the PICmicro's CARRY flag, which is STATUS.0, and also SYSTEM variable PP4.0. A value of zero indicates that the data was received correctly, while a one indicates that the data was not received, or that the slave device has sent a NACK return. You must read and understand the datasheet for the device being interfacing to, before the ACK return can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom

DIM PP4 AS BYTE SYSTEM

HBSTART

' Send a START condition

HBUSOUT %10100000

' Target an eeprom, and send a WRITE command

HBUSOUT 0

' Send the HIGHBYTE of the address

HBUSOUT 0

' Send the LOWBYTE of the address

HBUSOUT "A"

' Send the value 65 to the bus

IF PP4.0 = 1 THEN GOTO Not_Received
' Has ACK been received OK ?

HBSTOP

' Send a STOP condition

DELAYMS 10

' Wait for the data to be entered into eeprom matrix

STR modifier with HBUSOUT.

The STR modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

DIM MYARRAY[10] AS BYTE
' Create a 10-byte array.

MYARRAY [0] = "A"

' Load the first 4 bytes of the array

MYARRAY [1] = "B"

' With the data to send

MYARRAY [2] = "C"

MYARRAY [3] = "D"

HBUSOUT %10100000 , Address , [STR MYARRAY \4]
' Send 4-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the program would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE
' Create a 10-byte array.

STR MYARRAY = "ABCD"

' Load the first 4 bytes of the array

HBSTART

' Send a START condition

HBUSOUT %10100000

' Target an eeprom, and send a WRITE command

HBUSOUT 0

' Send the HIGHBYTE of the address

HBUSOUT 0

' Send the LOWBYTE of the address

HBUSOUT STR MYARRAY \4
' Send 4-byte string.

HBSTOP

' Send a STOP condition

The above example, has exactly the same function as the previous one. The only differences are that the string is now constructed using the STR as a command instead of a modifier, and the low-level HBUS commands have been used.

Notes

Not all PICmicrotm devices contain an MSSP module, some only contain an SSP type, which only allows I2C SLAVE operations. These types of devices may not be used with any of the HBUS commands. Therefore, always read and understand the datasheet for the PICmicrotm device used.

When the HBUSOUT command is used, the appropriate SDA and SCL Port and Pin are automatically setup as inputs. The SDA, and SCL lines are predetermined as hardware pins on the PICmicrotm i.e. For a 16F877 device, the SCL pin is PORTC.3, and SDA is PORTC.4. Therefore, there is no need to pre-declare these. Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7K to 10K will suffice.

See also :
HBUSACKScribble1229, HBRESTARTScribble1209, HBSTOPScribble1189, HBUSINScribble1249, HBSTARTScribble1169.
HIGH

Syntax

HIGH Port or Port.Bit

Overview

Place a Port or bit in a high state. For a Port, this means filling it with 1's. For a bit this means setting it to 1.

Operators

Port can be any valid port.

Port.Bit can be any valid port and bit combination, i.e. PORTA.1

Example

SYMBOL LED = PORTB.4

HIGH LED

See also :
CLEAR, DIMScribble969, LOWScribble1569, Scribble709SETScribble2119, SYMBOLScribble2269.
HPWM

Syntax

HPWM Channel , Dutycycle , Frequency
Overview

Output a pulse width modulated pulse train using the CCP modules PWM hardware, available on some PICmicros. The PWM pulses produced can run continuously in the background while the program is executing other instructions.

Operators

Channel is a constant value that specifies which hardware PWM channel to use. Some devices have 1, 2 or 3 PWM channels. On devices with 2 channels, the Frequency must be the same on both channels. It must be noted, that this is a limitation of the PICmicrotm not the compiler. The data sheet for the particular device used shows the fixed hardware pin for each Channel. For example, for a PIC16F877, Channel 1 is CCP1 which is pin PORTC.2. Channel 2 is CCP2 which is pin PORTC.1.

Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio of the signal. It ranges from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all the time. A value of 127 gives a 50% duty cycle (square wave).

Frequency is a variable, constant (0-32767), or expression that specifies the desired frequency of the PWM signal. Not all frequencies are available at all oscillator settings. The highest frequency at any oscillator speed is 32767Hz. The lowest usable HPWM Frequency at each oscillator setting is shown in the table below: -

XTAL frequency
Lowest useable PWM frequency

4MHz

145Hz

8MHz

489Hz

10MHz

611Hz

12MHz

733Hz

16MHz

977Hz

20MHz

1221Hz

24MHz

1465Hz

33MHz

2015Hz

40MHz

2442Hz
Example
DEVICE = 16F877

XTAL = 20

HPWM 1,127,1000

' Send a 50% duty cycle PWM signal at 1KHz

DELAYMS 500

HPWM 1,64,2000

' Send a 25% duty cycle PWM signal at 2KHz

STOP
Notes

Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used for HPWM. The following DECLARES allow the use of different pins: -

DECLARE CCP1_PIN PORT . PIN
' Select HPWM port and bit for CCP1 module.

DECLARE CCP2_PIN PORT . PIN
' Select HPWM port and bit for CCP2 module.

See also :
PWMScribble1849, PULSOUTScribble1829, SERVOScribble2089.

HRSIN

Syntax

Variable = HRSIN , { Timeout , Timeout Label }
or

HRSIN { Timeout , Timeout Label } , { Parity Error Label } , Modifiers , Variable {, Variable... }

Overview

Receive one or more values from the serial port on devices that contain a hardware USART.

Operators

Timeout is an OPTIONAL value for the length of time the HRSIN command will wait before jumping to label TIMEOUT LABEL. Timeout is specified in 1 millisecond units.

Timeout Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event that a character has not been received within the time specified by TIMEOUT.

Parity Error Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event that a PARITY error is received. Parity is set using DECLARES. Parity Error detecting is not supported in the inline version of HRSIN (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a BITScribble2689, BYTEScribble2709, WORDScribble2729, or DWORDScribble2749 variable, that will be loaded by HRSIN.

Example

' Receive values serially and timeout if no reception after 1 second (1000ms).

DEVICE 16F877

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate to 9600

HSERIAL_RCSTA = %10010000

' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100000

' Enable transmit and asynchronous mode

HSERIAL_CLEAR = ON

' Optionally clear the buffer before receiving

DIM VAR1 AS BYTE

Loop:
VAR1 = HRSIN , {1000 , Timeout}
' Receive a byte serially into VAR1

PRINT DEC VAR1 , " "

' Display the byte received

GOTO Loop

' Loop forever

Timeout:

CLS

PRINT "TIMED OUT"

' Display an error if HRSIN timed out

STOP

HRSIN MODIFIERS.

As we already know, RSIN will wait for and receive a single byte of data, and store it in a variable . If the PICmicrotm were connected to a PC running a terminal program and the user pressed the "A" key on the keyboard, after the HRSIN command executed, the variable would contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time you press a character on the keyboard, the computer receives the ASCII value of that character. It is up to the receiving side to interpret the values as necessary.

In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII code 49.

The HRSIN command provides a modifier, called the decimal modifier, which will interpret this for us. Look at the following code: -

DIM SERDATA AS BYTE

HRSIN DEC SERDATA

Notice the decimal modifier in the HRSIN command that appears just to the left of the SERDATA variable. This tells HRSIN to convert incoming text representing decimal numbers into true decimal form and store the result in SERDATA. If the user running the terminal software pressed the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be stored in the variable SERDATA, allowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that represent decimal numbers are the characters "0" through "9". Once the HRSIN command is asked to use the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the first decimal character. Once it finds the first decimal character, it will continue looking for more (accumulating the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it will not finish until it finds at least one decimal character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code example as above): -

Serial input:
"ABC"

Result: The program halts at the HRSIN command, continuously waiting for decimal text.

Serial input:
"123" (with no characters following it)

Result: The program halts at the HRSIN command. It recognises the characters "1", "2" and "3" as the number one hundred twenty three, but since no characters follow the "3", it waits continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input:
"123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the program knows the entire number is 123, and stores this value in SERDATA. The HRSIN command then ends, allowing the next line of code to run.

Serial input:
"123A"

Result: Same as the example above. The "A" character, just like the space character, is the first non-decimal text after the number 123, indicating to the program that it has received the entire number.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not decimal text), the characters "123" are evaluated to be the number 123 and the following character, "E", indicates to the program that it has received the entire number.

The final result of the DEC modifier is limited to 16 bits (up to the value 65535). If a value larger than this is received by the decimal modifier, the end result will be incorrect because the result rolled-over the maximum 16-bit value. Therefore, HRSIN modifiers may not (at this time) be used to load DWORDScribble2749 (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with HRSIN See below for a list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric character arrives, or in the case of the fixed length modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text arrives, even if the resulting value exceeds the size of the variable. After HRSIN, a BYTEScribble2709 variable will contain the lowest 8 bits of the value entered and a WORDScribble2729 (16-bits) would contain the lowest 16 bits. You can control this to some degree by using a modifier that specifies the number of digits, such as DEC2, which would accept values only in the range of 0 to 99.

Conversion Modifier
Type of Number Numeric
Characters Accepted

DEC{1..10}

Decimal, optionally limited

0 through 9

to 1 - 10 digits

HEX{1..8}

Hexadecimal, optionally limited

0 through 9,

 to 1 - 8 digits

A through F

BIN{1..32}

Binary, optionally limited

 0, 1

 to 1 - 32 digits

A variable preceded by BIN will receive the ASCII representation of its binary value.

For example, if BIN VAR1 is specified and "1000" is received, VAR1 will be set to 8.

A variable preceded by DEC will receive the ASCII representation of its decimal value.

For example, if DEC VAR1 is specified and "123" is received, VAR1 will be set to 123.

A variable preceded by HEX will receive the ASCII representation of its hexadecimal value.

For example, if HEX VAR1 is specified and "FE" is received, VAR1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.

For example, SKIP 4 will skip 4 characters.

The HRSIN command can be configured to wait for a specified sequence of characters before it retrieves any additional input. For example, suppose a device attached to the PICmicrotm is known to send many different sequences of data, but the only data you wish to observe happens to appear right after the unique characters, "XYZ". A modifier named WAIT can be used for this purpose: -

HRSIN WAIT("XYZ") , SERDATA

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives the next data byte and places it into variable SERDATA.

STR modifier.
The HRSIN command also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SERSTRING: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

HRSIN STR SerString

' Fill the array with received data.

PRINT STR SerString

' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. For example: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

HRSIN STR SerString\5

' Fill the first 5-bytes of the array

PRINT STR SerString\5

' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the guidelines below when developing a project using the HRSIN and HRSOUT Scribble1329commands may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the PICmicrotm for a given oscillator frequency. Misunderstanding the timing constraints is the source of most problems with code that communicate serially. If the serial communication in your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause strange problems in communication, or no communication at all. Make sure to connect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the HRSIN / HRSOUT commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polarity error.

If receiving data from another device that is not a PICmicrotm, try to use baud rates of 9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicrotm, and the fact that the HRSIN command only offers a 2 level receive buffer for serial communication, received data may sometimes be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not arrays) will also increase the chance that the PICmicrotm will receive the data properly.

Declares
There are five DECLARE Scribble869directives for use with HRSIN. These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE Scribble869is not included in the program listing is 2400 baud.
DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicrotm hardware register RCSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicrotm hardware register, TXSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h. Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information.

DECLARE HSERIAL_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For both HRSIN and HRSOUT Scribble1329The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN

' Use if even parity desired

DECLARE HSERIAL_PARITY = ODD

' Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are not read from it often enough. When this occurs, the USART stops accepting any new

characters, and requires resetting. This overflow error can be reset by strobing the CREN bit within the RCSTA register. Example: -

RCSTA.4 = 0

RCSTA.4 = 1

or

CLEAR RCSTA.4

SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even if no error occurred. However, the program will not know if an error occurred while reading, therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Notes

HRSIN can only be used with devices that contain a hardware USART. See the specific device's data sheet for further information concerning the serial input pin as well as other relevant parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an inverted state to eliminate an RS232 driver. Therefore a suitable driver should be used with HRSIN. Just such a circuit using a MAX232 is shown below.

[image: image95.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

22pF

C1

10uF

C2

0.1uF

R1

4.7k

5 Volts

C3

22pF

4mHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

INTELLIGENT LCD

MODULE

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

EN

R/W

RS

Vo

Vdd

Vss

Contrast

47K

linear

+5V

[image: image96.wmf]$

7

E

$

0

0

$

1

1

$

1

1

$

1

1

$

7

E

A simpler, and somewhat more elegant transceiver circuit using only 5 discrete components is shown in the diagram below.

See also :
DECLAREScribble869, RSINScribble2009, RSOUTScribble2029, SERINScribble2049, SEROUTScribble2069, HRSOUTScribble1329, HSERINScribble1339, HSEROUTScribble1344.
HRSOUT

Syntax

HRSOUT Item { , Item... }
Overview

Transmit one or more Items from the hardware serial port on devices that support asynchronous serial communications in hardware.

Operators

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. For example, if an at sign'@' precedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

Modifier

Operation

AT ypos,xpos
Position the cursor on a serial LCD

CLS

Clear a serial LCD (also creates a 30ms delay)

BIN{1..32}

Send binary digits

DEC{1..10}

Send decimal digits

HEX{1..8}

Send hexadecimal digits

SBIN{1..32}

Send signed binary digits

SDEC{1..10}
Send signed decimal digits

SHEX{1..8}

Send signed hexadecimal digits

IBIN{1..32}

Send binary digits with a preceding '%' identifier

IDEC{1..10}

Send decimal digits with a preceding '#' identifier

IHEX{1..8}

Send hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Send signed binary digits with a preceding '%' identifier

ISDEC{1..10}
Send signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Send signed hexadecimal digits with a preceding '$' identifier

REP c\n

Send character c repeated n times

STR array\n

Send all or part of an array

CSTR cdata

Send string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine how many remainder digits are send. i.e. numbers after the decimal point.

DIM FLT AS FLOAT

FLT = 3.145

HRSOUT DEC2 FLT

' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal point.

DIM FLT AS FLOAT

FLT = 3.1456

HRSOUT DEC FLT

' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT = -3.1456

HRSOUT DEC FLT

' Send 3 values after the decimal point

The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text "HELLO WORLD" on line 1, position 1, the code would be: -

HRSOUT AT 1 , 1 , "HELLO WORLD"

Example 1

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM DWD AS DWORD

HRSOUT "Hello World"

' Display the text "Hello World"

HRSOUT "VAR1= " , DEC VAR1

' Display the decimal value of VAR1

HRSOUT "VAR1= " , HEX VAR1

' Display the hexadecimal value of VAR1

HRSOUT "VAR1= " , BIN VAR1

' Display the binary value of VAR1

HRSOUT "VAR1= " , @VAR1

' Display the decimal value of VAR1

HRSOUT "DWD= " , HEX6 DWD
' Display 6 hex characters of a DWORD type variable

Example 2

' Display a negative value on a serial LCD.

SYMBOL NEGATIVE = -200

HRSOUT AT 1 , 1 , SDEC NEGATIVE

Example 3

' Display a negative value on a serial LCD with a preceding identifier.

HRSOUT AT 1 , 1 , ISHEX -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to their own flash memory. And although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast, and harmless. Which offers a unique form of data storage and retrieval, the CDATA Scribble689command proves this, as it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data.

The CSTR modifier may be used in commands that deal with text processing i.e. SEROUTScribble2069, HSEROUTScribble1344, and PRINT Scribble1789etc.

The CSTR modifier is used in conjunction with the CDATA Scribble689command. The CDATA Scribble689command is used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD" , 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

HRSOUT CSTR STRING1

The label that declared the address where the list of CDATA Scribble689values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

HRSOUT "HELLO WORLD",13

HRSOUT "HOW ARE YOU?",13

HRSOUT "I AM FINE!",13

STOP

Now using the CSTR modifier: -

CLS

HRSOUT CSTR TEXT1

HRSOUT CSTR TEXT2

HRSOUT CSTR TEXT3

STOP
TEXT1: CDATA "HELLO WORLD" , 13, 0

TEXT2: CDATA "HOW ARE YOU?" , 13, 0

TEXT3: CDATA "I AM FINE!" , 13, 0

Again, note the NULL terminators after the ASCII text in the CDATA Scribble689commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA Scribble689command cannot be written too, but only read from.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

MYARRAY [0] = "H"

' Load the first 5 bytes of the array

MYARRAY [1] = "E"

' With the data to send

MYARRAY [2] = "L"

MYARRAY [3] = "L"

MYARRAY [4] = "O"

HRSOUT STR MYARRAY \5

' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE

' Create a 10-byte array.

STR MYARRAY = "HELLO"

' Load the first 5 bytes of the array

HRSOUT STR MYARRAY \5

' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the string is now constructed using STR as a command instead of a modifier.

Declares
There are four DECLARE Scribble869directives for use with HRSOUT. These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE Scribble869is not included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicrotm hardware register RCSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. Refer to the upgrade manual pages for a description of the RCSTA register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicrotm hardware register, TXSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h. Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information. Refer to the upgrade manual pages for a description of the TXSTA register.

DECLARE HSERIAL_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For both HRSOUT and HRSIN Scribble1309The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN

' Use if even parity desired

DECLARE HSERIAL_PARITY = ODD

' Use if odd parity desired

Notes

HRSOUT can only be used with devices that contain a hardware USART. See the specific device's data sheet for further information concerning the serial input pin as well as other relevant parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an inverted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used with HRSOUT. See HRSIN for circuits.

See also :
DECLAREScribble869, RSINScribble2009, RSOUTScribble2029, SERINScribble2049, SEROUTScribble2069, HRSINScribble1309, HSERINScribble1339, HSEROUTScribble1344.
HSERIN

Syntax
HSERIN Timeout , Timeout Label , Parity Error Label , [Modifiers , Variable {, Variable... }]
Overview

Receive one or more values from the serial port on devices that contain a hardware USART. (Compatible with the melabs compiler)

Operators

Timeout is an OPTIONAL value for the length of time the HRSIN command will wait before jumping to label TIMEOUT LABEL. Timeout is specified in 1 millisecond units.

Timeout Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event that a character has not been received within the time specified by TIMEOUT.

Parity Error Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event that a PARITY error is received. Parity is set using DECLARES. Parity Error detecting is not supported in the inline version of HRSIN (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a BITScribble2689, BYTEScribble2709, WORDScribble2729, or DWORDScribble2749 variable, that will be loaded by HSERIN.

Example

' Receive values serially and timeout if no reception after 1 second (1000ms).

DEVICE 16F877

XTAL = 4

HSERIAL_BAUD = 9600

' Set baud rate to 9600

HSERIAL_RCSTA = %10010000

' Enable serial port and continuous receive

HSERIAL_TXSTA = %00100000

' Enable transmit and asynchronous mode

HSERIAL_CLEAR = ON

' Optionally clear the buffer before receiving

DIM VAR1 AS BYTE

Loop:
HSERIN 1000 , Timeout , [VAR1]

' Receive a byte serially into VAR1

PRINT DEC VAR1 , " "

' Display the byte received

GOTO Loop

' Loop forever

Timeout:

CLS

PRINT "TIMED OUT"

' Display an error if HSERIN timed out

STOP

HSERIN MODIFIERS.

As we already know, HSERIN will wait for and receive a single byte of data, and store it in a variable . If the PICmicrotm were connected to a PC running a terminal program and the user pressed the "A" key on the keyboard, after the HSERIN command executed, the variable would contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time you press a character on the keyboard, the computer receives the ASCII value of that character. It is up to the receiving side to interpret the values as necessary. In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII code 49.

The HSERIN command provides a modifier, called the decimal modifier, which will interpret this for us. Look at the following code: -

DIM SERDATA AS BYTE

HSERIN [DEC SERDATA]

Notice the decimal modifier in the HSERIN command that appears just to the left of the SERDATA variable. This tells HSERIN to convert incoming text representing decimal numbers into true decimal form and store the result in SERDATA. If the user running the terminal software pressed the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be stored in the variable SERDATA, allowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that represent decimal numbers are the characters "0" through "9". Once the HSERIN command is asked to use the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the first decimal character. Once it finds the first decimal character, it will continue looking for more (accumulating the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it will not finish until it finds at least one decimal character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code example as above): -

Serial input:
"ABC"

Result: The program halts at the HSERIN command, continuously waiting for decimal text.

Serial input:
"123" (with no characters following it)

Result: The program halts at the HSERIN command. It recognises the characters "1", "2" and "3" as the number one hundred twenty three, but since no characters follow the "3", it waits continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input:
"123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the program knows the entire number is 123, and stores this value in SERDATA. The HSERIN command then ends, allowing the next line of code to run.

Serial input:
"123A"

Result: Same as the example above. The "A" character, just like the space character, is the first non-decimal text after the number 123, indicating to the program that it has received the entire number.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not decimal text), the characters "123" are evaluated to be the number 123 and the following character, "E", indicates to the program that it has received the entire number.

The final result of the DEC modifier is limited to 16 bits (up to the value 65535). If a value larger than this is received by the decimal modifier, the end result will be incorrect because the

result rolled-over the maximum 16-bit value. Therefore, HSERIN modifiers may not (at this time) be used to load DWORDScribble2749 (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with HSERIN See below for a list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric character arrives, or in the case of the fixed length modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text arrives, even if the resulting value exceeds the size of the variable. After HSERIN, a BYTEScribble2709 variable will contain the lowest 8 bits of the value entered and a WORDScribble2729 (16-bits) would contain the lowest 16 bits. You can control this to some degree by using a modifier that specifies the number of digits, such as DEC2, which would accept values only in the range of 0 to 99.

Conversion Modifier
Type of Number Numeric
Characters Accepted

DEC{1..10}

Decimal, optionally limited

0 through 9

to 1 - 10 digits

HEX{1..8}

Hexadecimal, optionally limited

0 through 9,

 to 1 - 8 digits

A through F

BIN{1..32}

Binary, optionally limited

 0, 1

 to 1 - 32 digits

A variable preceded by BIN will receive the ASCII representation of its binary value.

For example, if BIN VAR1 is specified and "1000" is received, VAR1 will be set to 8.

A variable preceded by DEC will receive the ASCII representation of its decimal value.

For example, if DEC VAR1 is specified and "123" is received, VAR1 will be set to 123.

A variable preceded by HEX will receive the ASCII representation of its hexadecimal value.

For example, if HEX VAR1 is specified and "FE" is received, VAR1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.

For example, SKIP 4 will skip 4 characters.

The HSERIN command can be configured to wait for a specified sequence of characters before it retrieves any additional input. For example, suppose a device attached to the PICmicrotm is known to send many different sequences of data, but the only data you wish to observe happens to appear right after the unique characters, "XYZ". A modifier named WAIT can be used for this purpose: -

HSERIN [WAIT("XYZ") , SERDATA]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives the next data byte and places it into variable SERDATA.

STR modifier.
The HSERIN command also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SERSTRING: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

HSERIN [STR SerString]

' Fill the array with received data.

PRINT STR SerString

' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. For example: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

HSERIN [STR SerString\5]

' Fill the first 5-bytes of the array

PRINT STR SerString\5

' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the guidelines below when developing a project using the HSERIN and HSEROUT Scribble1344commands may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the PICmicrotm for a given oscillator frequency. Misunderstanding the timing constraints is the source of most problems with code that communicate serially. If the serial communication in your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause strange problems in communication, or no communication at all. Make sure to connect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the HSERIN / HSEROUT commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polarity error.

If receiving data from another device that is not a PICmicrotm, try to use baud rates of 9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicrotm, and the fact that the HSERIN command offers a 2 level hardware receive buffer for serial communication, received data may sometimes be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not arrays) will also increase the chance that the PICmicrotm will receive the data properly.

Declares
There are five DECLARE Scribble869directives for use with HSERIN . These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE Scribble869is not included in the program listing is 2400 baud.
DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicrotm hardware register RCSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicrotm hardware register, TXSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h. Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information.

DECLARE HSERIAL_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For both HSERIN and HRSOUT Scribble1329The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN

' Use if even parity desired

DECLARE HSERIAL_PARITY = ODD

' Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are not read from it often enough. When this occurs, the USART stops accepting any new characters, and requires resetting. This overflow error can be reset by strobing the CREN bit within the RCSTA register.

Example: -

RCSTA.4 = 0

RCSTA.4 = 1

or

CLEAR RCSTA.4

SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even if no error occurred. However, the program will not know if an error occurred while reading, therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Notes

HSERIN can only be used with devices that contain a hardware USART. See the specific device's data sheet for further information concerning the serial input pin as well as other relevant parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an inverted state to eliminate an RS232 driver. Therefore a suitable driver should be used with HSERIN . See HRSIN for suitable circuits.

See also :
DECLAREScribble869, HSEROUTScribble1344, HRSINScribble1309, HRSOUTScribble1329, RSINScribble2009, RSOUTScribble2029, SERINScribble2049, SEROUTScribble2069.
HSEROUT

Syntax

HSEROUT [Item { , Item... }]
Overview

Transmit one or more Items from the hardware serial port on devices that support asynchronous serial communications in hardware.

Operators

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. For example, if an at sign'@' precedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

Modifier

Operation

AT ypos,xpos
Position the cursor on a serial LCD

CLS

Clear a serial LCD (also creates a 30ms delay)

BIN{1..32}

Send binary digits

DEC{1..10}

Send decimal digits

HEX{1..8}

Send hexadecimal digits

SBIN{1..32}

Send signed binary digits

SDEC{1..10}
Send signed decimal digits

SHEX{1..8}

Send signed hexadecimal digits

IBIN{1..32}

Send binary digits with a preceding '%' identifier

IDEC{1..10}

Send decimal digits with a preceding '#' identifier

IHEX{1..8}

Send hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Send signed binary digits with a preceding '%' identifier

ISDEC{1..10}
Send signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Send signed hexadecimal digits with a preceding '$' identifier

REP c\n

Send character c repeated n times

STR array\n

Send all or part of an array

CSTR cdata

Send string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine how many remainder digits are send. i.e. numbers after the decimal point.

DIM FLT AS FLOAT

FLT = 3.145

HSEROUT [DEC2 FLT]

' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal point.

DIM FLT AS FLOAT

FLT = 3.1456

HSEROUT [DEC FLT]

' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT = -3.1456

HSEROUT [DEC FLT]

' Send 3 values after the decimal point

The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text "HELLO WORLD" on line 1, position 1, the code would be: -

HSEROUT [AT 1 , 1 , "HELLO WORLD"]

Example 1

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM DWD AS DWORD

HSEROUT ["Hello World"

' Display the text "Hello World"

HSEROUT ["VAR1= " , DEC VAR1]
' Display the decimal value of VAR1

HSEROUT ["VAR1= " , HEX VAR1]
' Display the hexadecimal value of VAR1

HSEROUT ["VAR1= " , BIN VAR1]
' Display the binary value of VAR1

HSEROUT ["VAR1= " , @VAR1]

' Display the decimal value of VAR1

' Display 6 hex characters of a DWORD type variable

HSEROUT ["DWD= " , HEX6 DWD]

Example 2

' Display a negative value on a serial LCD.

SYMBOL NEGATIVE = -200

HSEROUT [AT 1 , 1 , SDEC NEGATIVE]

Example 3

' Display a negative value on a serial LCD with a preceding identifier.

HSEROUT [AT 1 , 1 , ISHEX -$1234]

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to their own flash memory. And although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast, and harmless.

Which offers a unique form of data storage and retrieval, the CDATA Scribble689command proves this, as it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data. The CSTR modifier may be used in commands that deal with text processing i.e. SEROUTScribble2069, HRSOUTScribble1329, and PRINT Scribble1789etc.

The CSTR modifier is used in conjunction with the CDATA Scribble689command. The CDATA Scribble689command is used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD" , 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

HSEROUT [CSTR STRING1]

The label that declared the address where the list of CDATA Scribble689values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

HSEROUT ["HELLO WORLD",13]

HSEROUT ["HOW ARE YOU?",13]

HSEROUT ["I AM FINE!",13]

STOP

Now using the CSTR modifier: -

CLS

HSEROUT [CSTR TEXT1]

HSEROUT [CSTR TEXT2]

HSEROUT [CSTR TEXT3]

STOP
TEXT1: CDATA "HELLO WORLD" , 13, 0

TEXT2: CDATA "HOW ARE YOU?" , 13, 0

TEXT3: CDATA "I AM FINE!" , 13, 0

Again, note the NULL terminators after the ASCII text in the CDATA Scribble689commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA Scribble689command cannot be written too, but only read from.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

MYARRAY [0] = "H"

' Load the first 5 bytes of the array

MYARRAY [1] = "E"

' With the data to send

MYARRAY [2] = "L"

MYARRAY [3] = "L"

MYARRAY [4] = "O"

HRSOUT STR MYARRAY \5

' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE

' Create a 10-byte array.

STR MYARRAY = "HELLO"

' Load the first 5 bytes of the array

HRSOUT STR MYARRAY \5

' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the string is now constructed using STR as a command instead of a modifier.

Declares
There are four DECLARE Scribble869directives for use with HRSOUT. These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated using the XTAL frequency declared in the program. The default baud rate if the DECLARE Scribble869is not included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicrotm hardware register RCSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. Refer to the upgrade manual pages for a description of the RCSTA register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicrotm hardware register, TXSTA, to the value in the DECLAREScribble869. See the Microchip data sheet for the device used for more information regarding this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h.

Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional information. Refer to the upgrade manual pages for a description of the TXSTA register.

DECLARE HSERIAL_PARITY ODD or EVEN
Enables/Disables parity on the serial port. For both HSEROUT and HSERIN Scribble1339The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN

' Use if even parity desired

DECLARE HSERIAL_PARITY = ODD

' Use if odd parity desired

Notes

HSEROUT can only be used with devices that contain a hardware USART. See the specific device's data sheet for further information concerning the serial input pin as well as other relevant parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an inverted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used with HSEROUT . See HRSIN Scribble1339for circuit examples

See also :
DECLAREScribble869, RSINScribble2009, RSOUTScribble2029, SERINScribble2049, SEROUTScribble2069, HRSIN, HSERINScribble1309.
IF..THEN..ELSEIF..ELSE..ENDIF

Syntax

IF Comparison THEN Instruction : { Instruction }
Or, you can use the single line form syntax:

IF Comparison THEN Instruction : { Instruction } : ELSEIF Comparison THEN Instruction : ELSE Instruction
Or, you can use the block form syntax:

IF Comparison THEN
Instruction(s)

ELSEIF Comparison THEN
Instruction(s)

{

ELSEIF Comparison THEN
Instruction(s)

}

ELSE
Instruction(s)
ENDIF

The curly braces signify optional conditions.

Note that ELSEIF is only available with the PROTON+ compiler.
Overview

Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not fulfilled the instruction is ignored, unless an ELSE directive is used, in which case the code after it is implemented until the ENDIF is found.

When all the instruction are on the same line as the IF-THEN statement, all the instructions on the line are carried out if the condition is fulfilled.

Operators

Comparison is composed of variables, numbers and comparators.

Instruction is the statement to be executed should the comparison fulfil the IF criteria

Example 1

SYMBOL LED = PORTB.4

VAR1 = 3

LOW LED

IF VAR1 > 4 THEN HIGH LED : DELAYMS 500 : LOW LED

In the above example, VAR1 is not greater than 4 so the IF criteria isn't fulfilled. Consequently, the HIGH LED statement is never executed leaving the state of port pin PORTB.4 low. However, if we change the value of variable VAR1 to 5, then the LED will turn on for 500ms then off, because VAR1 is now greater than 4, so fulfils the comparison criteria.

A second form of IF, evaluates the expression and if it is true then the first block of instructions is executed. If it is false then the second block (after the ELSE) is executed.

The program continues after the ENDIF instruction.

The ELSE is optional. If it is missed out then if the expression is false the program continues after the ENDIF line.

Example 2

IF X & 1 = 0 THEN

A = 0

B = 1

ELSE

A = 1

ENDIF

IF Z = 1 THEN

A = 0

B = 0

ENDIF

Example 3

IF X = 10 THEN

HIGH LED1

ELSEIF X = 20 THEN

HIGH LED2

ELSE

HIGH LED3

ENDIF
A forth form of IF, allows the ELSE or ELSEIF to be placed on the same line as the IF: -

IF X = 10 THEN HIGH LED1 : ELSEIF X = 20 THEN HIGH LED2 : ELSE HIGH LED3

Notice that there is no ENDIF instruction. The comparison is automatically terminated by the end of line condition. So in the above example, if X is equal to 10 then LED1 will illuminate, if X equals 20 then LED will illuminate, otherwise, LED3 will illuminate.

The IF statement allows any type of variable, register or constant to be compared. A common use for this is checking a Port bit: -

IF PORTA.0 = 1 THEN HIGH LED : ELSE : LOW LED

Any commands on the same line after THEN will only be executed if the comparison if fulfilled: -

IF VAR1 = 1 THEN HIGH LED : DELAYMS 500 : LOW LED

Notes

A GOTO command is optional after the THEN: -

IF PORTB.0 = 1 THEN LABEL

THEN operand always required.
The PROTON+ compiler relies heavily on the THEN part. Therefore, if the THEN part of a construct is left out of the code listing, a SYNTAX ERROR will be produced.

See also :
BOOLEAN LOGIC OPERATORS, SELECT..CASE..ENDSELECT.
INCLUDE

Syntax

INCLUDE "Filename"

Overview

Include another file at the current point in the compilation. All the lines in the new file are compiled as if they were in the current file at the point of the INCLUDE directive.

A Common use for the include command is shown in the example below. Here a small master document is used to include a number of smaller library files which are all compiled together to make the overall program.

Operators

Filename is any valid PROTON+ file.

Example

' Main Program INCLUDES sub files

INCLUDE "STARTCODE.BAS"

INCLUDE "MAINCODE.BAS"

INCLUDE "ENDCODE.BAS"

Notes

The file to be included into the BASIC listing may be in one of three places on the hard drive.

1… Within the BASIC program's directory.

2… Within the Compiler's current directory.

3… Within the INC folder of the compiler's current directory.

 The list above also shows the order in which they are searched for.

Using INCLUDE files to tidy up your code.

If the include file contains assembler subroutines then it must always be placed at the beginning of the program. This allows the subroutine/s to be placed within the first bank of memory (0..2048), thus avoiding any bank boundary errors. Placing the include file at the beginning of the program also allows all of the variables used by the routines held within it to be pre-declared. This again makes for a tidier program, as a long list of variables is not present in the main program.

There are some considerations that must be taken into account when writing code for an include file, these are: -

1). Always jump over the subroutines.

When the include file is placed at the top of the program this is the first place that the compiler starts, therefore, it will run the subroutine/s first and the RETURN Scribble1129command will be pointing to a random place within the code. To overcome this, place a GOTO Scribble1149statement just before the subroutine starts.

For example: -

GOTO OVER_THIS_SUBROUTINE
' Jump over the subroutine

' The subroutine is placed here

OVER_THIS_SUBROUTINE:

' Jump to here first

2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable LOOP, change it to ISUB_LOOP. This will help eliminate any possible duplication errors, caused by the main program trying to use the same variable or label name. However, try not to make them too obscure as your code will be harder to read and understand, it might make sense at the time of writing, but come back to it after a few weeks and it will be meaningless.

3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. ALWAYS place a plethora of remarks and comments. The purpose of the subroutine/s within the include file should be clearly explained at the top of the program, also, add comments after virtually every command line, and clearly explain the purpose of all variables and constants used. This will allow the subroutine to be used many weeks or months after its conception. A rule of thumb that I use is that I can understand what is going on within the code by reading only the comments to the right of the command lines.
INC

Syntax

INC Variable
Overview

Increment a variable i.e. VAR1 = VAR1 + 1
Operators

Variable is a user defined variable

Example

VAR1 = 1

REPEAT

PRINT DEC VAR1 , " "

DELAYMS 200

INC VAR1

UNTIL VAR1 > 10

The above example shows the equivalent to the FOR-NEXTScribble1089 loop: -

FOR VAR1 = 1 TO 10 : NEXT

See also :
DECScribble1384.
INKEY

Syntax

Variable = INKEY

Overview

Scan a keypad and place the returned value into variable

Operators

Variable is a user defined variable

Example

DIM VAR1 AS BYTE

VAR1 = INKEY

' Scan the keypad

DELAYMS 50

' Debounce by waiting 50ms

PRINT DEC VAR1 , " "
' Display the result on the LCD

Notes

INKEY will return a value between 0 and 16. If no key is pressed, the value returned is 16.

Using a LOOKUP command, the returned values can be re-arranged to correspond with the legends printed on the keypad: -

VAR1 = INKEY

KEY = LOOKUP VAR1, [255,1,4,7,"*",2,5,8,0,3,6,9,"#",0,0,0]

The above example is only a demonstration, the values inside the LOOKUP command will need to be re-arranged for the type of keypad used, and it's connection configuration.

Declare

DECLARE KEYPAD_PORT PORT

 Assigns the Port that the keypad is attached to.

[image: image97.wmf]The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB, which comes equipped with internal pull-ups. If the DECLARE is not used in the program, then PORTB is the default Port.

The diagram illustrates a typical connection of a 12-button keypad to a PIC16F84. If a 16-button type is used, then COLUMN 4 will connect to PORTB.7 (RB7).
INPUT

Syntax

INPUT Port . Pin

Overview

Makes the specified Port or Pin an input.

Operators

Port.Pin must be a Port, or Port.Pin constant declaration.
Example

INPUT PORTA.0

' Make bit-0 of PORTA an input

INPUT PORTA

' Make all of PORTA an input

Notes

An Alternative method for making a particular pin an input is by directly modifying the TRIS register: -

TRISB.0 = 1

' Set PORTB, bit-0 to an input

All of the pins on a port may be set to inputs by setting the whole TRIS register at once: -

TRISB = %11111111
' Set all of PORTB to inputs

In the above examples, setting a TRIS bit to 1 makes the pin an input, and conversely, setting the bit to 0 makes the pin an output.

See also :
OUTPUTScribble1609.
LCDREAD

Syntax

Variable = LCDREAD Line Number , Xpos

Overview

Read a byte from a graphic LCD.

Operators

Variable is a user defined variable.

Line Number may be a constant, variable or expression within the range of 0 to 7. This corresponds to the line number of the LCD, with 0 being the top row.

Xpos may be a constant, variable or expression with a value of 0 to 127. This corresponds to the X position of the LCD, with 0 being the far left column.

Example

' Read and display the top row of the LCD

DEVICE 16F877

LCD_TYPE = GRAPHIC

' Target a graphic LCD

DIM VAR1 AS BYTE

DIM XPOS AS BYTE

CLS

' Clear the LCD

PRINT "Testing 1 2 3"

FOR XPOS = 0 TO 127

' Create a loop of 128

VAR1 = LCDREAD 0 , Xpos

' Read the LCD's top line

PRINT AT 1 , 0 , "Chr= " , DEC VAR1," "

DELAYMS 100

NEXT

STOP

Notes

The graphic LCDs that are compatible with PROTON+ are non- intelligent types based on the Samsung S6B0108 chipset. These have a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8 lines each having 8-bits. The 128 being the X axis, made up of 128 positions. See LCDWRITE.

As with LCDWRITE, the graphic LCD must be targeted using the LCD_TYPE DECLARE Scribble869directive before this command may be used.

See also :
LCDWRITEScribble1469, PLOTScribble1729, UNPLOTScribble2289, see PRINT Scribble1789for LCD connections.
LCDWRITE

Syntax

LCDWRITE Line number , Xpos , [Value ,{ Value etc…}]

Overview

Write a byte to a graphic LCD.

Operators

Line Number may be a constant, variable or expression within the range of 0 to 7. This corresponds to the line number of the LCD, with 0 being the top row.

Xpos may be a constant, variable or expression within the value of 0 to 127. This corresponds to the X position of the LCD, with 0 being the far left column.

Value may be a constant, variable, or expression, within the range of 0 to 255 (byte).
Example

'Display a line on the top row of the LCD

DEVICE 16F877

LCD_TYPE = GRAPHIC

' Target a graphic LCD

DIM XPOS AS BYTE

CLS

' Clear the LCD

FOR XPOS = 0 TO 127

' Create a loop of 128

LCDWRITE 0 , XPOS, [%00001111]
' Write to the LCD's top line

DELAYMS 100

NEXT

STOP

Notes

[image: image98.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

32

PIC16F877

C4

15pF

C2

0.1uF

C1

10uF

C3

15pF

5 Volts

26

RC0

RC1

RC2

RC3

RC4

RC5

RC6

RC7

VSS

RA5

20MHz

Crystal

0V

R1

4.7k

25

24

23

18

17

16

15

40

39

38

37

36

35

34

33

7

6

5

4

3

2

31

12

14

13

1

RD0

RD1

RD2

RD3

RD4

RD5

RD6

RD7

RE0

RE1

RE2

VDD

11

10

9

8

30

29

28

27

22

21

20

19

5 Volts

Contrast

47k

VCC

WP

SCL

A1

A2

VSS

24C32

7

8

A0

SDA

1

2

3

4

6

5

2x

4.7k

5 Volts

64x128

DOT MATRIX

GRAPHIC LCD

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

EN

R/W

RS

Vo

Vcc

Gnd

CS1

CS2

RST

-Vout

1

20

LEDA

LEDK

The graphic LCDs that are compatible with PROTON+ are non-intelligent types based on the Samsung S6B0108 chipset. These have a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8 lines each having 8-bits. The 128 being the X axis, made up of 128 positions. See below: -

The diagram illustrates the position of one byte at position 0,0 on the LCD screen. The least significant bit is located at the top. The byte displayed has a value of 149 (10010101).

See also :
LCDREADScribble1449, PLOTScribble1729, UNPLOTScribble2289, see PRINT Scribble1789for LCD connections.
LDATA

Syntax

LDATA { alphanumeric data }

Overview

Place information into code memory using the RETLW Scribble2665 instruction when used with 14-bit core devices, and FLASH memory when using a 16-bit core device. For access by LREADScribble1476.

Operators
alphanumeric data can be a 8,16, 32 bit value, or floating point values, or any alphabetic character or string enclosed in quotes.

Example

DEVICE 16F877

DIM CHAR AS BYTE

DIM LOOP AS BYTE

CLS

FOR LOOP = 0 TO 9

' Create a loop of 10

CHAR = LREAD LABEL + LOOP

' Read memory location LABEL + LOOP

PRINT CHAR

' Display the value read

NEXT

STOP
LABEL: LDATA "HELLO WORLD"

' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the LABEL accompanying the LDATA command. Resulting in "HELLO WORL" being displayed.

LDATA is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point values. The example below illustrates this: -

DEVICE = 16F628

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

DIM DWD1 AS DWORD

DIM FLT1 AS FLOAT

CLS

VAR1 = LREAD BIT8_VAL

' Read the 8-bit value

PRINT DEC VAR1," "

WRD1= LREAD BIT16_VAL

' Read the 16-bit value

PRINT DEC WRD1

DWD1 = LREAD BIT32_VAL

' Read the 32-bit value

PRINT AT 2,1, DEC DWD1," "

FLT1 = LREAD FLT_VAL

' Read the floating point value

PRINT DEC FLT1

STOP
BIT8_VAL: LDATA 123

BIT16_VAL: LDATA 1234

BIT32_VAL: LDATA 123456

FLT_VAL: LDATA 123.456

Floating point examples.
14-bit core example

' 14-bit read floating point data from a table and display the results

DEVICE = 16F877

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DIM F_COUNT AS BYTE

CLS

' Clear the LCD

F_COUNT = 0

' Clear the table counter

REPEAT

' Create a loop

FLT = LREAD FL_TABLE + F_COUNT
' Read the data from the LDATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

F_COUNT = F_COUNT + 4

' Point to next value, by adding 4 to counter

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
FL_TABLE:

LDATA AS FLOAT 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 ,_

0.005

16-bit core example

' 16-bit read floating point data from a table and display the results

DEVICE = 18F452

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DIM F_COUNT AS BYTE

CLS

' Clear the LCD

F_COUNT = 0

' Clear the table counter

REPEAT

' Create a loop

FLT = LREAD FL_TABLE + F_COUNT
' Read the data from the LDATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

F_COUNT = F_COUNT + 2

' Point to next value, by adding 2 to counter

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
FL_TABLE:

LDATA AS FLOAT 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 ,_

0.005

Notes
LDATA tables should be placed at the end of the BASIC program. If an LDATA table is placed at the beginning of the program, then a GOTO Scribble1149command must jump over the tables, to the main body of code.

GOTO OVER_DATA_TABLE

LDATA 1,2,3,4,5,6

OVER_DATA_TABLE:

{ rest of code here}

With 14-bit core devices, an 8-bit value (0 - 255) in an LDATA statement will occupy a single code space, however, 16-bit data (0 - 65535) will occupy two spaces, 32-bit and floating point values will occupy 4 spaces. This must be taken into account when using the LREAD Scribble1476command. See 14-bit floating point example above.

With 16-bit core devices, an 8, and 16-bit value in an LDATA statement will occupy a single code space, however, 32-bit and floating point values will occupy 2 spaces. This must be taken into account when using the LREAD Scribble1476command. See 16-bit floating point example above.

16-bit device requirements.
The compiler uses a different method of holding information in an LDATA statement when using 16-bit core devices. It uses the unique capability of these devices to read from their own code space, which offers optimisations when values larger than 8-bits are stored. However, because the 16-bit core devices are BYTEScribble2709 oriented, as opposed to the 14-bit types which are WORDScribble2729 oriented. The LDATA tables should contain an even number of values, or corruption may occur on the last value read. For example: -

EVEN:
LDATA 1,2,3,"123"

ODD:

LDATA 1,2,3,"12"

An LDATA table containing an ODD amount of values will produce a compiler WARNING message.

Formatting an LDATA table.

Sometimes it is necessary to create a data table with an known format for its values. For example all values will occupy 4 bytes of code space even though the value itself would only occupy 1 or 2 bytes. I use the name BYTE loosely, as 14-bit core devices use 14-bit Words, as opposed to 16-bit core devices that do actually use Bytes.

LDATA 100000 , 10000 , 1000 , 100 , 10 , 1

The above line of code would produce an uneven code space usage, as each value requires a different amount of code space to hold the values. 100000 would require 4 bytes of code space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using LREAD would cause problems because there is no way of knowing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of bytes. These are: -

BYTE

WORD

DWORD

FLOAT
Placing one of these formatters before the value in question will force a given length.

LDATA
DWORD 100000 , DWORD 10000 , DWORD 1000 ,_

DWORD 100 , DWORD 10 , DWORD 1

BYTE will force the value to occupy one byte of code space, regardless of it's value. Any values above 255 will be truncated to the least significant byte.

WORD will force the value to occupy 2 bytes of code space, regardless of its value. Any values above 65535 will be truncated to the two least significant bytes. Any value below 255 will be padded to bring the memory count to 2 bytes.

DWORD will force the value to occupy 4 bytes of code space, regardless of its value. Any value below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown above uses the DWORD formatter to ensure all the values in the LDATA table occupy 4 bytes of code space.

FLOAT will force a value to its floating point equivalent, which always takes up 4 bytes of code space.

If all the values in an LDATA table are required to occupy the same amount of bytes, then a single formatter will ensure that this happens.

LDATA AS DWORD 100000 , 10000 , 1000 , 100 , 10 , 1

The above line has the same effect as the formatter previous example using separate DWORD formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters can be used with the AS keyword.

The example below illustrates the formatters in use.

' Convert a DWORD value into a string array using only BASIC commands

' Similar principle to the STR$ command

INCLUDE "PROTON_4.INC"

DIM P10 AS DWORD

' Power of 10 variable

DIM CNT AS BYTE

DIM J AS BYTE

DIM VALUE AS BYTE

' Value to convert

DIM STRING1[11] AS BYTE
' Holds the converted value

DIM PTR AS BYTE

' Pointer within the Byte array

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

Clear

' Clear all RAM before we start

VALUE = 1234576

' Value to convert

GOSUB DWORD_TO_STR
' Convert VALUE to string

PRINT STR STRING1

' Display the result

Stop
'---

' Convert a DWORD value into a string array. Value to convert is placed in 'VALUE'

' Byte array 'STRING1' is built up with the ASCII equivalent

DWORD_TO_STR:

PTR = 0

J = 0

REPEAT

P10 = LREAD DWORD_TBL + (J * 4)

CNT = 0

WHILE VALUE >= P10

VALUE = VALUE - P10

INC CNT

WEND

IF CNT <> 0 THEN

STRING1[PTR] = CNT + "0"

INC PTR

ENDIF

INC J

UNTIL J > 8

STRING1[PTR] = VALUE + "0"

INC PTR

STRING1[PTR] = 0

' Add the NULL to terminate the string

RETURN
' LDATA table is formatted for all 32 bit values.

' Which means each value will require 4 bytes of code space

DWORD_TBL:

LDATA AS DWORD 1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10

Label names as pointers.

If a label's name is used in the list of values in an LDATA table, the label's address will be used. This is useful for accessing other tables of data using their address from a lookup table. See example below.

' Display text from two LDATA tables

' Based on their address located in a separate table

INCLUDE "PROTON_4.INC"

' Use a 14-bit core device

DIM ADDRESS AS WORD

DIM DATA_BYTE AS BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

ADDRESS = LREAD ADDR_TABLE

' Locate the address of the first string

WHILE 1 = 1

' Create an infinite loop

DATA_BYTE = LREAD ADDRESS
' Read each character from the LDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP

' Exit if NULL found

PRINT DATA_BYTE

' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP:

CURSOR 2,1

' Point to line 2 of the LCD

ADDRESS = LREAD ADDR_TABLE + 2

' Locate the address of the second string

WHILE 1 = 1

' Create an infinite loop

DATA_BYTE = LREAD ADDRESS
' Read each character from the LDATA string

 IF DATA_BYTE = 0 THEN EXIT_LOOP2
' Exit if NULL found

PRINT DATA_BYTE

' Display the character

 INC ADDRESS

' Next character

WEND

' Close the loop

EXIT_LOOP2:

STOP
ADDR_TABLE:

' Table of address's

LDATA AS WORD STRING1, STRING2

STRING1:

LDATA "HELLO",0

STRING2:

LDATA "WORLD",0

See also :
CDATA, CREAD, DATA, EDATA, LREAD, READ, RESTORE.Scribble1969
LET

Syntax

[LET] Variable = Expression
Overview

Assigns an expression, command result, variable, or constant, to a variable

Operators

Variable is a user defined variable.

Expression is one of many options - these can be a combination of variables, expressions, and numbers or other command calls.

Example 1

LET A = 1

A = 1

Both the above statements are the same

Example 2

A = B + 3

Example 3

A = A << 1

Example 4

LET B = EREAD C + 8

Notes

The LET command is optional, and is a leftover from earlier BASICs.

See also :
DIMScribble969, SYMBOL.Scribble2269
LEN

Syntax

Variable = LEN (Source String)

Overview

Find the length of a STRING. (not including the NULL terminator) .

Operators

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, or FLOAT.

Source String can be a STRING variable, or a Quoted String of Characters. The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM. A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 1

' Display the length of SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20 ' Create a String capable of 20 characters

DIM LENGTH as BYTE

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

LENGTH = LEN (SOURCE_STRING)

' Find the length

PRINT DEC LENGTH

' Display the result, which will be 11

STOP
Example 2

' Display the length of a Quoted Character String

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM LENGTH as BYTE

LENGTH = LEN ("HELLO WORLD")

' Find the length

PRINT DEC LENGTH

' Display the result, which will be 11

STOP
Example 3

' Display the length of SOURCE_STRING using a pointer to SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20 ' Create a String capable of 20 characters

DIM LENGTH as BYTE

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

STRING_ADDR = VARPTR (SOURCE_STRING)
' Locate the start address of SOURCE_STRING in RAM

LENGTH = LEN(STRING_ADDR)

' Find the length

PRINT DEC LENGTH

' Display the result, which will be 11

STOP
Example 4

' Display the length of a CDATA string

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM LENGTH as BYTE

LENGTH = LEN (SOURCE)

' Find the length

PRINT DEC LENGTH

' Display the result, which will be 11

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "HELLO WORLD" , 0

See also :
Creating and using Strings , Creating and using VIRTUAL STRINGS with

CDATA, CDATA, LEFT$, MID$, RIGHT$, STR$, TOLOWER,

TOUPPER, VARPTR .

LEFT$

Syntax

Destination String = LEFT$ (Source String , Amount of characters)
Overview

Extract n amount of characters from the left of a source string and copy them into a destination string.

Operators
Destination String can only be a STRING variable, and should be large enough to hold the correct amount of characters extracted from the Source String.

Source String can be a STRING variable, or a Quoted String of Characters. See below for more variable types that can be used for Source String.

Amount of characters can be any valid variable type, expression or constant value, that signifies the amount of characters to extract from the left of the Source String. Values start at 1 for the leftmost part of the string and should not exceed 255 which is the maximum allowable length of a STRING variable.

Example 1.
' Copy 5 characters from the left of SOURCE_STRING into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20 ' Create a String capable of 20 characters

DIM DEST_STRING as STRING * 20
' Create another String for 20 characters

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Copy 5 characters from the source string into the destination string

DEST_STRING = LEFT$ (SOURCE_STRING , 5)

PRINT DEST_STRING

' Display the result, which will be "HELLO"

STOP
Example 2.
' Copy 5 characters from the left of a Quoted Character String into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20
' Create a String capable of 20 characters

' Copy 5 characters from the quoted string into the destination string

DEST_STRING = LEFT$ ("HELLO WORLD" , 5)

PRINT DEST_STRING

' Display the result, which will be "HELLO"

STOP
The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM.

Example 3.
' Copy 5 characters from the left of SOURCE_STRING into DEST_STRING using a pointer to

‘ SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20 ' Create a String capable of 20 characters

DIM DEST_STRING as STRING * 20

' Create another String for 20 characters

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

' Copy 5 characters from the source string into the destination string

DEST_STRING = LEFT$ (STRING_ADDR , 5)

PRINT DEST_STRING

' Display the result, which will be "HELLO"

STOP
A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 4.
' Copy 5 characters from the left of a CDATA table into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20
' Create a String capable of 20 characters

' Copy 5 characters from label SOURCE into the destination string

DEST_STRING = LEFT$ (SOURCE , 5)

PRINT DEST_STRING

' Display the result, which will be "HELLO"

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "HELLO WORLD" , 0

See also :
Creating and using Strings, Creating and using VIRTUAL STRINGS with

CDATA, CDATA, LEN, MID$, RIGHT$, STR$, TOLOWER, TOUPPER ,

 VARPTR .

LINE

Syntax

LINE Set_Clear , Xpos Start , Ypos Start , Xpos End , Ypos End

Overview

Draw a straight line in any direction on a graphic LCD.

Operators

Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a line.

Xpos Start may be a constant or variable that holds the X position for the start of the line. Can be a value from 0 to 127.

Ypos Start may be a constant or variable that holds the Y position for the start of the line. Can be a value from 0 to 63.

Xpos End may be a constant or variable that holds the X position for the end of the line. Can be a value from 0 to 127.

Ypos End may be a constant or variable that holds the Y position for the end of the line. Can be a value from 0 to 63.

Example

' Draw a line from 0,0 to 120,34

INCLUDE "PROTON_G4.INT"

DIM XPOS_START as BYTE

DIM XPOS_END as BYTE

DIM YPOS_START as BYTE

DIM YPOS_END as BYTE

DIM SET_CLR as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

XPOS_START = 0

YPOS_START = 0

XPOS_END = 120

YPOS_END = 34

SET_CLR = 1

LINE SET_CLR , XPOS_START , YPOS_START , XPOS_END , YPOS_END

STOP
See Also :
BOX, CIRCLE.

LINETO

Syntax

LINETO Set_Clear , Xpos End , Ypos End

Overview

Draw a straight line in any direction on a graphic LCD, starting from the previous LINE command's end position.

Operators

Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a line.

Xpos End may be a constant or variable that holds the X position for the end of the line. Can be a value from 0 to 127.

Ypos End may be a constant or variable that holds the Y position for the end of the line. Can be a value from 0 to 63.

Example

' Draw a line from 0,0 to 120,34. Then from 120,34 to 0,63

INCLUDE "PROTON_G4.INT"

DIM XPOS_START as BYTE

DIM XPOS_END as BYTE

DIM YPOS_START as BYTE

DIM YPOS_END as BYTE

DIM SET_CLR as BYTE

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

XPOS_START = 0

YPOS_START = 0

XPOS_END = 120

YPOS_END = 34

SET_CLR = 1

LINE SET_CLR , XPOS_START , YPOS_START , XPOS_END , YPOS_END

XPOS_END = 0

YPOS_END = 63

LINETO SET_CLR , XPOS_END , YPOS_END

STOP
Notes

The LINETO command uses the compiler's internal system variables to obtain the end position of a previous LINE command. These X and Y coordinates are then used as the starting X and Y coordinates of the LINETO command.

See Also :
LINE, BOX, CIRCLE.

LOADBIT

Syntax

LOADBIT Variable , Index , Value

Overview

Clear, or Set a bit of a variable or register using a variable index to point to the bit of interest.

Operators

Variable is a user defined variable, of type BYTEScribble2709, WORDScribble2729, or DWORDScribble2749.

Index is a constant, variable, or expression that points to the bit within Variable that requires accessing.

Value is a constant, variable, or expression that will be placed into the bit of interest. Values greater than 1 will set the bit.

Example

' Copy variable EX_VAR bit by bit into variable PT_VAR

DEVICE = 16F877

XTAL = 4

DIM EX_VAR AS WORD

DIM INDEX AS BYTE

DIM VALUE AS BYTE

DIM PT_VAR AS WORD
AGAIN:

PT_VAR = %0000000000000000

EX_VAR = %1011011000110111

CLS

FOR INDEX = 0 TO 15

' Create a loop for 16 bits

VALUE = GETBIT EX_VAR , INDEX
' Examine each bit of variable EX_VAR

LOADBIT PT_VAR , INDEX , VALUE
' Set or Clear each bit of PT_VAR

PRINT AT 1,1,BIN16 EX_VAR

' Display the original variable

PRINT AT 2,1,BIN16 PT_VAR

' Display the copied variable

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

GOTO AGAIN

' Do it forever

Notes
There are many ways to clear or set a bit within a variable, however, each method requires a certain amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using the FSRScribble2649, and INDF Scribble2669registers. Each method has its merits, but requires a certain amount of knowledge to accomplish the task correctly. The LOADBIT command makes this task extremely simple by taking advantage of the indirect method using FSRScribble2649, and INDFScribble2669, however, this is not necessarily the quickest method, or the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to experience.

To CLEAR a known constant bit of a variable or register, then access the bit directly using PORT.n. i.e. PORTA.1 = 0

To SET a known constant bit of a variable or register, then access the bit directly using PORT.n. i.e. PORTA.1 = 1

If a PORT is targeted by LOADBIT, the TRIS Scribble2659register is NOT affected.

See also :
CLEARBITScribble719, GETBITScribble1119, SETBIT.Scribble724

LOOKDOWN

Syntax

Variable = LOOKDOWN Index , [Constant { , Constant…etc }]

Overview

Search constants(s) for index value. If index matches one of the constants, then store the matching constant's position (0-N) in variable. If no match is found, then the variable is unaffected.

Operators

Variable is a user define variable that holds the result of the search.

Index is the variable/constant being sought.

Constant(s),... is a list of values. A maximum of 255 values may be placed between the square brackets, 256 if using a 16-bit core device.
Example

DIM Value AS BYTE

DIM Result AS BYTE

Value = 177

' The value to look for in the list

Result = 255

' Default to value 255

Result = LOOKDOWN Value , [75,177,35,1,8,29,245]

PRINT "Value matches " , DEC Result , " in list"

In the above example, PRINT displays, "Value matches 1 in list" because VALUE (177) matches item 1 of [75,177,35,1,8,29,245]. Note that index numbers count up from 0, not 1; that is in the list [75,177,35,1,8,29,245], 75 is item 0.

If the value is not in the list, then RESULT is unchanged.

Notes

LOOKDOWN is similar to the index of a book. You search for a topic and the index gives you the page number. Lookdown searches for a value in a list, and stores the item number of the first match in a variable.

LOOKDOWN also supports text phrases, which are basically lists of byte values, so they are also eligible for Lookdown searches:

DIM Value AS BYTE

DIM Result AS BYTE

Value = 101

' ASCII "e". the value to look for in the list

Result = 255

' Default to value 255

Result = LOOKDOWN Value , ["Hello World"]

In the above example, RESULT will hold a value of 1, which is the position of character 'e'

See also :
CDATAScribble689, CREADScribble789, DATAScribble849, EDATAScribble1009, EREAD, LDATA, LOOKDOWNLScribble1509, LOOKUPScribble1529,

LOOKUPLScribble1549, LREADScribble1049, READScribble1909, RESTOREScribble1969.
LOOKDOWNL

Syntax

Variable = LOOKDOWNL Index , {Operator} [Value { , Value…etc }]

Overview

A comparison is made between index and value; if the result is true, 0 is written into variable. If that comparison was false, another comparison is made between value and value1; if the result is true, 1 is written into variable. This process continues until a true is yielded, at which time the index is written into variable, or until all entries are exhausted, in which case variable is unaffected.

Operators

Variable is a user define variable that holds the result of the search.

Index is the variable/constant being sought.

Value(s) can be a mixture of 16-bit constants, string constants and variables. Expressions may not be used in the Value list, although they may be used as the index value. A maximum of 85 values may be placed between the square brackets, 256 if using a 16-bit core device.
Operator is an optional comparison operator and may be one of the following: -

= equal

<> not equal

> greater than

< less than

>= greater than or equal to

<= less than or equal to

The optional operator can be used to perform a test for other than equal to ("=") while searching the list. For example, the list could be searched for the first Value greater than the index parameter by

using ">" as the operator. If operator is left out, "=" is assumed.

Example

VAR1 = LOOKDOWNL WRD , [512 , WRD1, 1024]

VAR1 = LOOKDOWNL WRD , < [10 , 100 , 1000]

Notes

Because LOOKDOWNL is more versatile than the standard LOOKDOWN Scribble1489command, it generates larger code. Therefore, if the search list is made up only of 8-bit constants and strings, use LOOKDOWNScribble1489.

See also :
CDATAScribble689, CREADScribble789, DATAScribble849, EDATAScribble1009, EREAD, LDATA, LOOKDOWNScribble1509, LOOKUPScribble1529,

LOOKUPLScribble1549, LREADScribble1049, READScribble1909, RESTOREScribble1969.
LOOKUP

Syntax

Variable = LOOKUP Index , [Constant { , Constant…etc }]

Overview

Look up the value specified by the index and store it in variable. If the index exceeds the highest index value of the items in the list, then variable remains unchanged.

Operators

Variable may be a constant, variable, or expression. This is where the retrieved value will be stored.

Index may be a constant of variable. This is the item number of the value to be retrieved from the list.

Constant(s) may be any 8-bit value (0-255). A maximum of 255 values may be placed between the square brackets, 256 if using a 16-bit core device.
Example

' Create an animation of a spinning line.

DIM INDEX AS BYTE

DIM Frame AS BYTE

CLS

' Clear the LCD

Rotate:

FOR INDEX = 0 TO 3

' Create a loop of 4

Frame = LOOKUP INDEX , ["|\-/"]
' Table of animation characters

PRINT AT 1 , 1 , Frame

' Display the character

DELAYMS 200

' So we can see the animation

NEXT

' Close the loop

GOTO Rotate

' Repeat forever

Notes

index starts at value 0. For example, in the LOOKUP command below. If the first value (10) is required, then index will be loaded with 0, and 1 for the second value (20) etc.

VAR1 = LOOKUP INDEX , [10 , 20 , 30]

See also :
CDATAScribble689, CREADScribble789, DATAScribble849, EDATAScribble1009, EREAD, LDATA, LOOKDOWNScribble1509,

LOOKDOWNLScribble1529, LOOKUPLScribble1549, LREADScribble1049, READScribble1909, RESTOREScribble1969.
LOOKUPL

Syntax

Variable = LOOKUPL Index , [Value { , Value…etc }]

Overview

Look up the value specified by the index and store it in variable. If the index exceeds the highest index value of the items in the list, then variable remains unchanged. Works exactly the same as LOOKUPScribble1529, but allows variable types or constants in the list of values.
Operators

Variable may be a constant, variable, or expression. This is where the retrieved value will be stored.

Index may be a constant of variable. This is the item number of the value to be retrieved from the list.

Value(s) can be a mixture of 16-bit constants, string constants and variables. A maximum of 85 values may be placed between the square brackets, 256 if using a 16-bit core device.
Example

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM INDEX AS BYTE

DIM Assign AS WORD

VAR1 = 10

WRD = 1234

INDEX = 0

' Point to the first value in the list (WRD)

Assign = LOOKUPL INDEX , [WRD , VAR1 , 12345]

Notes

Expressions may not be used in the Value list, although they may be used as the Index value.

Because LOOKUPL is capable of processing any variable and constant type, the code produced is a lot larger than that of LOOKUPScribble1529. Therefore, if only 8-bit constants are required in the list, use LOOKUP Scribble1529instead.

See also :
CDATAScribble689, CREADScribble789, DATAScribble849, EDATAScribble1009, EREAD, LDATA, LOOKDOWNScribble1509,

LOOKDOWNLScribble1529, LOOKUPScribble1549, LREADScribble1049, READScribble1909, RESTOREScribble1969.
LOW

Syntax

LOW Port or Port.Bit

Overview

Place a Port or bit in a low state. For a port, this means filling it with 0's. For a bit this means setting it to 0.

Operators

Port can be any valid port.

Port.Bit can be any valid port and bit combination, i.e. PORTA.1

Example

SYMBOL LED = PORTB.4

LOW LED

LOW PORTB.0

' Clear PORTB bit 0

LOW PORTB

' Clear all of PORTB

See also :
DIMScribble969, HIGHScribble1289, SYMBOL.Scribble2269
LREAD

Syntax

Variable = LREAD Label

Overview

Read a value from an LDATA Scribble1474table and place into Variable
Operators

Variable is a user defined variable.

Label is a label name preceding the LDATA Scribble1474statement, or expression containing the Label name.
Example

DEVICE 16F877

DIM CHAR AS BYTE

DIM LOOP AS BYTE

CLS

FOR LOOP = 0 TO 9

' Create a loop of 10

CHAR = LREAD LABEL + LOOP

' Read memory location LABEL + LOOP

PRINT CHAR

' Display the value read

NEXT

STOP
LABEL: LDATA "HELLO WORLD"

' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the LABEL accompanying the LDATA command. Resulting in "HELLO WORL" being displayed.

LDATA is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point values. The example below illustrates this: -

DEVICE = 16F628

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

DIM DWD1 AS DWORD

DIM FLT1 AS FLOAT

CLS

VAR1 = LREAD BIT8_VAL
' Read the 8-bit value

PRINT DEC VAR1," "

WRD1= LREAD BIT16_VAL
' Read the 16-bit value

PRINT DEC WRD1

DWD1 = LREAD BIT32_VAL
' Read the 32-bit value

PRINT AT 2,1, DEC DWD1," "

FLT1 = LREAD FLT_VAL

' Read the floating point value

PRINT DEC FLT1

STOP
BIT8_VAL: LDATA 123

BIT16_VAL: LDATA 1234

BIT32_VAL: LDATA 123456

FLT_VAL: LDATA 123.456

Floating point examples.
14-bit core example

' 14-bit read floating point data from a table and display the results

DEVICE = 16F877

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DIM F_COUNT AS BYTE

CLS

' Clear the LCD

F_COUNT = 0

' Clear the table counter

REPEAT

' Create a loop

FLT = LREAD FL_TABLE + F_COUNT
' Read the data from the LDATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

F_COUNT = F_COUNT + 4

' Point to next value, by adding 4 to counter

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
FL_TABLE:

LDATA AS FLOAT 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 ,_

0.005

16-bit core example

' 16-bit read floating point data from a table and display the results

DEVICE = 18F452

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DIM F_COUNT AS BYTE

CLS

' Clear the LCD

F_COUNT = 0

' Clear the table counter

REPEAT

' Create a loop

FLT = LREAD FL_TABLE + F_COUNT
' Read the data from the LDATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

F_COUNT = F_COUNT + 2

' Point to next value, by adding 2 to counter

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
FL_TABLE:

LDATA AS FLOAT 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 ,_

0.005

Notes
LDATA tables should be placed at the end of the BASIC program. If an LDATA table is placed at the beginning of the program, then a GOTO Scribble1149command must jump over the tables, to the main body of code.

GOTO OVER_DATA_TABLE

LDATA 1,2,3,4,5,6

OVER_DATA_TABLE:

{ rest of code here}

With 14-bit core devices, an 8-bit value (0 - 255) in an LDATA statement will occupy a single code space, however, 16-bit data (0 - 65535) will occupy two spaces, 32-bit and floating point values will occupy 4 spaces. This must be taken into account when using the LREAD Scribble1476command. See 14-bit floating point example above.

With 16-bit core devices, an 8, and 16-bit value in an LDATA statement will occupy a single code space, however, 32-bit and floating point values will occupy 2 spaces. This must be taken into account when using the LREAD Scribble1476command. See previous 16-bit floating point example.

See also :
CDATAScribble689, CREADScribble789, DATAScribble849, LDATAScribble1474, READScribble1909, RESTORE.Scribble1969
LREAD8, LREAD16, LREAD32

Syntax

Variable = LREAD8 Label [Offset Variable]

or

Variable = LREAD16 Label [Offset Variable]

or

Variable = LREAD32 Label [Offset Variable]
Overview

Read an 8, 16, or 32-bit value from an LDATA table using an offset of Offset Variable and place into Variable, with more efficiency than using LREAD . For PICmicro’s that can access their own code memory, such as the 16F87x and all the 18F range.

LREAD8 will access 8-bit values from an LDATA table.

LREAD16 will access 16-bit values from an LDATA table.

LREAD32 will access 32-bit values from an LDATA table, this also includes floating point values.

Operators

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, or FLOAT.

Label is a label name preceding the LDATA statement of which values will be read from.

Offset Variable can be a constant value, variable, or expression that points to the location of interest within the LDATA table.

LREAD8 Example
' Extract the second value from within an 8-bit LDATA table

DEVICE = 16F877

DIM OFFSET AS BYTE

' Declare a BYTE size variable for the offset

DIM RESULT AS BYTE

' Declare a BYTE size variable to hold the result

CLS

' Clear the LCD

OFFSET = 1

' Point to the second value in the LDATA table

' Read the 8-bit value pointed to by OFFSET

RESULT = LREAD8 BYTE_TABLE [OFFSET]

PRINT DEC RESULT

' Display the decimal result on the LCD

STOP
' Create a table containing only 8-bit values

BYTE_TABLE: LDATA AS BYTE 100 , 200

LREAD16 Example
' Extract the second value from within a 16-bit LDATA table

DEVICE = 16F877

DIM OFFSET AS BYTE

' Declare a BYTE size variable for the offset

DIM RESULT AS WORD

' Declare a WORD size variable to hold the result

CLS

' Clear the LCD

OFFSET = 1

' Point to the second value in the LDATA table

' Read the 16-bit value pointed to by OFFSET

RESULT = LREAD16 WORD_TABLE [OFFSET]

PRINT DEC RESULT

' Display the decimal result on the LCD

STOP
' Create a table containing only 16-bit values

WORD_TABLE: LDATA AS WORD 1234 , 5678

LREAD32 Example
' Extract the second value from within a 32-bit LDATA table

DEVICE = 16F877

DIM OFFSET AS BYTE

' Declare a BYTE size variable for the offset

DIM RESULT AS DWORD

' Declare a DWORD size variable to hold the result

CLS

' Clear the LCD

OFFSET = 1

' Point to the second value in the LDATA table

' Read the 32-bit value pointed to by OFFSET

RESULT = LREAD32 DWORD_TABLE [OFFSET]

PRINT DEC RESULT

' Display the decimal result on the LCD

STOP
' Create a table containing only 32-bit values

DWORD_TABLE: LDATA AS DWORD 12340 , 56780

Notes
Data storage in any program is of paramount importance, and although the standard LREAD command can access multi-byte values from an LDATA table, it was not originally indended as such, and is more suited to accessing character data or single 8-bit values. However, the LREAD8, LREAD16, and LREAD32 commands are specifically written in order to efficiently read data from an LDATA table, and use the least amount of code space in doing so, thus increasing the speed of operation. Which means that wherever possible, LREAD should be replaced by LREAD8, LREAD16, or LREAD32.

See also :
CDATA, CREAD, DATA, LDATA, LREAD, READ, RESTORE .
MID$

Syntax

Destination String = MID$ (Source String , Position within String , Amount of characters)

Overview
Extract n amount of characters from a source string beginning at n characters from the left, and copy them into a destination string.

Operators
Destination String can only be a STRING variable, and should be large enough to hold the correct amount of characters extracted from the Source String.

Source String can be a STRING variable, or a Quoted String of Characters. See below for more variable types that can be used for Source String.

Position within String can be any valid variable type, expression or constant value, that signifies the position within the Source String from which to start extracting characters. Values start at 1 for the leftmost part of the string and should not exceed 255 which is the maximum allowable length of a STRING variable.

Amount of characters can be any valid variable type, expression or constant value, that signifies the amount of characters to extract from the left of the Source String. Values start at 1 and should not exceed 255 which is the maximum allowable length of a STRING variable.

Example 1
' Copy 5 characters from position 4 of SOURCE_STRING into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Copy 5 characters from the source string into the destination string

DEST_STRING = MID$ (SOURCE_STRING , 4 , 5)

PRINT DEST_STRING

' Display the result, which will be "LO WO"

STOP
Example 2
' Copy 5 characters from position 4 of a Quoted Character String into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

' Copy 5 characters from the quoted string into the destination string

DEST_STRING = MID$ ("HELLO WORLD" , 4 , 5)

PRINT DEST_STRING

' Display the result, which will be "LO WO"

STOP
The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM.

Example 3
' Copy 5 characters from position 4 of SOURCE_STRING into DEST_STRING using a pointer

‘ to SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

' Copy 5 characters from the source string into the destination string

DEST_STRING = MID$ (STRING_ADDR , 4 , 5)

PRINT DEST_STRING

' Display the result, which will be "LO WO"

STOP
A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 4
' Copy 5 characters from position 4 of a CDATA table into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

' Copy 5 characters from label SOURCE into the destination string

DEST_STRING = MID$ (SOURCE , 4 , 5)

PRINT DEST_STRING

' Display the result, which will be "LO WO"

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "HELLO WORLD" , 0

See also :
Creating and using Strings, Creating and using VIRTUAL STRINGS with

CDATA, CDATA, LEN, LEFT$, RIGHT$, STR$, TOLOWER, TOUPPER

VARPTR .
ON GOTO

Syntax

ON Index Variable GOTO Label1 {,...Labeln }

Overview

Cause the program to jump to different locations based on a variable index. On a PICmicrotm device with only one page of memory. Exactly the same functionality as BRANCH.

Operators

Index Variable is a constant, variable, or expression, that specifies the label to jump to.

Label1...Labeln are valid labels that specify where to branch to. A maximum of 255 labels may be placed after the GOTO, 256 if using a 16-bit core device.

Example

DEVICE = 16F84

DIM INDEX as BYTE

CLS

' Clear the LCD

INDEX = 2

' Assign INDEX a value of 2

START:
' Jump to label 2 (LABEL_2) because INDEX = 2

ON INDEX GOTO LABEL_0, LABEL_1, LABEL_2

LABEL_0:
INDEX = 2

' INDEX now equals 2

PRINT AT 1,1,"LABEL 0"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

LABEL_1:
INDEX = 0

' INDEX now equals 0

PRINT AT 1,1,"LABEL 1"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

LABEL_2:
INDEX = 1

' INDEX now equals 1

PRINT AT 1,1,"LABEL 2"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

The above example we first assign the index variable a value of 2, then we define our labels. Since the first position is considered 0 and the variable INDEX equals 2 the ON GOTO command will cause the program to jump to the third label in the list, which is LABEL_2.

Notes

ON GOTO is useful when you want to organise a structure such as: -

IF VAR1 = 0 THEN GOTO LABEL_0
' VAR1 = 0: go to label "LABEL_0"

IF VAR1 = 1 THEN GOTO LABEL_1
' VAR1 = 1: go to label "LABEL_1"

IF VAR1 = 2 THEN GOTO LABEL_2
' VAR1 = 2: go to label "LABEL_2"

You can use ON GOTO to organise this into a single statement: -

ON VAR1 GOTO LABEL_0 , LABEL_1, LABEL_2

This works exactly the same as the above IF...THEN example. If the value is not in range (in this case if VAR1 is greater than 2), ON GOTO does nothing. The program continues with the next instruction.

The ON GOTO command is primarily for use with PICmicrotm devices that have one page of memory (0-2047). If larger PICmicros are used and you suspect that the branch label will be over a page boundary, use the ON GOTOL command instead.

See also :
BRANCH, BRANCHL, ON GOTOL, ON GOSUB.
ON GOTOL

Syntax

ON Index Variable GOTOL Label1 {,...Labeln }

Overview

Cause the program to jump to different locations based on a variable index. On a PICmicrotm device with more than one page of memory, or 16-bit core devices. Exactly the same functionality as BRANCHL.

Operators

Index Variable is a constant, variable, or expression, that specifies the label to jump to.

Label1...Labeln are valid labels that specify where to branch to. A maximum of 127 labels may be placed after the GOTOL, 256 if using a 16-bit core device.
Example

DEVICE = 16F877

' Use a larger PICmicro device

DIM INDEX as BYTE

CLS

' Clear the LCD

INDEX = 2

' Assign INDEX a value of 2

START:
' Jump to label 2 (LABEL_2) because INDEX = 2

ON INDEX GOTOL LABEL_0, LABEL_1, LABEL_2

LABEL_0:
INDEX = 2

' INDEX now equals 2

PRINT AT 1,1,"LABEL 0"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

LABEL_1:
INDEX = 0

' INDEX now equals 0

PRINT AT 1,1,"LABEL 1"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

LABEL_2:
INDEX = 1

' INDEX now equals 1

PRINT AT 1,1,"LABEL 2"

' Display the LABEL name on the LCD

DELAYMS 500

' Wait 500ms

GOTO START

' Jump back to START

The above example we first assign the index variable a value of 2, then we define our labels. Since the first position is considered 0 and the variable INDEX equals 2 the ON GOTOL command will cause the program to jump to the third label in the list, which is LABEL_2.

Notes

The ON GOTOL command is mainly for use with PICmicrotm devices that have more than one page of memory (greater than 2048). It may also be used on any PICmicrotm device, but does produce code that is larger than ON GOTO.

See also : BRANCH, BRANCHL, ON GOTO, ON GOSUB .
ON GOSUB

Syntax

ON Index Variable GOSUB Label1 {,...Labeln }

Overview

Cause the program to Call a subroutine based on an index value. A subsequent RETURN will continue the program immediately following the ON GOSUB command.
Operators

Index Variable is a constant, variable, or expression, that specifies the label to call.

Label1...Labeln are valid labels that specify where to call. A maximum of 256 labels may be placed after the GOSUB.
Example

DEVICE = 18F452

' Use a 16-bit core PICmicro

DIM INDEX as BYTE

CLS

' Clear the LCD

WHILE 1 = 1

' Create an infinite loop

FOR INDEX = 0 TO 2

' Create a loop to call all the labels

' Call the label depending on the value of INDEX

ON INDEX GOSUB LABEL_0, LABEL_1, LABEL_2

DELAYMS 500

' Wait 500ms after the subroutine has returned

NEXT

WEND

' Do it forever

LABEL_0:

PRINT AT 1,1,"LABEL 0"

' Display the LABEL name on the LCD

RETURN
LABEL_1:

PRINT AT 1,1,"LABEL 1"

' Display the LABEL name on the LCD

RETURN
LABEL_2:

PRINT AT 1,1,"LABEL 2"

' Display the LABEL name on the LCD

RETURN
The above example, a loop is formed that will load the variable INDEX with values 0 to 2. The ON GOSUB command will then use that value to call each subroutine in turn. Each subroutine will RETURN to the DELAYMS command, ready for the next scan of the loop.

Notes

ON GOSUB is useful when you want to organise a structure such as: -

IF VAR1 = 0 THEN GOSUB LABEL_0
' VAR1 = 0: call label "LABEL_0"

IF VAR1 = 1 THEN GOSUB LABEL_1
' VAR1 = 1: call label "LABEL_1"

IF VAR1 = 2 THEN GOSUB LABEL_2
' VAR1 = 2: call label "LABEL_2"

You can use ON GOSUB to organise this into a single statement: -

ON VAR1 GOSUB LABEL_0 , LABEL_1, LABEL_2

This works exactly the same as the above IF...THEN example. If the value is not in range (in this case if VAR1 is greater than 2), ON GOSUB does nothing. The program continues with the next instruction..

ON GOSUB is only supported with 16-bit core devices because they are the only PICmicrotm devices that allow code access to their return stack, which is required for the computed RETURN address.

See also : BRANCH, BRANCHL, ON GOTO, ON GOTOL.
ON_INTERRUPT

Syntax

ON_INTERRUPT Label

Overview

Jump to a subroutine when a HARDWARE interrupt occurs

Operators

Label is a valid identifier

Example

' Flash an LED attached to PORTB.0 at a different rate to the

' LED attached to PORTB.1

DEVICE 16F84

ON_INTERRUPT Flash

' Assign some Interrupt associated aliases

SYMBOL T0IE INTCON.5

' TMR0 Overflow Interrupt Enable

SYMBOL T0IF INTCON.2

' TMR0 Overflow Interrupt Flag

SYMBOL GIE INTCON.7

' Global Interrupt Enable

SYMBOL PS0 OPTION_REG.0
' Prescaler ratio bit-0

SYMBOL PS1 OPTION_REG.1
' Prescaler ratio bit-1

SYMBOL PS2 OPTION_REG.2
' Prescaler ratio bit-2

' Prescaler Assignment (1=assigned to WDT 0=assigned to oscillator)

SYMBOL PSA OPTION_REG.3

' Timer0 Clock Source Select (0=Internal clock 1=External PORTA.4)

SYMBOL T0CS OPTION_REG.5

SYMBOL LED PORTB.1

GOTO Over_interrupt

' Jump over the interrupt subroutine

' Interrupt routine starts here

Flash:

' XOR PORTB with 1, Which will turn on with one interrupt

' and turn off with the next the LED connected to PORTB.0

PORTB = PORTB ^ 1

T0IF = 0

' Clear the TMR0 overflow flag

CONTEXT RESTORE
' Restore the registers and exit the interrupt

Over_interrupt :

TRISB = %00000000
' Configure PORTB as outputs

PORTB = 0

' Clear PORTB

' Initiate the interrupt

GIE = 0

' Turn off global interrupts

PSA = 0

' Assign the prescaler to external oscillator

PS0 = 1

' Set the prescaler

PS1 = 1

' to increment TMR0

PS2 = 1

' every 256th instruction cycle

T0CS = 0

' Assign TMR0 clock to internal source

TMR0 = 0

' Clear TMR0 initially

T0IE = 1

' Enable TMR0 overflow interrupt

GIE = 1

' Enable global interrupts

Inf:

LOW LED

DELAYMS 500

HIGH LED

DELAYMS 500

GOTO Inf

Initiating an interrupt.

Before we can change any bits that correspond to interrupts we need to make sure that global interrupts are disabled. This is done by clearing the GIE Scribble2666 bit of INTCON Scribble2668 (INTCON.7).

GIE = 0

' Disable global interrupts
The prescaler attachment to TMR0 is controlled by bits 0:2 of the OPTION_REG (PS0, 1, 2). The table below shows their relationship to the prescaled ratio applied. But before the prescaler can be calculated we must inform the PICmicrotm as to what clock governs TMR0. This is done by setting or clearing the PSA bit of OPTION_REG (OPTION_REG.3). If PSA is cleared then TMR0 is attached to the external crystal oscillator. If it is set then it is attached to the watchdog timer, which uses the internal RC oscillator. This is important to remember; as the prescale ratio differs according to which oscillator it is attached to.

	PS2
	PS1
	PS0
	PSA=0 (External crystal OSC)
	PSA=1 (Internal WDT OSC)

	0
	0
	0
	1 : 2
	1 : 1

	0
	0
	1
	1 : 4
	1 : 2

	0
	1
	0
	1 : 8
	1 : 4

	0
	1
	1
	1 : 16
	1 : 8

	1
	0
	0
	1 : 32
	1 : 16

	1
	0
	1
	1 : 64
	1 : 32

	1
	1
	0
	1 : 128
	1 : 64

	1
	1
	1
	1 : 256
	1 : 128

TMR0 prescaler ratio configurations.

As can be seen from the above table, if we require TMR0 to increment on every instruction cycle (4/OSC) we must clear PS2..0 and set PSA, which would attach it to the watchdog timer. This will cause an interrupt to occur every 256us (assuming a 4MHz crystal). If the same values were placed into PS2..0 and PSA was cleared (attached to the external oscillator) then TMR0 would increment on every 2nd instruction cycle and cause an interrupt to occur every 512us.

There is however, another way TMR0 may be incremented. By setting the T0CS bit of the OPTION_REG (OPTION_REG.5) a rising or falling transition on PORTA.0 will also increment TMR0. Setting T0CS will attach TMR0 to PORTA.0 and clearing TOCS will attach it to the oscillators. If PORTA.0 is chosen then an associated bit, T0SE (OPTION_REG.4) must be set or cleared. Clearing T0SE will increment TMR0 with a low to high transition, while setting T0SE will increment TMR0 with a high to low transition.

The prescaler's ratio is still valid when PORTA.0 is chosen as the source, so that every nth transition on PORTA.0 will increment TMR0. Where n is the prescaler ratio.

Before the interrupt is enabled, TMR0 itself should be assigned a value, as any variable should be when first starting a program. In most cases clearing TMR0 will suffice. This is necessary because, when the PICmicrotm is first powered up the value of TMR0 could be anything from 0 to 255

We are now ready to allow TMR0 to trigger an interrupt. This is accomplished by setting the T0IE bit of INTCON Scribble2668 (INTCON.5). Setting this bit will not cause a global interrupt to occur just yet, but will inform the PICmicrotm that when global interrupts are enabled, TMR0 will be one possible cause. When TMR0 overflows (rolls over from 255 to 0) the T0IF (INTCON.2) flag is set. This is not important yet but will become crucial in the interrupt handler subroutine.

The final act is to enable global interrupts by setting the GIE Scribble2666 bit of the INTCON Scribble2668 register (INTCON.7).

Format of the interrupt handler.

The interrupt handler subroutine must always follow a fixed pattern. First, the contents of the STATUS, PCLATH, FSR, and Working register (WREG) must be saved, this is termed context saving, and is performed automatically by the compiler, and variable space is automatically allocated for the registers in the shared portion of memory located at the top of BANK 0.

When the interrupt handler was called the GIE Scribble2666 bit was automatically cleared by hardware, disabling any more interrupts. If this were not the case, another interrupt might occur while the interrupt handler was processing the first one, which would lead to disaster.

Now the T0IF (TMR0 overflow) flag becomes important. Because, before exiting the interrupt handler it must be cleared to signal that we have finished with the interrupt and are ready for another one.

T0IF = 0

' Clear the TMR0 overflow flag

The STATUS, PCLATH, FSRScribble2649, and Working register (WREG) must be returned to their original conditions (context restoring). The CONTEXT RESTORE command may be used for this. i.e. CONTEXT RESTORE. The CONTEXT RESTORE command also returns the PICmicrotm back to the main body code where the interrupt was called from. In other words it performs a RETFIE instruction

Precautions.
Because a hardware interrupt may occur at any time, It cannot be fully guaranteed that a SYSTEM variable will not be disturbed while inside the interrupt handler, therefore, the safest way to use a HARDWARE interrupt is to write the code in assembler, or to implement a SOFTWARE interrupt using the ON INTERRUPTScribble540 directive. This will guarantee that no system variables are being altered.
The code within the interrupt handler should be as quick and efficient as possible because, while it's processing the code the main program is halted. When using assembler interrupts, care should be taken to ensure that the watchdog timer does not time-out. Placing a CLRWDT instruction at regular intervals within the code will prevent this from happening. An alternative approach would be to disable the watchdog timer altogether at programming time.

See also :
ON_LOW_INTERRUPTScribble1599, SOFTWARE INTERRUPTS in BASICScribble540.
ON_LOW_INTERRUPT

Syntax

ON_LOW_INTERRUPT Label

Overview

Jump to a subroutine when a LOW PRIORITY HARDWARE interrupt occurs on a 16-bit core device.

Operators

Label is a valid identifier

Example
' This program uses TIMER1 and TIMER3 to demonstrate the use of interrupt priority.

' TIMER1 is configured for high-priority interrupts and TIMER3 is configured for low-priority interrupts.

' By writing to the PORTD LEDS, it is shown that a high-priority interrupts override low-priority interrupts.

' Connect three LEDs to PORTD pins 0,1, and 7

' LEDs 0, 7 flash in the background using interrupts, while the LED connected to PORTD.1

' Flashes slowly in the foreground

' Note the use of assembler commands without the ASM-ENDASM directives

DEVICE = 18F452

XTAL = 4

' Create a WORD variable from two hardware registers

SYMBOL TIMER1 = TMR1L.WORD

' Create a WORD variable from two hardware registers

SYMBOL TIMER3 = TMR3L.WORD

SYMBOL IPEN = RCON.7

SYMBOL TMR1IP = IPR1.0

SYMBOL TMR3IP = IPR2.1

SYMBOL TMR1IF = PIR1.0

SYMBOL TMR3IF = PIR2.1

SYMBOL TMR1IE = PIE1.0

SYMBOL TMR3IE = PIE2.1

SYMBOL GIEH = INTCON.7

SYMBOL GIEL = INTCON.6

SYMBOL TMR1ON = T1CON.0

SYMBOL TMR3ON = T3CON.0

' Declare interrupt Vectors

' Point to the HIGH priority interrupt subroutine

ON_INTERRUPT GOTO TMR1_ISR

' Point to the LOW priority interrupt subroutine

ON_LOW_INTERRUPT GOTO TMR3_ISR

GOTO OVER_INTERRUPTS

' Jump over the interrupt subroutines

'---

' HIGH PRIORITY INTERRUPT

TMR1_ISR:

CLEAR TMR1IF
' Clear the Timer1 interrupt flag.

' Turn off PORTB.0 to indicate high priority interrupt has overridden low priority.
CLEAR PORTD.0

SET PORTD.7
' Turn on PORTB.7 to indicate high priority interrupt is occurring.

BTFSS TMR1IF
' Poll TMR11 interrupt flag to wait for another TMR1 overflow.

BRA $ - 2

CLEAR TMR1IF
' Clear the Timer1 interrupt flag again.

CLEAR PORTD.7
' Turn off PORTB.7 to indicate the high-priority ISR is over.

RETFIE
'---

' LOW PRIORITY INTERRUPT

TMR3_ISR:

CLEAR TMR3IF
' Clear the TMR3 interrupt flag.

TIMER3 = $F000
' Load TMR3 with the value $F000

SET PORTD.0
' Turn on PORTB.0 to indicate low priority interrupt is occurring.

BTFSS TMR3IF
' Poll TMR3 interrupt flag to wait for another TMR3 overflow.

BRA $ - 2

TIMER3 = $F000
' Load TMR3 with the value $F000 again.

CLEAR TMR3IF
' Clear the Timer3 interrupt flag again.

CLEAR PORTD.0
' Turn off PORTB.0. to indicate the low-priority ISR is over.

RETFIE

'---

' MAIN PROGRAM STARTS HERE

OVER_INTERRUPTS:

LOW
PORTD

' Setup PORTB for outputs

'Set up priority interrupts.

IPEN = 1

' Enable priority interrupts.

TMR1IP = 1

' Set Timer1 as a high priority interrupt source

TMR3IP = 0

' Set Timer3 as a low priority interrupt source

TMR1IF = 0

' Clear the Timer1 interrupt flag

TMR3IF = 0

' Clear the Timer3 interrupt flag

TMR1IE = 1

' Enable Timer1 interrupts

TMR3IE = 1

' Enable Timer3 interrupts

GIEH = 1

' Set the global interrupt enable bits

GIEL = 1

'TIMER1 setup

T1CON = 0

TIMER1 = 0

' Clear TIMER 1

TMR1ON = 1

' Turn on Timer1

'TIMER3 setup

T3CON = 0

TIMER3 = $F000

' Write $F000 to Timer3

TMR3ON = 1

' Turn on Timer3

WHILE 1 = 1

' Flash the LED on PORTB.1

HIGH PORTD.1

DELAYMS 300

LOW PORTD.1

DELAYMS 300

WEND

See also :
ON_INTERRUPTScribble1589, SOFTWARE INTERRUPTS in BASICScribble540).
OUTPUT

Syntax

OUTPUT Port or Port . Pin

Overview

Makes the specified Port or Port.Pin an output.

Operators

Port.Pin must be a Port.Pin constant declaration.

Example

OUTPUT PORTA.0

' Make bit-0 of PORTA an output

OUTPUT PORTA

' Make all of PORTA an output
Notes

An Alternative method for making a particular pin an output is by directly modifying the TRIS: -

TRISB.0 = 0

' Set PORTB, bit-0 to an output

All of the pins on a port may be set to output by setting the whole TRIS register at once: -

TRISB = %00000000
' Set all of PORTB to outputs

In the above examples, setting a TRIS bit to 0 makes the pin an output, and conversely, setting the bit to 1 makes the pin an input.

See also :
INPUTScribble1409.
ORG

Syntax

ORG Value

Overview

Set the program origin for subsequent code at the address defined in Value

Operators

Value can be any constant value within the range of the particular PICmicro's memory.

Example

DEVICE 16F877

ORG 2000

' Set the origin to address 2000

CDATA 120 , 243 , "Hello"

' Place data starting at address 2000

or

SYMBOL Address = 2000

ORG Address + 1

' Set the origin to address 2001

CDATA 120 , 243 , "Hello"

' Place data starting at address 2001

Notes

If more complex values are required after the ORG directive, such as assembler variables etc. Use : -

@ ORG { assembler variables etc }

OREAD

Syntax

OREAD Pin , Mode , [Inputdata]
Overview

Receive data from a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a form of asynchronous serial communication developed by Dallas Semiconductor. It requires only one I/O pin which may be shared between multiple 1-wire devices.

Operators

Pin is a PORT-BIT combination that specifies which I/O pin to use. 1-wire devices require only one I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and input mode during the OREAD command and will be set to input mode by the end of the OREAD command.

Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode argument control's the placement of reset pulses and detection of presence pulses, as well as byte or bit input. See notes below.

Inputdata is a list of variables or arrays to store the incoming data into.

Example

DIM Result AS BYTE
SYMBOL DQ = PORTA.0

OREAD DQ, 1 , [Result]

The above example code will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of PORTA) and will then detect the device's 'presence' pulse and receive one byte and store it in the variable Result.

Notes

The Mode operator is used to control placement of reset pulses (and detection of presence pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8 possible value combinations for Mode.

	Mode Value
	Effect

	0
	No Reset, Byte mode

	1
	Reset before data, Byte mode

	2
	Reset after data, Byte mode

	3
	Reset before and after data, Byte mode

	4
	No Reset, Bit mode

	5
	Reset before data, Bit mode

	6
	Reset after data, Bit mode

	7
	Reset before and after data, Bit mode

The correct value for Mode depends on the 1-wire device and the portion of the communication that is being dealt with. Consult the data sheet for the device in question to determine the correct value for Mode. In many cases, however, when using the OREAD command, Mode should be set for either No Reset (to receive data from a transaction already started by an OWRITE

command) or a Reset after data (to terminate the session after data is received). However, this may vary due to device and application requirements.

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData argument will only receive one bit. For example, the following code could be used to receive two bits using this mode: -

DIM BitVar1 AS BIT
DIM BitVar2 AS BIT
OREAD PORTA.0 , 6 , [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset after data mode.

We could also have chosen to make the BitVar1 and BitVar2 variables each a BYTE type, however, they would still only have received one bit each in the OREAD command, due to the Mode that was chosen.

The compiler also has a modifier for handling a string of data, named STR.

The STR modifier is used for receiving data and placing it directly into a byte array variable.

A string is a set of bytes that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1 2 3 would be stored in a byte array containing three bytes (elements).

Below is an example that receives ten bytes through a 1-wire interface and stores them in the 10-byte array, MYARRAY: -

DIM MyArray[10] AS BYTE

' Create a 10-byte array.

OREAD DQ, 1 , [STR MyArray]

PRINT DEC STR MyArray

' Display the values.

If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. For example: -

DIM MyArray[10] AS BYTE

' Create a 10-byte array.

OREAD DQ, 1 , [STR MyArray \5]
' Fill the first 5-bytes of the array with

' received data.

PRINT STR MyArray \5

' Display the 5-value string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only the first n bytes of the array. n refers to the value placed after the backslash.

DALLAS 1-Wire Protocol.

The 1-wire protocol has a well defined standard for transaction sequences. Every transaction sequence consists of four parts: -

Initialisation.

ROM Function Command.

Memory Function Command.

Transaction / Data.

Additionally, the ROM Function Command and Memory Function Command are always 8 bits wide and are sent least-significant-bit first (LSB).

The Initialisation consists of a reset pulse (generated by the master) that is followed by a presence pulse (generated by all slave devices).

The reset pulse is controlled by the lowest two bits of the Mode argument in the OREAD command. It can be made to appear before the ROM Function Command (Mode = 1), after the Transaction / Data portion (Mode = 2), before and after the entire transaction (Mode = 3) or not at all (Mode = 0).

	Command
	Value
	Action

	Read ROM
	$33
	Reads the 64-bit ID of the 1-wire device. This command can only be used if there is a single 1-wire device on the line.

	Match ROM
	$55
	This command, followed by a 64-bit ID, allows the PICmicro to address a specific 1-wire device.

	Skip ROM
	$CC
	Address a 1-wire device without its 64-bit ID. This command can only be used if there is a single 1-wire device on the line.

	Search ROM
	$F0
	Reads the 64-bit IDs of all the 1-wire devices on the line. A process of elimination is used to distinguish each unique device.

Following the Initialisation, comes the ROM Function Command. The ROM Function Command is used to address the desired 1-wire device. The above table shows a few common ROM Function Commands. If only a single 1 wire device is connected, the Match ROM command can be used to address it. If more than one 1-wire device is attached, the PICmicrotm will ultimately have to address them individually using the Match ROM command.

The third part, the Memory Function Command, allows the PICmicrotm to address specific memory locations, or features, of the 1-wire device. Refer to the 1-wire device's data sheet for a list of the available Memory Function Commands.

[image: image99.wmf]To

I/O Pin

Analogue

Voltage

Output

10k

10uF

Finally, the Transaction / Data section is used to read or write data to the 1-wire device. The OREAD command will read data at this point in the transaction. A read is accomplished by generating a brief low-pulse and sampling the line within 15us of the falling edge of the pulse. This is called a 'Read Slot'.

The following program demonstrates interfacing to a Dallas Semiconductor DS1820 1-wire digital thermometer device using the compiler's 1-wire commands, and connections as per the diagram to the right.

The code reads the Counts Remaining and Counts per Degree Centigrade registers within the DS1820 device in order to provide a more accurate temperature (down to 1/10th of a degree).

DEVICE 16F84

DECLARE XTAL 4

SYMBOL DQ = PortA.1

' Place the DS1820 on bit-1 of PORTA

DIM Temp AS WORD

' Holds the temperature value

DIM C AS BYTE

' Holds the counts remaining value

DIM CPerD AS BYTE

' Holds the Counts per degree C value

CLS

' Clear the LCD before we start

Again:

OWRITE DQ, 1, [$CC, $44]

' Send Calculate Temperature command

REPEAT

DELAYMS 25

' Wait until conversion is complete

OREAD DQ, 4, [C]

' Keep reading low pulses until

UNTIL C <> 0

' the DS1820 is finished.

OWRITE DQ, 1, [$CC, $BE]

' Send Read ScratchPad command

OREAD DQ, 2,[Temp.LOWBYTE,Temp.HIGHBYTE, C, C, C, C, C, CPerD]

' Calculate the temperature in degrees Centigrade

Temp = (((Temp >> 1) * 100) - 25) + (((CPerD - C) * 100) / CPerD)

PRINT AT 1,1, DEC Temp / 100, ".", DEC2 Temp," ", AT 1,8,"C"

GOTO Again

Note. The equation used in the program above will not work correctly with negative temperatures. Also note that the 4.7k pull-up resistor (R1) is required for correct operation.

Inline OREAD Command.

The standard structure of the OREAD command is: -

OREAD Pin , Mode , [Inputdata]

However, this did not allow it to be used in conditions such as IF-THEN, WHILE-WEND etc. Therefore, there is now an additional structure to the OREAD command: -

Var = OREAD Pin , Mode

Operands Pin and Mode have not changed their function, but the result from the 1-wire read is now placed directly into the assignment variable.

OREAD - OWRITE Presence Detection.

Another important feature to both the OREAD and OWRITE commands is the ability to jump to a section of the program if a presence is not detected on the 1-wire bus.

OWRITE Pin , Mode , Label , [Outputdata]

OREAD Pin , Mode , Label , [Inputdata]

Var = OREAD Pin , Mode, Label

The LABEL operand is an optional condition, but if used, it must reference a valid BASIC label.

' Skip ROM search & do temp conversion

OWRITE DQ, 1, NO_PRES, [$CC, $44]

WHILE OREAD DQ, 4, NO_PRES != 0 : WEND ' Read busy-bit,' Still busy..?

' Skip ROM search & read scratchpad memory

OWRITE DQ, 1, NO_PRES, [$CC, $BE]

OREAD DQ, 2, NO_PRES, [Temp.Lowbyte, Temp.Highbyte] ' Read two bytes

RETURN

NO_PRES:

PRINT "No Presence"

STOP

See also :
OWRITE.

OWRITE

Syntax

OWRITE Pin , Mode , [Outputdata]
Overview

Send data to a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a form of asynchronous serial communication developed by Dallas Semiconductor. It requires only one I/O pin which may be shared between multiple 1-wire d vices.

Operators

Pin is a PORT-BIT combination that specifies which I/O pin to use. 1-wire devices require only one I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and input mode during the OWRITE command and will be set to input mode by the end of the OWRITE command.

Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode operator control's the placement of reset pulses and detection of presence pulses, as well as byte or bit input. See notes below.

Outputdata is a list of variables or arrays transmit individual or repeating bytes.

Example

SYMBOL DQ = PORTA.0

OWRITE DQ, 1 , [$4E]

The above example will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of PORTA) and will then detect the device's 'presence' pulse and transmit one byte (the value $4E).

Notes

The Mode operator is used to control placement of reset pulses (and detection of presence pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8 possible value combinations for Mode.

	Mode Value
	Effect

	0
	No Reset, Byte mode

	1
	Reset before data, Byte mode

	2
	Reset after data, Byte mode

	3
	Reset before and after data, Byte mode

	4
	No Reset, Bit mode

	5
	Reset before data, Bit mode

	6
	Reset after data, Bit mode

	7
	Reset before and after data, Bit mode

The correct value for Mode depends on the 1-wire device and the portion of the communication you're dealing with. Consult the data sheet for the device in question to determine the correct value for Mode. In many cases, however, when using the OWRITE command, Mode should be set for a Reset before data (to initialise the transaction). However, this may vary due to device and application requirements.

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData argument will only receive one bit. For example, the following code could be used to receive two bits using this mode: -

DIM BitVar1 AS BIT
DIM BitVar2 AS BIT
OWRITE PORTA.0 , 6 , [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset after data mode. We could also have chosen to make the BitVar1 and BitVar2 variables each a BYTE type, however, they would still only use their lowest bit (BIT0) as the value to transmit in the OWRITE command, due to the Mode value chosen.

The STR Modifier

The STR modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes (from a byte array) through bit-0 of PORTA: -

DIM MyArray[10] AS BYTE

' Create a 10-byte array.

MyArray [0] = $CC

' Load the first 4 bytes of the array

MyArray [1] = $44

' With the data to send

MyArray [2] = $CC

MyArray [3] = $4E

OWRITE PORTA.0 , 1 , [STR MyArray \4]
' Send 4-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

DIM MyArray [10] AS BYTE

' Create a 10-byte array.

STR MyArray = $CC,$44,$CC,$4E

' Load the first 4 bytes of the array

OWRITE PORTA.0 , 1 , [STR MyArray \4]
' Send 4-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the string is now constructed using the STR as a command instead of a modifier.

See also :
OREAD for example code, and 1-wire protocol.

PEEK

Syntax

Variable = PEEK Address
Overview

Retrieve the value of a register and place into a variable

Operators

Variable is a user defined variable.

Address can be a constant or a variable, pointing to the address of a register.

Example 1

A = PEEK 15

Variable A will contain the value of Register 15. If the device is a 16F84, for example, this register is one of the 68 general-purpose registers (RAM).

Example 2

B = 15

A = PEEK B

Same function as example 1

Notes

Use of the PEEK command is not recommended. A more efficient way of retrieving the value from a register is by accessing the register directly: -

VARIABLE = REGISTER

See also :
POKE. Scribble1749
PIXEL

Syntax

Variable = PIXEL Ypos , Xpos
Overview

Read the condition of an individual pixel on a 64x128 element graphic LCD. The returned value will be 1 if the pixel is set, and 0 if the pixel is clear.

Operators

Variable is a user defined variable.

Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to examine. This must be a value of 0 to 127. Where 0 is the far left row of pixels.

Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to examine. This must be a value of 0 to 63. Where 0 is the top column of pixels.

Example

DEVICE 16F877

LCD_TYPE = GRAPHIC

' Use a Graphic LCD

INTERNAL_FONT = OFF

' Use an external chr set

FONT_ADDR = 0

' Eeprom's address is 0

' Graphic LCD Pin Assignments

LCD_DTPORT = PORTD

LCD_RSPIN = PORTC.2

LCD_RWPIN = PORTE.0

LCD_ENPIN = PORTC.5

LCD_CS1PIN = PORTE.1

LCD_CS2PIN = PORTE.2

' Character set eeprom Pin Assignments

SDA_PIN = PORTC.4

SCL_PIN = PORTC.3

DIM XPOS AS BYTE

DIM Ypos AS BYTE

DIM Result AS BYTE

CLS

PRINT AT 0 , 0 , "TESTING 1-2-3"

' Read the top row and display the result

FOR XPOS = 0 TO 127

Result = PIXEL 0 , XPOS

' Read the top row

PRINT AT 1 , 0 , DEC Result

DELAYMS 400

NEXT

STOP

See also :
LCDREADScribble1449, LCDWRITEScribble1469, PLOTScribble1729, UNPLOTScribble2289. See PRINT Scribble1789for circuit.
PLOT

Syntax

PLOT Ypos , Xpos
Overview

Set an individual pixel on a 64x128 element graphic LCD.

Operators

Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to set. This must be a value of 0 to 127. Where 0 is the far left row of pixels.

Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to set. This must be a value of 0 to 63. Where 0 is the top column of pixels.

Example

DEVICE 16F877

LCD_TYPE = GRAPHIC

' Use a Graphic LCD

' Graphic LCD Pin Assignments

LCD_DTPORT = PORTD

LCD_RSPIN = PORTC.2

LCD_RWPIN = PORTE.0

LCD_ENPIN = PORTC.5

LCD_CS1PIN = PORTE.1

LCD_CS2PIN = PORTE.2

DIM XPOS AS BYTE

ADCON1 = 7

' Set PORTA and PORTE to all digital

' Draw a line across the LCD

Again:

FOR XPOS = 0 TO 127

PLOT 20 , Xpos

DELAYMS 10

NEXT

' Now erase the line

FOR XPOS = 0 TO 127

UNPLOT 20 , XPOS

DELAYMS 10

NEXT

GOTO Again

 See also :
LCDREADScribble1449, LCDWRITEScribble1469, PIXELScribble1709, UNPLOTScribble2289. See PRINT Scribble1789for circuit.

[image: image100.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

56pf

C1

10uf

C2

0.1uf

R1

4.7k

Regulated 5 Volts

C3

56pf

4Mhz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

14

0v

IN

OUT

GND

78L05

C6

.1uf

R2

10k

C5

1uf

LED

R3

470

LMC662

3

2

4

8

1

9 Volts

In

0- 5 Volts

Out

-

+

IC1

IC2

IC3

9 Volts

Graphic LCD pixel configuration.
POKE

Syntax

POKE Address , Variable
Overview

Assign a value to a register.

Operators

Address can be a constant or a variable, pointing to the address of a register.

Variable can be a constant or a variable.

Example

A = 15

POKE 12 , A

' Register 12 will be assigned the value 15.

POKE A , 0

' Register 15 will be assigned the value 0

Notes

Use of the POKE command is not recommended. A more efficient way of assigning a value to a register is by accessing the register directly: -

REGISTER = VALUE

See also :
PEEK. Scribble1689
POP

Syntax

POP Variable, {Variable, Variable etc}

Overview

Pull a single variable or multiple variables from a software stack.

If the POP command is issued without a following variable, it will implement the assembler mnemonic POP, which manipulates the PICmicro's call stack.

Operators

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, FLOAT, or STRING.
The amount of bytes pushed on to the stack varies with the variable type used. The list below shows how many bytes are pushed for a particular variable type, and their order.

BIT

1 Byte is popped containing the value of the bit pushed.

BYTE

1 Byte is popped containing the value of the byte pushed.

BYTE_ARRAY
1 Byte is popped containing the value of the byte pushed.

WORD

2 Bytes are popped. Low Byte then High Byte containing

the value of the word pushed.

WORD_ARRAY
2 Bytes are popped. Low Byte then High Byte containing

the value of the word pushed.

DWORD

4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte

containing the value of the dword pushed.

FLOAT

4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte

containing the value of the float pushed.

STRING

2 Bytes are popped. Low Byte then High Byte that point to the

start address of the string previously pushed.
Example 1
' Push two variables on to the stack then retrieve them

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 20

' Create a small stack capable of holding 20 bytes

DIM WRD as WORD

' Create a WORD variable

DIM DWD as DWORD

' Create a DWORD variable

WRD = 1234

' Load the WORD variable with a value

DWD = 567890

' Load the DWORD variable with a value

PUSH WRD , DWD

' Push the WORD variable then the DWORD variable

CLEAR WRD

' Clear the WORD variable

CLEAR DWD

' Clear the DWORD variable

POP DWD , WRD

' Pop the DWORD variable then the WORD variable

PRINT DEC WRD , " " , DEC DWD
' Display the variables as decimal

STOP
Example 2
' Push a STRING on to the stack then retrieve it

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 10

' Create a small stack capable of holding 10 bytes

DIM SOURCE_STRING as STRING * 20
' Create a STRING variable

DIM DEST_STRING as STRING * 20

' Create another STRING variable

SOURCE_STRING = "HELLO WORLD"
 ' Load the STRING variable with characters

PUSH SOURCE_STRING

' Push the STRING variable's address

POP DEST_STRING
' Pop the previously pushed STRING into DEST_STRING

PRINT DEST_STRING
' Display the string, which will be "HELLO WORLD"

STOP

Example 3
' Push a Quoted character string on to the stack then retrieve it

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 10

' Create a small stack capable of holding 10 bytes

DIM DEST_STRING as STRING * 20
' Create a STRING variable

PUSH "HELLO WORLD"

' Push the Quoted String of Characters on to the stack

POP DEST_STRING
' Pop the previously pushed STRING into DEST_STRING

PRINT DEST_STRING
' Display the string, which will be "HELLO WORLD"

STOP

See also :
PUSH, GOSUB, RETURN, See PUSH for technical details of stack

manipulation.

POT

Syntax

Variable = POT Pin , Scale

Overview

Read a potentiometer, thermistor, photocell, or other variable resistance.

Operators

Variable is a user defined variable.
Pin is a Port.Pin constant that specifies the I/O pin to use.

Scale is a constant, variable, or expression, used to scale the instruction's internal 16-bit result. The 16- bit reading is multiplied by (scale/ 256), so a scale value of 128 would reduce the range by approximately 50%, a scale of 64 would reduce to 25%, and so on.

Example

DIM VAR1 AS BYTE

Loop:

VAR1 = POT PORTB.0 , 100
' Read potentiometer on pin 0 of PORTB.

PRINT DEC VAR1 , " "

' Display the potentiometer reading

GOTO Loop

' Repeat the process.

Notes

Internally, the POT instruction calculates a 16-bit value, which is scaled down to an 8-bit value. The amount by which the internal value must be scaled varies with the size of the resistor being used.

The pin specified by POT must be connected to one side of a resistor, whose other side is connected through a capacitor to ground. A resistance measurement is taken by timing how long it takes to discharge the capacitor through the resistor.

[image: image101.wmf]To

I/O Pin

R

C

220

W

+5 Volts

The value of scale must be determined by experimentation, however, this is easily accomplished as follows: -

Set the device under measure, the pot in this instance, to maximum resistance and read it with scale set to 255. The value returned in VAR1 can now be used as scale: -

VAR1 = POT PORTB.0 , 255

See also :
ADINScribble550, RCIN.Scribble1889
PRINT

Syntax

PRINT Item { , Item... }

Overview

Send Text to an LCD module using the Hitachi 44780 controller or a graphic LCD based on the Samsung S6B0108 chipset.

Operators

Item may be a constant, variable, expression, modifier, or string list.

There are no operators as such, instead there are modifiers. For example, if an at sign'@' precedes an Item, the ASCII representation for each digit is sent to the LCD.

The modifiers are listed below: -

Modifier

Operation

AT ypos (1 to n),xpos(1 to n)
Position the cursor on the LCD

CLS

Clear the LCD (also creates a 30ms delay)
BIN{1..32}

Display binary digits

DEC{1..10}

Display decimal digits

HEX{1..8}

Display hexadecimal digits

SBIN{1..32}

Display signed binary digits

SDEC{1..10}

Display signed decimal digits

SHEX{1..8}

Display signed hexadecimal digits

IBIN{1..32}

Display binary digits with a preceding '%' identifier

IDEC{1..10}

Display decimal digits with a preceding '#' identifier

IHEX{1..8}

Display hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Display signed binary digits with a preceding '%' identifier

ISDEC{1..10}

Display signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Display signed hexadecimal digits with a preceding '$' identifier

REP c\n

Display character c repeated n times

STR array\n

Display all or part of an array

CSTR cdata

Display string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine how many remainder digits are printed. i.e. numbers after the decimal point.

DIM FLT AS FLOAT

FLT = 3.145

PRINT DEC2 FLT

' Display 2 values after the decimal point

The above program will display 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal point.

DIM FLT AS FLOAT

FLT = 3.1456

PRINT DEC FLT

' Display 3 values after the decimal point

The above program will display 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT = -3.1456

PRINT DEC FLT

' Display 3 values after the decimal point

The above program will display -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text "HELLO WORLD" on line 1, position 1, the code would be: -

PRINT AT 1 , 1 , "HELLO WORLD"

Example 1

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM DWD AS DWORD

PRINT "Hello World"

' Display the text "Hello World"

PRINT "VAR1= " , DEC VAR1
' Display the decimal value of VAR1

PRINT "VAR1= " , HEX VAR1
' Display the hexadecimal value of VAR1

PRINT "VAR1= " , BIN VAR1
' Display the binary value of VAR1

PRINT "VAR1= " , @VAR1

' Display the decimal value of VAR1

PRINT "DWD= " , HEX6 DWD
' Display 6 hex characters of a DWORD type variable

Example 2

' Display a negative value on the LCD.

SYMBOL NEGATIVE = -200

PRINT AT 1 , 1 , SDEC NEGATIVE

Example 3

' Display a negative value on the LCD with a preceding identifier.

PRINT AT 1 , 1 , ISHEX -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to their own flash memory. And although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast, and harmless. Which offers a unique form of data storage and retrieval, the CDATA Scribble689command proves this, as it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data. The CSTR modifier may be used in commands that deal with text processing i.e. SEROUTScribble2069, HRSOUTScribble1329, and RSOUTScribble2029 etc.

The CSTR modifier is used in conjunction with the CDATA Scribble689command. The CDATA Scribble689command is used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD" , 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

To display this string of characters, the following command structure could be used: -

PRINT CSTR STRING1

The label that declared the address where the list of CDATA Scribble689values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

PRINT "HELLO WORLD"

PRINT "HOW ARE YOU?"

PRINT "I AM FINE!"

STOP

Now using the CSTR modifier: -

CLS

PRINT CSTR TEXT1

PRINT CSTR TEXT2

PRINT CSTR TEXT3

STOP
TEXT1: CDATA "HELLO WORLD" , 0

TEXT2: CDATA "HOW ARE YOU?" , 0

TEXT3: CDATA "I AM FINE!" , 0

Again, note the NULL terminators after the ASCII text in the CDATA Scribble689commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA Scribble689command cannot be written too, but only read from.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

MYARRAY [0] = "H"

' Load the first 5 bytes of the array

MYARRAY [1] = "E"

' With the data to send

MYARRAY [2] = "L"

MYARRAY [3] = "L"

MYARRAY [4] = "O"

PRINT STR MYARRAY \5

' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE

' Create a 10-byte array.

STR MYARRAY = "HELLO"

' Load the first 5 bytes of the array

PRINT STR MYARRAY \5

' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the string is now constructed using STR as a command instead of a modifier.

Declares

There are six DECLARES Scribble869for use with an alphanumeric LCD and PRINT: -

DECLARE LCD_TYPE 1 or 0 , GRAPHIC or ALPHA

Inform the compiler as to the type of LCD that the PRINT command will output to. If GRAPHIC or 1 is chosen then any output by the PRINT command will be directed to a graphic LCD based on the Samsung S6B0108 chipset. A value of 0 or ALPHA, or if the DECLARE is not issued will target the standard alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as PLOTScribble1729, UNPLOT, LCDREADScribble1449, and LCDWRITEScribble1469.

DECLARE LCD_DTPIN PORT . PIN

Assigns the Port and Pins that the LCD's DT (data) lines will attach to.

The LCD may be connected to the PICmicrotm using either a 4-bit bus or an 8-bit bus. If an 8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either the bottom 4 or top 4 bits of one port. For example: -

DECLARE LCD_DTPIN PORTB.4
' Used for 4-line interface.

DECLARE LCD_DTPIN PORTB.0
' Used for 8-line interface.

In the previous examples, PORTB is only a personal preference. The LCD's DT lines may be attached to any valid port on the PICmicrotm. If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTB.4, which assumes a 4-line interface.

DECLARE LCD_ENPIN PORT . PIN

Assigns the Port and Pin that the LCD's EN line will attach to.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTB.2.

DECLARE LCD_RSPIN PORT . PIN

Assigns the Port and Pins that the LCD's RS line will attach to.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTB.3.

DECLARE LCD_INTERFACE 4 or 8

Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the DECLARE Scribble869is not used in the program, then the default interface is a 4-line type.

DECLARE LCD_LINES 1 , 2 , or 4

Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. However, there are 4-line types as well. Simply place the number of lines that the particular LCD has, into the declare.

If the DECLARE Scribble869is not used in the program, then the default number of lines is 2.

Notes

If no modifier precedes an item in a PRINT command, then the characters value is sent to the LCD. This is useful for sending control codes to the LCD. For example: -

PRINT $FE , 128

Will move the cursor to line 1, position 1 (HOME).

Below is a list of useful control commands: -

Control Command
Operation

$FE, 1

Clear display

$FE, 2

Return home (beginning of first line)

$FE, $0C

Cursor off

$FE, $0E

Underline cursor on

$FE, $0F

Blinking cursor on

$FE, $10

Move cursor left one position

$FE, $14

Move cursor right one position

$FE, $C0

Move cursor to beginning of second line

$FE, $94

Move cursor to beginning of third line

$FE, $D4

Move cursor to beginning of fourth line

Note that if the command for clearing the LCD is used, then a small delay should follow it: -

[image: image102.wmf]To

I/O Pin

R

C

220

W

+5 Volts

PRINT $FE , 1 : DELAYMS 30

The above diagram shows the default connections for an alphanumeric LCD module. In this instance, connected to the 16F84 PICmicrotm.

Using a Graphic LCD

Once a graphic LCD has been chosen using the DECLARE LCD_TYPE directive, all PRINT outputs will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics LCD. Most of the above modifiers still work in the expected manner, however, the AT modifier now starts at Ypos 0 and Xpos 0, where values 0,0 will be the top left corner of the LCD.

There are also four new modifiers. These are: -

FONT 0 to n

Choose the nth font, if available

INVERSE 0-1
Invert the characters sent to the LCD

OR 0-1

OR the new character with the original

XOR 0-1

XOR the new character with the original

Once one of the four new modifiers has been enabled, all future PRINT commands will use that particular feature until the modifier is disabled. For example: -

' Enable inverted characters from this point

PRINT AT 0 , 0 , INVERSE 1 , "HELLO WORLD"

PRINT AT 1 , 0 , "STILL INVERTED"

' Now use normal characters

PRINT AT 2 , 0 , INVERSE 0 , "NORMAL CHARACTERS"

If no modifiers are present, then the character's ASCII representation will be displayed: -

' Print characters A and B

PRINT AT 0 , 0 , 65 , 66

Declares
There are nine declares Scribble869associated with a graphic LCD.

DECLARE LCD_DTPORT PORT

Assign the port that will output the 8-bit data to the graphic LCD.

If the DECLARE Scribble869is not used, then the default port is PORTD.

DECLARE LCD_RWPIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PortE.0.

DECLARE LCD_CS1PIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTC.0.

DECLARE LCD_CS2PIN PORT . PIN

Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTC.2.

Note

Along with the new declares, two of the existing LCD declares must also be used. Namely, RS_PIN and EN_PIN.

DECLARE INTERNAL_FONT ON - OFF, 1 or 0

The graphic LCDs that are compatible with PROTON+ are non-intelligent types, therefore, a separate character set is required. This may be in one of two places, either externally, in an I2C eeprom, or internally in a CDATA table.

If the DECLARE Scribble869is omitted from the program, then an external font is the default setting.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL pins (as dictated by DECLARE SDA and DECLARE SCL).

If an internal font is chosen, it must be on a PICmicrotm device that has self modifying code features, such as the 16F87X range.

The CDATA Scribble689table that contains the font must have a label, named FONT: preceding it. For example: -

FONT:- { data for characters 0 to 64 }

CDATA $7E , $11 , $11 , $11 , $7E , $0' Chr 65 "A"

CDATA $7F , $49 , $49 , $49 , $36 , $0' Chr 66 "B"

{ rest of font table }

Notice the dash after the font's label, this disables any bank switching code that may otherwise disturb the location in memory of the CDATA Scribble689table.

The font table may be anywhere in memory, however, it is best placed after the main program code.

The font is built up of an 8x6 cell, with only 5 of the 6 rows, and 7 of the 8 columns being used for alphanumeric characters. See the diagram below.

[image: image103.wmf]C1

1uF

5 Volts

V+

V+

VCC

GND

MAX232

10

9

12

11

14

15

13

8

7

6

5

4

3

2

1

16

C1+

C1-

C2+

C2-

V-

T1in

T2in

R1out

R2out

T1out

T2out

R1in

R2in

C2

1uF

C3

1uF

C4

1uF

6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

0V

From PIC

Serial Output

To PIC

Serial Input

C5

1uF

To PC

Serial Port

If a graphic character is chosen (chr 0 to 31), the whole of the 8x6 cell is used. In this way, large fonts and graphics may be easily constructed.

[image: image104.wmf]6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

From PIC

Serial Output

To PIC

Serial Input

To PC's

Serial Port

To PIC

Circuit's GND

R1

1K

R2

1K

The character set itself is 128 characters long (0 -127). Which means that all the ASCII characters are present, including $, %, &, # etc.

There are two programs on the compiler's CDROM, that are for use with internal and external fonts. INT_FONT.BAS, contains a CDATA Scribble689table that may be cut and pasted into your own program if an internal font is chosen. EXT_FONT.BAS, writes the character set to a 24C32 I2C eeprom for use with an external font. Both programs are fully commented.

DECLARE FONT_ADDR 0 to 7

Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is used, it may be on any one of 8 eeproms attached to the I2C bus. So as not to interfere with any other eeproms attached, the slave address of the eeprom carrying the font code may be chosen.

If the DECLARE Scribble869is omitted from the program, then address 0 is the default slave address of the font eeprom.

DECLARE GLCD_CS_INVERT ON - OFF, 1 or 0

Some graphic LCD types have inverters on the CS lines. Which means that the LCD displays left-hand data on the right side, and vice-versa. The GLCD_CS_INVERT DECLARE, adjusts the library LCD handling subroutines to take this into account.

DECLARE GLCD_STROBE_DELAY 0 to 65535 microseconds (us).

If a noisy circuit layout is unavoidable when using a graphic LCD, then the above DECLARE may be used. This will create a delay between the ENABLE line being strobed. This can ease random data being produced on the LCD's screen. See below for more details on circuit layout for graphic LCDs.

If the DECLARE Scribble869is not used in the program, then no delay is created between strobes, and the LCD is accessed at full efficiency.

DECLARE GLCD_READ_DELAY 0 to 65535 microseconds (us).
Create a delay of n microseconds between strobing the EN line of the graphic LCD, when reading from the GLCD. This can help noisy, or badly decoupled circuits overcome random bits being examined. The default if the DECLARE Scribble869is not used in the BASIC program is a delay of 0.

Important
Because of the complexity involved with interfacing to the graphic LCD, six of the eight stack levels available on the 14-bit core devices, are used when the PRINT command is issued with an external font. Therefore, be aware that if PRINT is used within a subroutine, you must limit the amount of subroutine nesting that may take place.

If an internal font is implemented, then only four stack levels are used.

If the default setting of PORTE is used for the LCD's CS1, CS2, and RW pin connections, then these pins must be set to digital by issuing the following line of code near the beginning of the program: -

ADCON1 = 7

' Set PORTA and PORTE to all digital

or alternatively, you may use the directive: -

ALL_DIGITAL = TRUE
You will need to refer to the PICmicro's datasheet for ADCON1 settings if PORTA is to be used for analogue inputs.

[image: image105.wmf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4

22pF

C1

10uF

C2

0.1uF

R1

4.7k

5 Volts

C3

22pF

4MHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

13

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C8

22pF

C5

10uF

C6

0.1uF

R3

4.7k

5 Volts

C7

22pF

4MHz

Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

R2

10k

SENDER

RECEIVER

TO

LCD MODULE

The diagram above shows the connections required for an external font. The eeprom has a slave address of 0. If an internal font is used, then the eeprom may be omitted.

 Scribble2789
PULSIN

Syntax

Variable = PULSIN Pin , State

Overview

Change the specified pin to input and measure an input pulse.

Operators

Variable is a user defined variable. This may be a word variable with a range of 1 to 65535, or a byte variable with a range of 1 to 255.

Pin is a Port.Pin constant that specifies the I/O pin to use.

State is a constant (0 or 1) or name HIGH - LOW that specifies which edge must occur before beginning the measurement.

Example

DIM VAR1 AS BYTE

Loop:

VAR1 = PULSIN PORTB.0 , 1
' Measure a pulse on pin 0 of PORTB.

PRINT DEC VAR1 , " "

' Display the reading

GOTO Loop

' Repeat the process.

Notes

PULSIN acts as a fast clock that is triggered by a change in state (0 or 1) on the specified pin. When the state on the pin changes to the state specified, the clock starts counting. When the state on the pin changes again, the clock stops. If the state of the pin doesn't change (even if it is already in the state specified in the PULSIN instruction), the clock won't trigger. PULSIN waits a maximum of 0.65535 seconds for a trigger, then returns with 0 in variable.

The variable can be either a WORDScribble2729 or a BYTEScribble2709 . If the variable is a word, the value returned by PULSIN can range from 1 to 65535 units.

The units are dependant on the frequency of the crystal used. If a 4MHz crystal is used, then each unit is 10us, while a 20MHz crystal produces a unit length of 2us.

If the variable is a byte and the crystal is 4MHz, the value returned can range from 1 to 255 units of 10µs. Internally, PULSIN always uses a 16-bit timer. When your program specifies a byte, PULSIN stores the lower 8 bits of the internal counter into it. Pulse widths longer than 2550µs will give false, low readings with a byte variable. For example, a 2560µs pulse returns a reading of 256 with a word variable and 0 with a byte variable.

See also :
COUNTERScribble769, PULSOUT, RCIN.Scribble1829
PULSOUT

Syntax

PULSOUT Pin , Period, { Initial State }

Overview

Generate a pulse on Pin of specified Period. The pulse is generated by toggling the pin twice, thus the initial state of the pin determines the polarity of the pulse. Or alternatively, the initial state may be set by using HIGH-LOW or 1-0 after the Period. Pin is automatically made an output.

Operators

Pin is a Port.Pin constant that specifies the I/O pin to use.

Period can be a constant of user defined variable. See notes.

State is an optional constant (0 or 1) or name HIGH - LOW that specifies the state of the outgoing pulse.

Example

' Send a high pulse 1ms long (at 4MHz) to PORTB Pin5

LOW PORTB.5

PULSOUT PORTB.5 , 100

' Send a high pulse 1ms long (at 4MHz) to PORTB Pin5

PULSOUT PORTB.5 , 100 , HIGH

Notes

The resolution of PULSOUT is dependent upon the oscillator frequency. If a 4MHz oscillator is used, the Period of the generated pulse will be in 10us increments. If a 20MHz oscillator is used, Period will have a 2us resolution. Declaring an XTAL value has no effect on PULSOUT. The resolution always changes with the actual oscillator speed.
See also :
COUNTER Scribble769, PULSIN, RCIN. Scribble1809
PUSH

Syntax

PUSH Variable, {Variable, Variable etc}
Overview

Place a single variable or multiple variables onto a software stack.

If the PUSH command is issued without a following variable, it will implement the assembler mnemonic PUSH, which manipulates the PICmicro's call stack.

Operators

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, FLOAT, or STRING, or constant value.
The amount of bytes pushed on to the stack varies with the variable type used. The list below shows how many bytes are pushed for a particular variable type, and their order.

BIT

1 Byte is pushed that holds the condition of the bit.

BYTE

1 Byte is pushed.

BYTE_ARRAY
1 Byte is pushed.

WORD

2 Bytes are pushed. High Byte then Low Byte.

WORD_ARRAY
2 Bytes are pushed. High Byte then Low Byte.

DWORD

4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.

FLOAT

4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.

STRING

2 Bytes are pushed. High Byte then Low Byte that point to the start

address of the string in memory.

CONSTANT

Amount of bytes varies according to the value pushed. High Byte first.

Example 1
' Push two variables on to the stack then retrieve them

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 20

' Create a small stack capable of holding 20 bytes

DIM WRD as WORD

' Create a WORD variable

DIM DWD as DWORD

' Create a DWORD variable

WRD = 1234

' Load the WORD variable with a value

DWD = 567890

' Load the DWORD variable with a value

PUSH WRD , DWD

' Push the WORD variable then the DWORD variable

CLEAR WRD

' Clear the WORD variable

CLEAR DWD

' Clear the DWORD variable

POP DWD , WRD

' Pop the DWORD variable then the WORD variable

PRINT DEC WRD , " " , DEC DWD
' Display the variables as decimal

STOP
Example 2
' Push a STRING on to the stack then retrieve it

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 10

' Create a small stack capable of holding 10 bytes

DIM SOURCE_STRING as STRING * 20
' Create a STRING variable

DIM DEST_STRING as STRING * 20

' Create another STRING variable

SOURCE_STRING = "HELLO WORLD"
 ' Load the STRING variable with characters

PUSH SOURCE_STRING

' Push the STRING variable's address

POP DEST_STRING
' Pop the previously pushed STRING into DEST_STRING

PRINT DEST_STRING
' Display the string, which will be "HELLO WORLD"

STOP
Formatting a PUSH.
Each variable type, and more so, constant value, will push a different amount of bytes on to the stack. This can be a problem where values are concerned because it will not be known what size variable is required in order to POP the required amount of bytes from the stack. For example, the code below will push a constant value of 200 on to the stack, which requires 1 byte.

PUSH 200

All well and good, but what if the recipient popped variable is of a WORD or DWORD type.

POP WRD

Popping from the stack into a WORD variable will actually pull 2 bytes from the stack, however, the code above has only pushed on byte, so the stack will become out of phase with the values or variables previously pushed. This is not really a problem where variables are concerned, as each variable has a known byte count and the user knows if a WORD is pushed, a WORD should be popped.

The answer lies in using a formatter preceding the value or variable pushed, that will force the amount of bytes loaded on to the stack. The formatters are BYTE, WORD, DWORD or FLOAT.

The BYTE formatter will force any variable or value following it to push only 1 byte to the stack.

PUSH BYTE 12345

The WORD formatter will force any variable or value following it to push only 2 bytes to the stack: -

PUSH WORD 123

The DWORD formatter will force any variable or value following it to push only 4 bytes to the stack: -

PUSH DWORD 123

The FLOAT formatter will force any variable or value following it to push only 4 bytes to the stack, and will convert a constant value into the 4-byte floating point format: -

PUSH FLOAT 123

So for the PUSH of 200 code above, you would use: -

PUSH WORD 200

In order for it to be popped back into a WORD variable, because the push would be the high byte of 200, then the low byte.

If using the multiple variable PUSH, each parameter can have a different formatter preceding it.

PUSH WORD 200 , DWORD 1234 , FLOAT 1234

Note that if a floating point value is pushed, 4 bytes will be placed on the stack because this is a known format.

What is a STACK?

All microprocessors and most microcontrollers have access to a STACK, which is an area of RAM allocated for temporary data storage. But this is sadly lacking on a PICmicrotm device. However, the 16-bit core devices have an architecture and low-level mnemonics that allow a STACK to be created and used very efficiently.

A stack is first created in high memory by issuing the STACK_SIZE Declare.

STACK_SIZE = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any BASIC command, other than PUSH and POP. This means that it is a safe place for temporary variable storage.

Taking the above line of code as an example, we can examine what happens when a variable is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicrotm device is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0 to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for normal variable storage.

Pushing.
When a WORD variable is pushed onto the stack, the memory map would look like the diagram below: -

Top of Memory
|................Empty RAM.............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can see, the stack grows in an upward direction whenever a PUSH is implemented, which means it shrinks back down whenever a POP is implemented.

If we were to PUSH a DWORD variable on to the stack as well as the WORD variable, the stack memory would look like: -

Top of Memory
|................Empty RAM.............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of DWORD variable
| Address 1500

| Mid1 Byte address of DWORD variable| Address 1499

| Mid2 Byte address of DWORD variable| Address 1498

| High Byte address of DWORD variable| Address 1497

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

Popping.
When using the POP command, the same variable type that was pushed last must be popped first, or the stack will become out of phase and any variables that are subsequently popped will contain invalid data. For example, using the above analogy, we need to POP a DWORD variable first. The DWORD variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte, then lastly the High Byte. This will ensure that the same value pushed will be reconstructed correctly when placed into its recipient variable. After the POP, the stack memory map will look like: -

Top of Memory
|................Empty RAM............................| Address 1535

~

~

~

~

|................Empty RAM.............................| Address 1502

|................Empty RAM.............................| Address 1501

| Low Byte address of WORD variable
| Address 1496

Start of Stack
| High Byte address of WORD variable
| Address 1495

If a WORD variable was then popped, the stack will be empty, however, what if we popped a BYTE variable instead? the stack would contain the remnants of the WORD variable previously pushed. Now what if we popped a DWORD variable instead of the required WORD variable? the stack would underflow by two bytes and corrupt any variables using those address's . The compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that proper stack management is carried out. The same is true if the stack overflows. i.e. goes beyond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack. Incrementing because it grows upwards in memory. Last-In First-Out because the last variable pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's hardware register, and an underflow will simply overwrite RAM immediately below the Start of Stack memory. If a circular operating stack is required, it will need to be coded in the main BASIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incremented for every BYTE pushed, and decremented for every BYTE popped. Therefore checking the FSR2 registers in the BASIC program will give an indication of the stack's condition if required. This also means that the BASIC program cannot use the FSR2 register pair as part of its code, unless for manipulating the stack. Note that none of the compiler's commands, other than PUSH and POP, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only the stack pointer is moved. Therefore, the above diagrams are not quite true when they show empty RAM, but unless you have use of the remnants of the variable, it should be considered as empty, and will be overwritten by the next PUSH command.
See also :
POP, GOSUB, RETURN .

PWM

Syntax

PWM Pin , Duty , Cycles

Overview

Output pulse-width-modulation on a pin, then return the pin to input state.

Operators

Pin is a Port.Pin constant that specifies the I/O pin to use.

Duty is a variable, constant (0-255), or expression, which specifies the analogue level desired (0-5 volts).

Cycles is a variable or constant (0-255) which specifies the number of cycles to output. Larger capacitors require multiple cycles to fully charge. Cycle time is dependant on Xtal frequency. If a 4MHz crystal is used, then cycle takes approx 5 ms. If a 20MHz crystal is used, then cycle takes approx 1 ms.
Notes

PWM can be used to generate analogue voltages (0-5V) through a pin connected to a resistor and capacitor to ground; the resistor-capacitor junction is the analogue output (see circuit). Since the capacitor gradually discharges, PWM should be executed periodically to refresh the analogue voltage.

[image: image106.emf]R1

220

R2

220

PIN 1

PIN 2

PWM emits a burst of 1s and 0s whose ratio is proportional to the duty value you specify. If duty is 0, then the pin is continuously low (0); if duty is 255, then the pin is continuously high. For values in between, the proportion is duty/255. For example, if duty is 100, the ratio of 1s to 0s is 100/255 = 0.392, approximately 39 percent.

When such a burst is used to charge a capacitor arranged, the voltage across the capacitor is equal to:-

(duty/ 255) * 5.

So if duty is 100, the capacitor voltage is

(100/255) * 5 = 1.96 volts.

[image: image107.emf]RB7

VDD

RB6

RB5

RB4

RB3

RB2

RB1

RB0

RA4

RA3

RA2

RA1

RA0

MCLR

OSC1

OSC2

VSS

20

PIC16F876

C4

15pF

C2

0.1uF

C1

10uF

C3

15pF

Regulated 5 Volts

18

RC0

RC1

RC2

RC3

RC4

RC5

RC6

RC7

VSS

RA5

20MHz

Crystal

0v

R1

4.7k

17

16

15

14

13

12

11

28

27

26

25

24

23

22

21

7

6

5

4

3

2

19 8

10

9

1

To

Serial

LCD

VR1

100k

linear

This voltage will drop as the capacitor discharges through whatever load it is driving. The rate of discharge is proportional to the current drawn by the load; more current = faster discharge. You can reduce this effect in software by refreshing the capacitor's charge with frequent use of the PWM command. You can also buffer the output using an op-amp to greatly reduce the need for frequent PWM cycles.

See also :
HPWMScribble1299, PULSOUTScribble1829, SERVOScribble2089.
RANDOM

Syntax

Variable = RANDOM

or

RANDOM Variable
Overview

Generate a pseudo-randomisation on Variable. Variable should be a 16-bit variable.

Operators

Variable to store the result. The pseudo-random algorithm used has a working length of 1 to 65535 (only zero is not produced).

Example

VAR1 = RANDOM
' Get a random number into VAR1

RANDOM VAR1
' Get a random number into VAR1

See also:
SEEDScribble2039.
RCIN

Syntax

Variable = RCIN Pin , State

Overview

Count time while pin remains in state, usually used to measure the charge/ discharge time of resistor/capacitor (RC) circuit.

Operators

Pin is a Port.Pin constant that specifies the I/O pin to use. This pin will be placed into input mode and left in that state when the instruction finishes.

State is a variable or constant (1 or 0) that will end the Rcin period. Text, HIGH or LOW may also be used instead of 1 or 0.

Variable is a variable in which the time measurement will be stored.

Example

DIM Result AS WORD

' Word variable to hold result.

HIGH PORTB.0

' Discharge the cap

DELAYMS 1

' Wait for 1 ms.

Result = RCIN PORTB.0 , High

' Measure RC charge time.

PRINT DEC Result , " "

' Display the value on an LCD.

Notes

The resolution of RCIN is dependent upon the oscillator frequency. If a 4MHz oscillator is used, the time in state is returned in 10us increments. If a 20MHz oscillator is used, the time in state will have a 2us resolution. Declaring an XTAL value has no effect on RCIN. The resolution always changes with the actual oscillator speed. If the pin never changes state 0 is returned.

When RCIN executes, it starts a counter. The counter stops as soon as the specified pin is no longer in State (0 or 1). If pin is not in State when the instruction executes, RCIN will return 1 in Variable, since the instruction requires one timing cycle to discover this fact. If pin remains in State longer than 65535 timing cycles RCIN returns 0.

[image: image108.wmf]C2

0.1uF

R2

1k

To Audio

Amplifier

R1

1k

C1

0.1uF

From PIC

I/O pin

From PIC

I/O pin

Speaker

C1

10uF

C2

10uF

[image: image109.png]Compile and Program Options
‘Compler Programmer |

Default Programmer

[McroCode Loader

P | e ——

(o Jre)

 Figure A

 Figure B

The diagrams above show two suitable RC circuits for use with RCIN. The circuit in figure B is preferred, because the PICmicro’s logic threshold is approximately 1.5 volts. This means that the voltage seen by the pin will start at 5V then fall to 1.5V (a span of 3.5V) before RCIN stops. With the circuit in figure A, the voltage will start at 0V and rise to 1.5V (spanning only 1.5V) before RCIN stops.

For the same combination of R and C, the circuit shown in figure A will produce a higher result, and therefore more resolution than figure B.

Before RCIN executes, the capacitor must be put into the state specified in the RCIN command. For example, with figure B, the capacitor must be discharged until both plates (sides of the capacitor) are at 5V. It may seem strange that discharging the capacitor makes the input high, but you must remember that a capacitor is charged when there is a voltage difference between its plates. When both sides are at +5 Volts, the capacitor is considered discharged. Below is a typical sequence of instructions for the circuit in figure A.

DIM Result AS WORD

' Word variable to hold result.

HIGH PORTB.0

' Discharge the cap

DELAYMS 1

' Wait for 1 ms.

Result = RCIN PORTB.0 , High
' Measure RC charge time.

PRINT DEC Result , “ “

' Display the value on an LCD.
Using RCIN is very straightforward, except for one detail: For a given R and C, what value will RCIN return? It’s actually rather easy to calculate, based on a value called the RC time constant, or tau () for short. Tau represents the time required for a given RC combination to charge or discharge by 63 percent of the total change in voltage that they will undergo. More importantly, the value  is used in the generalized RC timing calculation. Tau’s formula is just R multiplied by C: -

 = R x C

The general RC timing formula uses  to tell us the time required for an RC circuit to change from one voltage to another: -

time = - * (ln (Vfinal / Vinitial))

In this formula ln is the natural logarithm. Assume we’re interested in a 10k resistor and 0.1µF cap. Calculate : -

 = (10 x 103) x (0.1 x 10-6) = 1 x 10-3
The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time required for this RC circuit to go from 5V to 1.5V (as in figure B):

Time = -1 x 10-3* (ln(5.0v / 1.5v)) = 1.204 x 10-3
Using a 20MHz crystal, the unit of time is 2µs, that time (1.204 x 10-3) works out to 602 units. With a 10k resistor and 0.1µF capacitor, RCIN would return a value of approximately 600. Since Vinitial and Vfinal don't change, we can use a simplified rule of thumb to estimate RCIN results for circuits similar to figure A: -

RCIN units = 600 x R (in k) x C (in µF)

Another useful rule of thumb can help calculate how long to charge/discharge the capacitor before RCIN. In the example shown, that’s the purpose of the HIGH and DELAYMS commands. A given RC charges or discharges 98 percent of the way in 4 time constants (4 x R x C).

In both circuits, the charge/discharge current passes through a 220 series resistor and the capacitor. So if the capacitor were 0.1µF, the minimum charge/discharge time should be: -

Charge time = 4 x 220 x (0.1 x 10-6) = 88 x 10-6

So it takes only 88µs for the cap to charge/discharge, which means that the 1ms charge/discharge time of the example is more than adequate.

You may be wondering why the 220 resistor is necessary at all. Consider what would happen if resistor R in figure A were a pot, and was adjusted to 0. When the I/O pin went high to discharge the cap, it would see a short direct to ground. The 220 series resistor would limit the short circuit current to 5V/220 = 23mA and protect the PICmicrotm from any possible damage.

See also :
ADINScribble550, COUNTER, POT, PULSIN. Scribble1769
READ

Syntax

READ Variable

Overview

READ the next value from a DATA table and place into variable
Operators

Variable is a user defined variable.

Example 1

DIM VAR1 AS BYTE

DATA 5 , 8 , "fred" , 12

RESTORE

READ VAR1
' VAR1 will now contain the value 5

READ VAR1
' VAR1 will now contain the value 8

RESTORE 3

' Pointer now placed at location 4 in our data table i.e. "r"

READ VAR1
' VAR1 will now contain the value 114 i.e. the 'r' character in decimal

The data table is defined with the values 5,8,102,114,101,100,12 as "fred" equates to f:102,r:114,e:101,d:100 in decimal. The table pointer is immediately restored to the beginning of the table. This is not always required but as a general rule, it is a good idea to prevent table reading from overflowing.

The first READ VAR1 takes the first item of data from the table and increments the table pointer. The next READ VAR1 therefore takes the second item of data.

RESTORE Scribble19693 moves the table pointer to the fourth location in the table, in this case where the letter 'r' is. READ VAR1 now retrieves the decimal equivalent of 'r' which is 114.

Example 2

DEVICE 16F877

DIM CHAR AS BYTE

DIM LOOP AS BYTE

DATA "HELLO WORLD"

' Create a string of text in code memory

CLS

FOR LOOP = 0 TO 9

' Create a loop of 10

RESTORE LOOP

' Point to position within the DATA statement

READ CHAR

' Read data into CHAR

PRINT CHAR

' Display the value read

NEXT

STOP
The program above reads and displays 10 values from the accompanying DATA statement. Resulting in "HELLO WORL" being displayed.

DATA is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point values. The example below illustrates this: -

DEVICE = 16F628

DIM VAR1 AS BYTE

DIM WRD1 AS WORD

DIM DWD1 AS DWORD

DIM FLT1 AS FLOAT

DATA 123 , 1234 , 123456 , 123.456

CLS

RESTORE

' Point to first location within DATA

READ VAR1

' Read the 8-bit value

PRINT DEC VAR1," "

READ WRD1

' Read the 16-bit value

PRINT DEC WRD1

READ DWD1

' Read the 32-bit value

PRINT AT 2,1, DEC DWD1," "

READ FLT1

' Read the floating point value

PRINT DEC FLT1

STOP
Floating point examples.
14-bit core example

' 14-bit read floating point data from a table and display the results

DEVICE = 16F877

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DATA 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 , 0.005

CLS

' Clear the LCD

RESTORE

' Point to first location within DATA

REPEAT

' Create a loop

READ FLT

' Read the data from the DATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
16-bit core example

' 16-bit read floating point data from a table and display the results

DEVICE = 18F452

DIM FLT AS FLOAT

' Declare a FLOATING POINT variable

DATA 3.14 , 65535.123 , 1234.5678 , -1243.456 , -3.14 , 998999.12 , 0.005

CLS

' Clear the LCD

RESTORE

' Point to first location within DATA

REPEAT

' Create a loop

READ FLT

' Read the data from the DATA table

PRINT AT 1 , 1 , DEC3 FLT

' Display the data read

DELAYMS 1000

' Slow things down

UNTIL FLT = 0.005

' Stop when 0.005 is read

STOP
Notes

If a FLOATScribble2769, DWORDScribble2749, or WORDScribble2729 size variable is used in the READ command, then a 32, or 16-bit (respectively) value is read from the data table. Consequently, if a BYTEScribble2709 size variable is used, then 8-bits are read. BITScribble2689 sized variables also read 8-bits from the table, but any value greater than 0 is treated as a 1.

Attempts to read past the end of the table will result in errors and undetermined results.

See also :
CDATAScribble689, CREADScribble789, CWRITEScribble829, DATAScribble849, LDATAScribble1474, LREADScribble1476, LOOKUPScribble1529, RESTORE. Scribble1969
REM

Syntax

REM Comments or' Comments or ; Comments

Overview

Insert reminders in your BASIC source code. These lines are not compiled and are used merely to provide information to the person viewing the source.

Operators

Comments can be any alphanumeric text.

Example

DIM A , B , C

A = 12 : B = 4

REM Now add them together

C = A + B

' Now subtract them

C = A - B' They are now subtracted

Notes

Semicolon ; single quote' and REM are the same.

Remarks in the assembler listing are turned off by default. To turn them on, use the following command near the top of your program: -

REMARKS ON
To turn off the remarks, use OFF instead of ON.
REPEAT...UNTIL

Syntax

REPEAT Condition

Instructions

Instructions

UNTIL Condition

or

REPEAT { Instructions : } UNTIL Condition

Overview

Execute a block of instructions until a condition is true.

Example

VAR1 = 1

REPEAT

PRINT DEC VAR1 , " "

DELAYMS 200

INC VAR1

UNTIL VAR1 > 10

or

REPEAT HIGH LED : UNTIL PORTA.0 = 1
' Wait for a Port change

Notes

The REPEAT-UNTIL loop differs from the WHILE-WEND type in that, the REPEAT loop will carry out the instructions within the loop at least once, then continuously until the condition is true, but the WHILE loop only carries out the instructions if the condition is true.

The REPEAT-UNTIL loop is an ideal replacement to a FOR-NEXTScribble1089 loop, and actually takes less code space, thus performing the loop faster.

Two commands have been added especially for a REPEAT loop, these are INC and DEC.

INC. Increment a variable i.e. VAR1 = VAR1 + 1

DEC. Decrement a variable i.e. VAR1 = VAR1 - 1

The above example shows the equivalent to the FOR-NEXTScribble1089 loop: -

FOR VAR1 = 1 TO 10 : NEXT

See also :
WHILE...WENDScribble2309, FOR...NEXT...STEPScribble1089.
RESTORE

Syntax

RESTORE Value

Overview

Moves the pointer in a DATA Scribble849table to the position specified by value

Operators

Value can be a constant, variable, or expression.

Example

DIM VAR1

DATA 5 , 8 , "fred" , 12

RESTORE

READ VAR1

' VAR1 will now contain the value 5

READ VAR1

' VAR1 will now contain the value 8

RESTORE 3

' Pointer now placed at location 4 in our data table i.e. "r"

READ VAR1

'VAR1 will now contain the value 114 i.e. the 'r' character in decimal

The data table is defined with the values 5,8,102,114,101,100,12 as "fred" equates to f:102,r:114,e:101,d:100 in decimal. The table pointer is immediately restored to the beginning of the table. This is not always required but as a general rule, it is a good idea to prevent table reading from overflowing.

The first READ Scribble1909VAR1 takes the first item of data from the table and increments the table pointer. The next READ Scribble1909VAR1 therefore takes the second item of data.

RESTORE 3 moves the table pointer to the fourth location (first location is pointer position 0) in the table - in this case where the letter 'r' is. READ Scribble1909VAR1 now retrieves the decimal equivalent of 'r' which is 114.

See also : CDATAScribble689, CREADScribble789, CWRITEScribble829, DATAScribble849, LOOKUPScribble1529, READ.Scribble1909
RESUME

When the RESUME statement is encountered at the end of the BASIC interrupt handler, it sets the GIE Scribble2666 bit to re-enable interrupts and returns to where the program was before the interrupt occurred. DISABLE Scribble545stops the compiler from inserting the Call to the interrupt checker before each command. This allows sections of code to execute without the possibility of being interrupted. ENABLE Scribble547allows the insertion to continue.

A DISABLE Scribble545should be placed before the interrupt handler so that it will not be restarted every time the GIE Scribble2666 bit is checked. If it is desired to turn off interrupts for some reason after ON INTERRUPTScribble540 is encountered, you must not turn off the GIE Scribble2666 bit. Turning off this bit informs the compiler an interrupt has happened and it will execute the interrupt handler forever.

Instead use: -

INTCON = $80

This disables all the individual interrupts but leaves the Global Interrupt Enable bit set.

A final note about interrupts in BASIC is if the program uses the command structure: -

Fin:
GOTO Fin

You must remember the interrupt flag is checked before each instruction. It immediately jumps to label Fin with no interrupt check. Other commands must be placed in the loop for the interrupt check to happen: -

Fin:
DELAYMS 1

GOTO Fin

See also :
SOFTWARE INTERRUPTS in BASICScribble540, DISABLEScribble545, ENABLE.

RETURN

Syntax

RETURN

or

RETURN Variable
Availability

All devices. But a parameter return is only supported with 16-bit core devices.

Overview

Return from a subroutine.

If using a 16-bit core device, a parameter can be pushed onto a software stack before the return mnemonic is implemented.

Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD, WORD_ARRAY, DWORD, FLOAT, or STRING, or constant value, that will be pushed onto the stack before the subroutine is exited.

Example
' Call a subroutine with parameters

DEVICE = 18F452

' Stack only suitable for 16-bit core devices

STACK_SIZE = 20

' Create a small stack capable of holding 20 bytes

DIM WRD1 as WORD

' Create a WORD variable

DIM WRD2 as WORD

' Create another WORD variable

DIM RECEIPT as WORD

' Create a variable to hold result

WRD1 = 1234

' Load the WORD variable with a value

WRD2 = 567

' Load the other WORD variable with a value

' Call the subroutine and return a value

GOSUB ADD_THEM [WRD1 , WRD2] , RECEIPT

PRINT DEC RECEIPT

' Display the result as decimal

STOP
' Subroutine starts here. Add the two parameters passed and return the result

ADD_THEM:

DIM ADD_WRD1 as WORD

' Create two uniquely named variables

DIM ADD_WRD2 as WORD

POP ADD_WRD2

' Pop the last variable pushed

POP ADD_WRD1

' Pop the first variable pushed

ADD_WRD1 = ADD_WRD1 + ADD_WRD2

 ' Add the values together

RETURN ADD_WRD1

' Return the result of the addition

In reality, what's happening with the RETURN in the above program is simple, if we break it into its constituent events: -

PUSH ADD_WRD1

RETURN
Notes
The same rules apply for the variable returned as they do for POP, which is after all, what is happening when a variable is returned.

RETURN resumes execution at the statement following the GOSUB which called the subroutine.

See also :
CALL, GOSUB, PUSH, POP .
RIGHT$

Syntax

Destination String = RIGHT$ (Source String , Amount of characters)
Overview

Extract n amount of characters from the right of a source string and copy them into a destination string.

Overview

Destination String can only be a STRING variable, and should be large enough to hold the correct amount of characters extracted from the Source String.

Source String can be a STRING variable, or a Quoted String of Characters. See below for more variable types that can be used for Source String.

Amount of characters can be any valid variable type, expression or constant value, that signifies the amount of characters to extract from the right of the Source String. Values start at 1 for the rightmost part of the string and should not exceed 255 which is the maximum allowable length of a STRING variable.

Example 1
' Copy 5 characters from the right of SOURCE_STRING into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Copy 5 characters from the source string into the destination string

DEST_STRING = RIGHT$ (SOURCE_STRING , 5)

PRINT DEST_STRING

' Display the result, which will be "WORLD"

STOP
Example 2
' Copy 5 characters from the right of a Quoted Character String into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

' Copy 5 characters from the quoted string into the destination string

DEST_STRING = RIGHT$ ("HELLO WORLD" , 5)

PRINT DEST_STRING

' Display the result, which will be "WORLD"

STOP
The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM.

Example 3
' Copy 5 characters from the right of SOURCE_STRING into DEST_STRING using a pointer to

‘ SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

' Copy 5 characters from the source string into the destination string

DEST_STRING = RIGHT$ (STRING_ADDR , 5)

PRINT DEST_STRING

' Display the result, which will be "WORLD"

STOP
A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 4
' Copy 5 characters from the right of a CDATA table into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

' Copy 5 characters from label SOURCE into the destination string

DEST_STRING = RIGHT$ (SOURCE , 5)

PRINT DEST_STRING

' Display the result, which will be "WORLD"

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "HELLO WORLD" , 0

See also :
Creating and using Strings, Creating and using VIRTUAL STRINGS with

CDATA, CDATA, LEN, LEFT$, MID$, STR$, TOLOWER, TOUPPER

VARPTR .
RSIN

Syntax

Variable = RSIN , { Timeout Label }

 or

RSIN { Timeout Label }, Modifier..Variable { , Modifier.. Variable...}

Overview

Receive one or more bytes from a predetermined pin at a predetermined baud rate in standard asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically made an input.

Operators

Modifiers may be one of the serial data modifiers explained below.
Variable can be any user defined variable.

An optional Timeout Label may be included to allow the program to continue if a character is not received within a certain amount of time. Timeout is specified in units of 1 millisecond and is specified by using a DECLARE Scribble869directive.

Example

RSIN_TIMEOUT = 2000

' Timeout after 2 seconds

DIM VAR1 AS BYTE

DIM WRD AS WORD

VAR1 = RSIN , {Label}

RSIN VAR1 , WRD

RSIN { Label } , VAR1 , WRD

Label: { do something when timed out }

Declares
There are four DECLARES Scribble869for use with RSIN. These are : -

DECLARE RSIN_PIN PORT . PIN

Assigns the Port and Pin that will be used to input serial data by the RSIN command. This may be any valid port on the PICmicrotm.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTB.1.

DECLARE RSIN_MODE INVERTED , TRUE or 1 , 0

Sets the serial mode for the data received by RSIN. This may be inverted or true. Alternatively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the DECLARE Scribble869is not used in the program, then the default mode is INVERTED.

DECLARE SERIAL_BAUD 0 to 65535 bps (baud)

Informs the RSIN and RSOUT Scribble2029routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an increase in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the DECLARE Scribble869is not used in the program, then the default baud is 9600.

DECLARE RSIN_TIMEOUT 0 to 65535 milliseconds (ms)

Sets the time, in milliseconds, that RSIN will wait for a start bit to occur.

RSIN waits in a tight loop for the presence of a start bit. If no timeout value is used, then it will wait forever. The RSIN command has the option of jumping out of the loop if no start bit is detected within the time allocated by timeout.

If the DECLARE Scribble869is not used in the program, then the default timeout value is 10000ms or 10 seconds.

RSIN MODIFIERS.

As we already know, RSIN will wait for and receive a single byte of data, and store it in a variable . If the PICmicrotm were connected to a PC running a terminal program and the user pressed the "A" key on the keyboard, after the RSIN command executed, the variable would contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time you press a character on the keyboard, the computer receives the ASCII value of that character. It is up to the receiving side to interpret the values as necessary. In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII code 49.

The RSIN command provides a modifier, called the decimal modifier, which will interpret this for us. Look at the following code: -

DIM SERDATA AS BYTE

RSIN DEC SERDATA

Notice the decimal modifier in the RSIN command that appears just to the left of the SERDATA variable. This tells RSIN to convert incoming text representing decimal numbers into true decimal form and store the result in SERDATA. If the user running the terminal software pressed the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be stored in the variable SERDATA, allowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that represent decimal numbers are the characters "0" through "9". Once the RSIN command is asked to use the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the first decimal character. Once it finds the first decimal character, it will continue looking for more (accumulating the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it will not finish until it finds at least one decimal character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code example as above): -

Serial input:
"ABC"

Result: The program halts at the RSIN command, continuously waiting for decimal text.

Serial input:
"123" (with no characters following it)

Result: The program halts at the RSIN command. It recognises the characters "1", "2" and "3" as the number one hundred twenty three, but since no characters follow the "3", it waits continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input:
"123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the program knows the entire number is 123, and stores this value in SERDATA. The RSIN command then ends, allowing the next line of code to run.

Serial input:
"123A"

Result: Same as the example above. The "A" character, just like the space character, is the first non-decimal text after the number 123, indicating to the program that it has received the entire number.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not decimal text), the characters "123" are evaluated to be the
number 123 and the following character, "E", indicates to the program that it has received the entire number.

The final result of the DEC modifier is limited to 16 bits (up to the value 65535). If a value larger than this is received by the decimal modifier, the end result will be incorrect because the result rolled-over the maximum 16-bit value. Therefore, RSIN modifiers may not (at this time) be used to load DWORDScribble2749 (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with RSIN See below for a list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric character arrives, or in the case of the fixed length modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text arrives, even if the resulting value exceeds the size of the variable. After RSIN, a BYTEScribble2709 variable will contain the lowest 8 bits of the value entered and a WORDScribble2729 (16-bits) would contain the lowest 16 bits. You can control this to some degree by using a modifier that specifies the number of digits, such as DEC2, which would accept values only in the range of 0 to 99.

Conversion Modifier
Type of Number Numeric
Characters Accepted

DEC{1..10}

Decimal, optionally limited

0 through 9

to 1 - 10 digits

HEX{1..8}

Hexadecimal, optionally limited

0 through 9,

 to 1 - 8 digits

A through F

BIN{1..32}

Binary, optionally limited

 0, 1

 to 1 - 32 digits

A variable preceded by BIN will receive the ASCII representation of its binary value.

For example, if BIN VAR1 is specified and "1000" is received, VAR1 will be set to 8.

A variable preceded by DEC will receive the ASCII representation of its decimal value.

For example, if DEC VAR1 is specified and "123" is received, VAR1 will be set to 123.

A variable preceded by HEX will receive the ASCII representation of its hexadecimal value.

For example, if HEX VAR1 is specified and "FE" is received, VAR1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.

For example, SKIP 4 will skip 4 characters.

The RSIN command can be configured to wait for a specified sequence of characters before it retrieves any additional input. For example, suppose a device attached to the PICmicrotm is known to send many different sequences of data, but the only data you wish to observe happens to appear right after the unique characters, "XYZ". A modifier named WAIT can be used for this purpose: -

RSIN WAIT("XYZ") , SERDATA

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives the next data byte and places it into variable SERDATA.

STR modifier.
The RSIN command also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SERSTRING: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

RSIN STR SerString

' Fill the array with received data.

PRINT STR SerString

' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array's name, which will only receive characters until the specified length is reached. For example: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

RSIN STR SerString\5

' Fill the first 5-bytes of the array

PRINT STR SerString\5

' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the guidelines below when developing a project using the RSIN and RSOUT Scribble2029commands may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the PICmicrotm for a given oscillator frequency. Misunderstanding the timing constraints is the source of most problems with code that communicate serially. If the serial communication in your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause strange problems in communication, or no communication at all. Make sure to connect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the RSIN / RSOUT commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polarity error.

If receiving data from another device that is not a PICmicrotm, try to use baud rates of 9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicrotm, and the fact that the RSIN command offers no hardware receive buffer for serial communication, received data may sometimes be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not arrays) will also increase the chance that the PICmicrotm will receive the data properly.

Notes

RSIN is oscillator independent as long as the crystal frequency is declared at the top of the program. If no XTAL DECLARE Scribble869is used, then RSIN defaults to a 4MHz crystal frequency for its bit timing.

See also :
DECLAREScribble869, RSOUTScribble2029, SERINScribble2049, SEROUTScribble2069, HRSINScribble1309, HRSOUTScribble1329, HSERINScribble1339, HSEROUTScribble1344.
RSOUT

Syntax

RSOUT Item { , Item... }

Overview

Send one or more Items to a predetermined pin at a predetermined baud rate in standard asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically made an output.

Operators

Item may be a constant, variable, expression, or string list.

There are no operators as such, instead there are modifiers. For example, if an at sign'@' precedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

Modifier

Operation

AT ypos,xpos
Position the cursor on a serial LCD

CLS

Clear a serial LCD (also creates a 30ms delay)

BIN{1..32}

Send binary digits

DEC{1..10}

Send decimal digits

HEX{1..8}

Send hexadecimal digits

SBIN{1..32}

Send signed binary digits

SDEC{1..10}
Send signed decimal digits

SHEX{1..8}

Send signed hexadecimal digits

IBIN{1..32}

Send binary digits with a preceding '%' identifier

IDEC{1..10}

Send decimal digits with a preceding '#' identifier

IHEX{1..8}

Send hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Send signed binary digits with a preceding '%' identifier

ISDEC{1..10}
Send signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Send signed hexadecimal digits with a preceding '$' identifier

REP c\n

Send character c repeated n times

STR array\n

Send all or part of an array

CSTR cdata

Send string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine how many remainder digits are send. i.e. numbers after the decimal point.

DIM FLT AS FLOAT

FLT = 3.145

RSOUT DEC2 FLT

' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal point.

DIM FLT AS FLOAT

FLT = 3.1456

RSOUT DEC FLT

' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT = -3.1456

RSOUT DEC FLT

' Send 3 values after the decimal point

The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text "HELLO WORLD" on line 1, position 1, the code would be: -

RSOUT AT 1 , 1 , "HELLO WORLD"

Example 1

DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM DWD AS DWORD

RSOUT "Hello World"

' Display the text "Hello World"

RSOUT "VAR1= " , DEC VAR1
' Display the decimal value of VAR1

RSOUT "VAR1= " , HEX VAR1
' Display the hexadecimal value of VAR1

RSOUT "VAR1= " , BIN VAR1
' Display the binary value of VAR1

RSOUT "VAR1= " , @VAR1
' Display the decimal value of VAR1

RSOUT "DWD= " , HEX6 DWD
' Display 6 hex characters of a DWORD type variable

Example 2

' Display a negative value on a serial LCD.

SYMBOL NEGATIVE = -200

RSOUT AT 1 , 1 , SDEC NEGATIVE

Example 3

' Display a negative value on a serial LCD with a preceding identifier.

RSOUT AT 1 , 1 , ISHEX -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to their own flash memory. And although writing to this memory too many times is unhealthy for the PICmicrotm, reading this memory is both fast, and harmless. Which offers a unique form of data storage and retrieval, the CDATA Scribble689command proves this, as it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the compiler is capable of reducing the overhead of printing, or transmitting large amounts of text data.

The CSTR modifier may be used in commands that deal with text processing i.e. SEROUTScribble2069, HRSOUTScribble1329, and PRINT Scribble1789etc.

The CSTR modifier is used in conjunction with the CDATA Scribble689command. The CDATA Scribble689command is used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD" , 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII characters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

RSOUT CSTR STRING1

The label that declared the address where the list of CDATA Scribble689values resided, now becomes the string's name. In a large program with lots of text formatting, this type of structure can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -

First the standard way of displaying text: -

DEVICE 16F877

CLS

RSOUT "HELLO WORLD"

RSOUT "HOW ARE YOU?"

RSOUT "I AM FINE!"

STOP

Now using the CSTR modifier: -

CLS

RSOUT CSTR TEXT1

RSOUT CSTR TEXT2

RSOUT CSTR TEXT3

STOP
TEXT1: CDATA "HELLO WORLD" , 13, 0

TEXT2: CDATA "HOW ARE YOU?" , 13, 0

TEXT3: CDATA "I AM FINE!" , 13, 0

Again, note the NULL terminators after the ASCII text in the CDATA Scribble689commands. Without these, the PICmicrotm will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA Scribble689command cannot be written too, but only read from.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a set of bytes sized values that are arranged or accessed in a certain order.

The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE

' Create a 10-byte array.

MYARRAY [0] = "H"

' Load the first 5 bytes of the array

MYARRAY [1] = "E"

' With the data to send

MYARRAY [2] = "L"

MYARRAY [3] = "L"

MYARRAY [4] = "O"

RSOUT STR MYARRAY \5

' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE

' Create a 10-byte array.

STR MYARRAY = "HELLO"

' Load the first 5 bytes of the array

RSOUT STR MYARRAY \5

' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the string is now constructed using STR as a command instead of a modifier.

Declares
There are four DECLARES Scribble869for use with RSOUT. These are : -

DECLARE RSOUT_PIN PORT . PIN

Assigns the Port and Pin that will be used to output serial data from the RSOUT command. This may be any valid port on the PICmicrotm.

If the DECLARE Scribble869is not used in the program, then the default Port and Pin is PORTB.0.

DECLARE RSOUT_MODE INVERTED , TRUE or 1 , 0

Sets the serial mode for the data transmitted by RSOUT. This may be inverted or true. Alternatively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the DECLARE Scribble869is not used in the program, then the default mode is INVERTED.

DECLARE SERIAL_BAUD 0 to 65535 bps (baud)

Informs the RSIN and RSOUT routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an increase in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the DECLARE Scribble869is not used in the program, then the default baud is 9600.

DECLARE RSOUT_PACE 0 to 65535 microseconds (us)

Implements a delay between characters transmitted by the RSOUT command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver to catch, this results in missed characters. To alleviate this, a delay may be implemented between each individual character transmitted by RSOUT.

If the DECLARE Scribble869is not used in the program, then the default is no delay between characters.

Notes

RSOUT is oscillator independent as long as the crystal frequency is declared at the top of the program. If no declare is used, then RSOUT defaults to a 4MHz crystal frequency for its bit timing.

The AT and CLS modifiers are primarily intended for use with serial LCD modules. Using the following command sequence will first clear the LCD, then display text at position 5 of line 2: -

RSOUT CLS , AT 2 , 5 , "HELLO WORLD"

The values after the AT modifier may also be variables.

See also :
DECLAREScribble869, RSIN Scribble2009, SERINScribble2049, SEROUTScribble2069, HRSINScribble1309, HRSOUTScribble1329, HSERINScribble1339, HSEROUTScribble1344.
SEED

Syntax

SEED Value
Overview

Seed the random number generator, in order to obtain a more random result.

Operators

Value can be a variable, constant or expression, with a value from 1 to 65535. A value of $0345 is a good starting point.

Example

' Create and display a RANDOM number

DEVICE = 16F877

XTAL = 4

DIM RND AS WORD

SEED $0345

CLS
AGAIN:

RND = RANDOM

PRINT AT 1,1,DEC RND, " "

DELAYMS 500

GOTO AGAIN

See also:
RANDOMScribble1869.
SELECT..CASE..ENDSELECT

Syntax

SELECT Expression

CASE Condition(s)

 Instructions

{

CASE Condition(s)

 Instructions

CASE ELSE

 Statement(s)

}
ENDSELECT
The curly braces signify optional conditions.

Overview

Evaluate an Expression then continually execute a block of BASIC code based upon comparisons to Condition(s). After executing a block of code, the program continues at the line following the ENDCASE. If no conditions are found to be True and a CASE ELSE block is included, the code after the CASE ELSE leading to the ENDSELECT will be executed.

Operators
Expression can be any valid variable, constant, expression or inline command that will be compared to the Conditions.

Condition(s) is a statement that can evaluate as True or False. The Condition can be a simple or complex relationship, as described below. Multiple conditions within the same CASE can be separated by commas.

Instructions can be any valid BASIC command that will be operated on if the CASE condition produces a True result.

Example
' Load variable RESULT according to the contents of variable VAR1

' Result will return a value of 255 if no valid condition was met

INCLUDE "PROTON_4.INC"
' Use the PROTON development board for the demo

DIM VAR1 AS BYTE

DIM RESULT AS BYTE

DELAYMS 300

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

RESULT = 0

' Clear the result variable before we start

VAR1 = 1

' Variable to base the conditions upon

SELECT VAR1

 CASE 1

' Is VAR1 equal to 1 ?

RESULT = 1

' Load RESULT with 1 if yes

 CASE 2

' Is VAR1 equal to 2 ?

RESULT = 2

' Load RESULT with 2 if yes

 CASE 3

' Is VAR1 equal to 3 ?

RESULT = 3

' Load RESULT with 3 if yes

 CASE ELSE

' Otherwise...

RESULT = 255

' Load RESULT with 255

ENDSELECT

PRINT DEC RESULT

' Display the result

STOP
Notes
SELECT..CASE is simply an advanced form of the IF..THEN..ELSEIF..ELSE construct, in which multiple ELSEIF statements are executed by the use of the CASE command.

Taking a closer look at the CASE command: -

CASE Conditional_Op Expression
Where Conditional_Op can be an = operator (which is implied if absent), or one of the standard comparison operators <>, <, >, >= or <=. Multiple conditions within the same CASE can be separated by commas. If, for example, you wanted to run a CASE block based on a value being less than one or greater than nine, the syntax would look like: -

CASE <1, >9

Another way to implement CASE is: -

CASE value1 TO value2
In this form, the valid range is from Value1 to Value2, inclusive. So if you wished to run a CASE block on a value being between the values 1 AND 9 inclusive, the syntax would look like: -

CASE 1 TO 9

For those of you that are familiar with C or Java, you will know that in those languages the statements in a CASE block fall through to the next CASE block unless the keyword break is encountered. In BASIC however, the code under an executed CASE block jumps to the code immediately after ENDSELECT.

Shown below is a typical SELECT CASE structure with its corresponding IF..THEN equivalent code alongside.

 SELECT VAR1

 CASE 6, 9, 99, 66

' IF VAR1 = 6 OR VAR1 = 9 OR VAR1 = 99 OR VAR1 = 66 THEN

PRINT "OR VALUES"

CASE 110 TO 200

' ELSEIF VAR1 >= 110 AND VAR1 <= 200 THEN

PRINT "AND VALUES"

CASE 100

' ELSEIF VAR1 = 100 THEN

PRINT "EQUAL VALUE"

CASE >300

' ELSEIF VAR1 > 300 THEN

PRINT "GREATER VALUE"

CASE ELSE

' ELSE

PRINT "DEFAULT VALUE"

 ENDSELECT
 ' ENDIF
See also :
IF..THEN..ELSEIF..ELSE..ENDIF.
SERIN

Syntax

SERIN Rpin { \ Fpin } , Baudmode , { Plabel, } { Timeout , Tlabel, } [InputData]
Overview

Receive asynchronous serial data (i.e. RS232 data).

Operators

Rpin is a PORT.BIT constant that specifies the I/O pin through which the serial data will be received. This pin will be set to input mode.

Fpin is an optional PORT.BIT constant that specifies the I/O pin to indicate flow control status on. This pin will be set to output mode.

Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing and configuration.

Plabel is an optional label indicating where the program should jump to in the event of a parity error. This argument should only be provided if Baudmode indicates that parity is required.

Timeout is an optional constant (0 - 65535) that informs SERIN how long to wait for incoming data. If data does not arrive in time, the program will jump to the address specified by Tlable.

Tlabel is an optional label that must be provided along with Timeout, indicating where the program should go in the event that data does not arrive within the period specified by Timeout.

InputData is list of variables and modifiers that informs SERIN what to do with incoming data. SERIN may store data in a variable, array, or an array string using the STR modifier.

Notes

One of the most popular forms of communication between electronic devices is serial communication. There are two major types of serial communication; asynchronous and synchronous. The RSIN, RSOUT, SERIN and SEROUT commands are all used to send and receive asynchronous serial data. While the SHIN and SHOUT commands are for use with synchronous communications.
The term asynchronous means ‘no clock.’ More specifically, ‘asynchronous serial communication’ means data is transmitted and received without the use of a separate ‘clock’ line. Data can be sent using as few as two wires; one for data and one for ground. The PC's serial ports (also called COM ports or RS232 ports) use asynchronous serial communication. Note: the other kind of serial communication, synchronous, uses at least three wires; one for clock, one for data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard TTL logic, where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and +12 volts for logic 0. This specification allows communication over longer wire lengths without amplification.

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component does two things: -

Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.

Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from Maxim semiconductor. With the addition of a few capacitors, a complete 2-way level converter is realised. Figure 1 shows a typical circuit for one of these devices. The MAX232 is not the only device available, there are

other types that do not require any external capacitors at all. Visit Maxim’s excellent web site at www.maxim.com, and download one of their many detailed datasheets.
[image: image110.wmf]VDD

D+

MCLR

OSC1

OSC2

VSS

32

PIC16C765

C3

C2

220nF

C4

33pF

VSS

6MHz

Crystal

R1

1.5k

24

23

18

31

12

14

13

1

VDD

11

C1

100nF

33pF

USB Cable to

Computer

D-

V

usb

Typical MAX232 RS232 line-transceiver circuit.

Because of the excellent IO capabilities of the PICmicrotm range of devices, and the adoption of TTL levels on most modern PC serial ports, a line driver is often unnecessary unless long distances are involved between the transmitter and the receiver. Instead a simple current limiting resistor is all that’s required. As shown below: -

[image: image111.png]Compile and Program Options

Directly connected RS232 circuit.

You should remember that when using a line transceiver such as the MAX232, the serial mode (polarity) is inverted in the process of converting the signal levels, however, if using the direct connection, the mode is untouched. This is the single most common cause of errors when connecting serial devices, therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver must be set for identical timing, this is commonly expressed in bits per second (bps) called baud. SERIN requires a value called Baudmode that informs it of the relevant characteristics of the incoming serial data; the bit period, number of data and parity bits, and polarity.

The Baudmode argument for SERIN accepts a 16-bit value that determines its characteristics: 1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity and virtually any speed from as low as 300 baud to greater than 57K baud (depending on the crystal frequency used). The following table shows how Baudmode is calculated, while table 1 shows some common baudmodes for standard serial baud rates.

	Step 1.
	Determine the bit period. (bits 0 – 11)
	(1,000,000 / baud rate) – 20

	Step 2.
	data bits and parity. (bit 13)
	8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192

	Step 3.
	Select polarity. (bit 14)
	True (noninverted) = step 2 + 0

Inverted = step 2 + 16384

Baudmode calculation.
Add the results of steps 1, 2 3, and 3 to determine the correct value for the Baudmode operator.

	BaudRate
	8-bit no-parity

inverted
	8-bit no-parity

true
	7-bit even-parity

inverted
	7-bit even-parity

true

	300
	19697
	3313
	27889
	11505

	600
	18030
	1646
	26222
	9838

	1200
	17197
	813
	25389
	9005

	2400
	16780
	396
	24972
	8588

	4800
	16572
	188
	24764
	8380

	9600
	16468
	84
	24660
	8276

Table 1. Common baud rates and corresponding Baudmodes.

If communications are with existing software or hardware, its speed and mode will determine the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler’s serial commands SERIN and SEROUT, have the option of still using a parity bit with 4 to 8 data bits. This is through the use of a DECLARE: -

With parity disabled (the default setting): -

DECLARE SERIAL_DATA
4 ' Set SERIN and SEROUT data bits to 4

DECLARE SERIAL_DATA
5 ' Set SERIN and SEROUT data bits to 5

DECLARE SERIAL_DATA
6 ' Set SERIN and SEROUT data bits to 6

DECLARE SERIAL_DATA
7 ' Set SERIN and SEROUT data bits to 7

DECLARE SERIAL_DATA
8 ' Set SERIN and SEROUT data bits to 8 (default)

With parity enabled: -

DECLARE SERIAL_DATA
5 ' Set SERIN and SEROUT data bits to 4

DECLARE SERIAL_DATA
6 ' Set SERIN and SEROUT data bits to 5

DECLARE SERIAL_DATA
7 ' Set SERIN and SEROUT data bits to 6

DECLARE SERIAL_DATA
8 ' Set SERIN and SEROUT data bits to 7 (default)

DECLARE SERIAL_DATA
9 ' Set SERIN and SEROUT data bits to 8

SERIAL_DATA data bits may range from 4 bits to 8 (the default if no DECLARE is issued). Enabling parity uses one of the number of bits specified.

Declaring SERIAL_DATA as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity bit received, the serial receiver assumes that the data was received correctly. Of course, this is not necessarily true, since two incorrectly received bits could make parity seem correct when the data was wrong, or the parity bit itself could be bad when the rest of the data was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to receive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

SERIN PORTA.0 , 24660 , [SerData]

The above example will work correctly, however it doesn’t inform the program what to do in the event of a parity error.

Below, is an improved version that uses the optional Plabel argument:

SERIN PORTA.0 , 24660 , P_ERROR , [SerData]

PRINT DEC SerData

STOP

P_ERROR:

PRINT "Parity Error"

STOP

If the parity matches, the program continues at the PRINT instruction after SERIN. If the parity doesn’t match, the program jumps to the label P_ERROR. Note that a parity error takes precedence over other InputData specifications (as soon as an error is detected, SERIN aborts and jumps to the Plabel routine).

In the examples above, the only way to end the SERIN instruction (other than RESET or power-off) is to give SERIN the serial data it needs. If no serial data arrives, the program is stuck in an endless loop. However, you can force SERIN to abort if it doesn’t receive data within a specified number of milliseconds.

For example, to receive a value through bit-0 of PORTA at 9600 baud, 8N, inverted and abort SERIN after 2 seconds (2000 ms) if no data arrives: -

SERIN PORTA.0 , 16468 , 2000 , TO_ERROR , [SerData]

PRINT CLS , DEC Result

STOP

TO_ERROR:

PRINT CLS , "Timed Out"

STOP

If no serial data arrives within 2 seconds, SERIN aborts and continues at the label TO_ERROR.

Both Parity and Serial Timeouts may be combined. Below is an example to receive a value through bit-0 of PORTA at 2400 baud, 7E, inverted with a 10-second timeout: -

DIM SerData AS BYTE
Again:

SERIN PORTA.0 , 24660 , P_ERROR , 10000 , TO_ERROR , [SerData]

PRINT CLS , DEC SerData

GOTO Again

TO_ERROR:

PRINT CLS , “Timed Out"

GOTO Again

P_ERROR:

PRINT CLS , "Parity Error"

GOTO Again

When designing an application that requires serial communication between PICs, you should remember to work within these limitations: -

When the PICmicrotm is sending or receiving data, it cannot execute other instructions.

When the PICmicrotm is executing other instructions, it cannot send or receive data.

The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and higher serial rates, the PICmicrotm cannot receive data via SERIN, process it, and execute another SERIN in time to catch the next chunk of data, unless there are significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for SERIN and SEROUT. Through Fpin, SERIN can inform another PICmicrotm sender when it is ready to receive data. (Fpin flow control follows the rules of other serial handshaking schemes, however most computers other than the PICmicrotm cannot start and stop serial transmission on a byte-by-byte basis. That is why this discussion is limited to communication between PICmicros.)

Below is an example using flow control with data through bit-0 of PORTA, and flow control through bit-1 of PORTA, 9600 baud, N8, noninverted: -

SERIN PORTA.0\PORTA.1 , 84 , [SerData]

When SERIN executes, bit-0 of PORTA (Rpin) is made an input in preparation for incoming data, and bit-1 of PORTA (Fpin) is made an output low, to signal “go” to the sender. After SERIN finishes receiving data, bit-1 of PORTA is brought high to notify the sender to stop. If an inverted BaudMode had been specified, the Fpin’s responses would have been reversed. The table below illustrates the relationship of serial polarity to Fpin states.

	Serial Polarity
	Ready to Receive

("Go")
	Not Ready to Receive

("Stop")

	Inverted
	Fpin is High (1)
	Fpin is Low (0)

	Non-inverted
	Fpin is Low (0)
	Fpin is High (1)

See the following circuit for a flow control example using two 16F84 devices. In the demonstration program example, the sender transmits the whole word “HELLO!” in approx 6 ms. The receiver catches the first byte at most; by the time it got back from the first 1-second delay (DELAYMS 1000), the rest of the data would be long gone. With flow control, communication is flawless since the sender waits for the receiver to catch up.

In the circuit below, the flow control pin (PORTA.1) is pulled to ground through a 10k resistor. This is to ensure that the sender sees a stop signal (0 for inverted communications) when the receiver is first powered up.

[image: image112.png]

Communicating Communication between two PICs using flow control.
‘ SENDER CODE. Program into the SENDER PICmicro.

Loop:

SEROUT PORTA.0\PORTA.1 , 16468 , ["HELLO!"]
' Send the message.

DELAYMS 2500

‘ Delay for 2.5 seconds

GOTO Loop

‘ Repeat the message forever

‘ RECEIVER CODE. Program into the RECEIVER PICmicro.

DIM Message AS BYTE
Again:

SERIN PORTA.0\PORTA.1 , 16468 , [Message]
' Get 1 byte.

PRINT Message

' Display the byte on LCD.

DELAYMS 1000

' Delay for 1 second.

GOTO Again

‘ Repeat forever
SERIN Modifiers.

The SERIN command can be configured to wait for a specified sequence of characters before it retrieves any additional input. For example, suppose a device attached to the PICmicrotm is known to send many different sequences of data, but the only data you wish to observe happens to appear right after the unique characters, “XYZ”. A modifier named WAIT can be used for this purpose: -

SERIN PORTA.0 , 16468, [WAIT("XYZ") , SERDATA]

The above code waits for the characters “X”, “Y” and “Z” to be received, in that order, then it receives the next data byte and p[laces it into variable SERDATA.

The compiler also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that receives ten bytes through bit-0 of PORTA at 9600 bps, N81/inverted, and stores them in the 10-byte array, SERSTRING: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

SERIN PORTA.0 , 16468, [STR SerString]
' Fill the array with received data.

PRINT STR SerString

' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be placed after the array’s name, which will only receive characters until the specified length is reached. For example: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

SERIN PORTA.0 , 16468, [STR SerString\5]
' Fill the first 5-bytes of the array

PRINT STR SerString\5

' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the guidelines below when developing a project using the SERIN and SEROUT commands may help to eliminate some obvious errors: -

Always build your project in steps.

Start with small, manageable pieces of code, (that deal with serial communication) and test them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the PICmicrotm for a given oscillator frequency. Misunderstanding the timing constraints is the source of most problems with code that communicate serially. If the serial communication in your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.

Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause strange problems in communication, or no communication at all. Make sure to connect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the SERIN / SEROUT commands.

Unmatched settings on the sender and receiver side will cause garbled data transfers or no data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polarity error. If receiving data from another device that is not a PICmicrotm, try to use baud rates of 9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicrotm, and the fact that the SERIN command offers no hardware receive buffer for serial communication, received data may sometimes be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not arrays) will also increase the chance that the PICmicrotm will receive the data properly.

See also :
HRSINScribble1309, HRSOUTScribble1329, HSERINScribble1339, HSEROUT, RSIN, RSOUTScribble2029Scribble1344Scribble2049.

SEROUT

Syntax

SEROUT Tpin { \ Fpin } , Baudmode , { Pace, } { Timeout , Tlabel, } [OutputData]
Overview

Transmit asynchronous serial data (i.e. RS232 data).

Operators

Tpin is a PORT.BIT constant that specifies the I/O pin through which the serial data will be transmitted. This pin will be set to output mode while operating. The state of this pin when finished is determined by the driver bit in Baudmode.

Fpin is an optional PORT.BIT constant that specifies the I/O pin to monitor for flow control status. This pin will be set to input mode. Note: Fpin must be specified in order to use the optional Timeout and Tlabel operators in the SEROUT command.

Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing and configuration.

Pace is an optional variable, constant, or expression (0 - 65535) that determines the length of the delay between transmitted bytes. Note: Pace cannot be used simultaneously with Timeout.

Timeout is an optional variable or constant (0 - 65535) that informs SEROUT how long to wait for Fpin permission to send. If permission does not arrive in time, the program will jump to the address specified by Tlable. NOTE: Fpin must be specified in order to use the optional Timeout and Tlabel operators in the SEROUT command.

Tlabel is an optional label that must be provided along with Timeout. Tlabel indicates where the program should jump to in the event that permission to send data is not granted within the period specified by Timeout.

OutputData is list of variables, constants, expressions and modifiers that informs SEROUT how to format outgoing data. SEROUT can transmit individual or repeating bytes, convert values into decimal, hex or binary text representations, or transmit strings of bytes from variable arrays, and CDATA Scribble689constructs. These actions can be combined in any order in the OutputData list.

Notes

One of the most popular forms of communication between electronic devices is serial communication. There are two major types of serial communication; asynchronous and synchronous. The RSINScribble2009, RSOUTScribble2029, SERIN Scribble2049and SEROUT commands are all used to send and receive asynchronous serial data. While the SHIN and SHOUT commands are for use with synchronous communications.

The term asynchronous means ‘no clock.' More specifically, ‘asynchronous serial communication' means data is transmitted and received without the use of a separate ‘clock' line. Data can be sent using as few as two wires; one for data and one for ground. The PC's serial ports (also called COM ports or RS232 ports) use asynchronous serial communication. Note: the other kind of serial communication, synchronous, uses at least three wires; one for clock, one for data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard TTL logic, where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and +12 volts for logic 0. This specification allows communication over longer wire lengths without amplification.

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component does two things: -

Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.

Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from MAXIM semiconductor. With the addition of a few capacitors, a complete 2-way level converter is realised (see SERIN for circuit).

The MAX232 is not the only device available, there are other types that do not require any external capacitors at all. Visit Maxim's excellent web site at www.maxim.com <http://www.maxim.com>, and download one of their many detailed datasheets.

Because of the excellent IO capabilities of the PICmicrotm range of devices, and the adoption of TTL levels on most modern PC serial ports, a line driver is often unnecessary unless long distances are involved between the transmitter and the receiver. Instead a simple current limiting resistor is all that's required (see SERIN for circuit).

You should remember that when using a line transceiver such as the MAX232, the serial mode (polarity) is inverted in the process of converting the signal levels, however, if using the direct connection, the mode is untouched. This is the single most common cause of errors when connecting serial devices, therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver must be set for identical timing, this is commonly expressed in bits per second (bps) called baud. SEROUT requires a value called Baudmode that informs it of the relevant characteristics of the incoming serial data; the bit period, number of data and parity bits, and polarity.

The Baudmode argument for SEROUT accepts a 16-bit value that determines its characteristics: 1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity and virtually any speed from as low as 300 baud to greater than 38K baud (depending on the crystal frequency used). Table 2 below shows how Baudmode is calculated, while table 3 shows some common baudmodes for standard serial baud rates.

	Step 1.
	Determine the bit period. (bits 0 – 11)
	(1,000,000 / baud rate) – 20

	Step 2.
	data bits and parity. (bit 13)
	8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192

	Step 3.
	Select polarity. (bit 14)
	True (noninverted) = step 2 + 0

Inverted = step 2 + 16384

Baudmode calculation.
Add the results of steps 1, 2 3, and 3 to determine the correct value for the Baudmode operator

	BaudRate
	8-bit no-parity

inverted
	8-bit no-parity

true
	7-bit even-parity

inverted
	7-bit even-parity

true

	300
	19697
	3313
	27889
	11505

	600
	18030
	1646
	26222
	9838

	1200
	17197
	813
	25389
	9005

	2400
	16780
	396
	24972
	8588

	4800
	16572
	188
	24764
	8380

	9600
	16468
	84
	24660
	8276

Note
For 'open' baudmodes used in networking, add 32768 to the values from the previous table.

If communications are with existing software or hardware, its speed and mode will determine the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands SEROUT and SERINScribble2049, have the option of still using a parity bit with 4 to 8 data bits. This is through the use of a DECLAREScribble869: -

With parity disabled (the default setting): -

DECLARE SERIAL_DATA 4
' Set SEROUT and SERIN data bits to 4

DECLARE SERIAL_DATA 5
' Set SEROUT and SERIN data bits to 5

DECLARE SERIAL_DATA 6
' Set SEROUT and SERIN data bits to 6

DECLARE SERIAL_DATA 7
' Set SEROUT and SERIN data bits to 7

DECLARE SERIAL_DATA 8
' Set SEROUT and SERIN data bits to 8 (default)

With parity enabled: -

DECLARE SERIAL_DATA 5
' Set SEROUT and SERIN data bits to 4

DECLARE SERIAL_DATA 6
' Set SEROUT and SERIN data bits to 5

DECLARE SERIAL_DATA 7
' Set SEROUT and SERIN data bits to 6

DECLARE SERIAL_DATA 8
' Set SEROUT and SERIN data bits to 7 (default)

DECLARE SERIAL_DATA 9
' Set SEROUT and SERIN data bits to 8

SERIAL_DATA data bits may range from 4 bits to 8 (the default if no DECLARE Scribble869is issued). Enabling parity uses one of the number of bits specified.

Declaring SERIAL_DATA as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When the SEROUT command's Baudmode is set for even parity (compiler default) it counts the number of 1s in the outgoing byte and uses the parity bit to make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity bit received, the serial receiver assumes that the data was received correctly. Of course, this is not necessarily true, since two incorrectly received bits could make parity seem correct when the data was wrong, or the parity bit itself could be bad when the rest of the data was correct. Parity errors are only detected on the receiver side.

Normally, the receiver determines how to handle an error. In a more robust application, the receiver and transmitter might be set up in such that the receiver can request a re-send of data that was received with a parity error.

SEROUT Modifiers.
The example below will transmit a single byte through bit-0 of PORTA at 2400 baud, 8N1, inverted: -

SEROUT PORTA.0 , 16780 , [65]

In the above example, SEROUT will transmit a byte equal to 65 (the ASCII value of the character "A") through PORTA.0. If the PICmicrotm was connected to a PC running a terminal program such as HyperTerminal set to the same baud rate, the character "A" would appear on the screen. Always remembering that the polarity will differ if a line transceiver such as the MAX232 is used.

What if you wanted the value 65 to appear on the PC's screen? As was stated earlier, it is up to the receiving side (in serial communication) to interpret the values. In this case, the PC is interpreting the byte-sized value to be the ASCII code for the character "A". Unless you're also writing the software for the PC, you cannot change how the PC interprets the incoming serial data, therefore to solve this problem, the data needs to be translated before it is sent.

The SEROUT command provides a modifier which will translate the value 65 into two ASCII codes for the characters "6" and "5" and then transmit them: -

SEROUT PORTA.0 , 16780 , [@ 65]

or

SEROUT PORTA.0 , 16780 , [DEC 65]

Notice that the decimal modifier in the SEROUT command is the character @ or word DEC, both these modifiers do the same thing, which is to inform SEROUT to convert the number into separate ASCII characters which represent the value in decimal form. If the value 65 in the code were changed to 123, the SEROUT command would send three bytes (49, 50 and 51) corresponding to the characters "1", "2" and "3".

This is exactly the same modifier that is used in the RSOUT Scribble2029and PRINT Scribble1789commands.

As well as the DEC modifier, SEROUT may use HEX, or BIN modifiers, again, these are the same as used in the RSOUT Scribble2029and PRINT Scribble1789commands. Therefore, please refer to the RSOUT Scribble2029or PRINT Scribble1789command descriptions for an explanation of these. The SEROUT command sends quoted text exactly as it appears in the OutputData list:

SEROUT PORTA.0 , 16780 , ["HELLO WORLD" , 13]

SEROUT PORTA.0 , 16780 , ["Num = " , DEC 100]

The above code will display "HELLO WORLD" on one line and "Num = 100" on the next line. Notice that you can combine data to output in one SEROUT command, separated by commas. In the example above, we could have written it as one line of code: -

SEROUT PORTA.0 , 16780 , ["HELLO WORLD" , 13 , "Num = " , DEC 100]

SEROUT also has some other modifiers. These are listed below: -

Modifier

Operation

AT ypos,xpos
Position the cursor on a serial LCD

CLS

Clear a serial LCD (also creates a 30ms delay)

BIN{1..32}

Send binary digits

DEC{1..10}

Send decimal digits

HEX{1..8}

Send hexadecimal digits

SBIN{1..32}

Send signed binary digits

SDEC{1..10}
Send signed decimal digits

SHEX{1..8}

Send signed hexadecimal digits

IBIN{1..32}

Send binary digits with a preceding '%' identifier

IDEC{1..10}

Send decimal digits with a preceding '#' identifier

IHEX{1..8}

Send hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Send signed binary digits with a preceding '%' identifier

ISDEC{1..10}
Send signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Send signed hexadecimal digits with a preceding '$' identifier

REP c\n

Send character c repeated n times

If a floating point variable is to be displayed, then the digits after the DEC modifier determine how many remainder digits are printed. i.e. numbers after the decimal point.

DIM FLT AS FLOAT

FLT = 3.145

SEROUT PORTA.0 , 16780 , [DEC2 FLT]
' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal point.

DIM FLT AS FLOAT

FLT = 3.1456

SEROUT PORTA.0 , 16780 , [DEC FLT]

' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT = -3.1456

SEROUT PORTA.0 , 16780 , [DEC FLT]

' Send 3 values after the decimal point

The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

Using Strings with SEROUT.
The STR modifier is used for transmitting a string of characters from a byte array variable. A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that transmits five bytes (from a byte array) through bit-0 of PORTA at 9600 bps, N81/inverted: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

SerString[0] = "H"

' Load the first 5 bytes of the array

SerString[1] = "E"

' With the word "HELLO"

SerString[2] = "L"

SerString[3] = "L"

SerString[4] = "O"

SEROUT PORTA.0 , 16468 , [STR SerString\5]
' Send 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicrotm would try to keep sending characters until all 10 bytes of the array were transmitted, or it found a byte equal to 0 (a NULL terminator). Since we didn't specify a last byte of 0 in the array, and we do not wish the last five bytes to be transmitted, we chose to tell it explicitly to only send the first 5 characters.

The above example may also be written as: -

DIM SerString[10] AS BYTE

' Create a 10-byte array.

STR SerString = "HELLO" , 0

' Load the first 6 bytes of the array

SEROUT PORTA.0 , 16468 , [STR SerString]

' Send first 5-bytes of string.

In the above example, we specifically added a NULL terminator to the end of the string (a zero). Therefore, the STR modifier within the SEROUT command will output data until this is reached. An alternative to this would be to create the array exactly the size of the text. In our example, the array would have been 5 elements in length.

Another form of string is used by the CSTR modifier. Note: Because this uses the CDATA Scribble689command to create the individual elements it is only for use with PICs that support self-modifying features, such as the 16F87X, and 18XXXX range of devices.

Below is an example of using the CSTR modifier. It's function is the same as the above examples, however, no RAM is used for creating arrays.

SEROUT PORTA.0 , 16468 , [CSTR SerString]

SerString: CDATA "HELLO" , 0

The CSTR modifier will always be terminated by a NULL (i.e. zero at the end of the text or data). If the NULL is omitted, then the SEROUT command will continue transmitting characters forever.

The SEROUT command can also be configured to pause between transmitted bytes. This is the purpose of the optional Pace operator. For example (9600 baud N8, inverted): -

SEROUT PORTA.0 , 16468 , 1000 , ["Send this message Slowly"]

Here, the PICmicrotm transmits the message "Send this message Slowly" with a 1 second delay between each character.

A good reason to use the Pace feature is to support devices that require more than one stop bit. Normally, the PICmicrotm sends data as fast as it can (with a minimum of 1 stop bit between bytes). Since a stop bit is really just a resting state in the line (no data transmitted), using the Pace option will effectively add multiple stop bits. Since the requirement for 2 or more stop bits (on some devices) is really just a minimum requirement, the receiving side should receive this data correctly.

SEROUT Flow Control.
When designing an application that requires serial communication between PICs, you need to work within these limitations: -

When the PICmicrotm is sending or receiving data, it cannot execute other instructions.

When the PICmicrotm is executing other instructions, it cannot send or receive data.

The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and higher serial rates, the PICmicrotm cannot receive data via SERINScribble2049, process it, and execute another SERIN Scribble2049in time to catch the next chunk of data, unless there are significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for SEROUT and SERINScribble2049. Through Fpin, SERIN Scribble2049can inform another PICmicrotm sender when it is ready to receive data and SEROUT (on the sender) will wait for permission to send. Fpin flow control follows the rules of other serial handshaking schemes, however most computers other than the PICmicrotm cannot start and stop serial transmission on a byte-by-byte basis. That is why this discussion is limited to communication between PICmicros.

Below is an example using flow control with data through bit-0 of PORTA, and flow control through bit-1 of PORTA, 9600 baud, N8, noninverted: -

SEROUT PORTA.0\PORTA.1 , 84 , [SerData]

When SERIN Scribble2049executes, bit-0 of PORTA (Tpin) is made an output in preparation for sending data, and bit-1 of PORTA (Fpin) is made an input, to wait for the "go" signal from the receiver. The table below illustrates the relationship of serial polarity to Fpin states.

	Serial Polarity
	Ready to Receive ("Go")
	Not Ready to Receive ("Stop")

	Inverted
	Fpin is High (1)
	Fpin is Low (0)

	Non-inverted
	Fpin is Low (0)
	Fpin is High (1)

See SERIN for a flow control circuit.

The SEROUT command supports open-drain and open-source output, which makes it possible to network multiple PICs on a single pair of wires. These ‘open baudmodes' only actively drive the Tpin in one state (for the other state, they simply disconnect the pin; setting it to an input mode). If two PICs in a network had their SEROUT lines connected together (while a third device listened on that line) and the PICs were using always-driven baudmodes, they could simultaneously output two opposite states (i.e. +5 volts and ground). This would create a short circuit. The heavy current flow would likely damage the I/O pins or the PICs themselves.

Since the open baudmodes only drive in one state and float in the other, there's no chance of this kind of short happening.

The polarity selected for SEROUT determines which state is driven and which is open as shown in the table below.

	Serial Polarity
	State(0)
	State(1)
	Resistor Pulled to:

	Inverted
	Open
	Driven
	Gnd (Vss)

	Non-inverted
	Driven
	Open
	+5V (Vdd)

Since open baudmodes only drive to one state, they need a resistor to pull the networked line into the opposite state, as shown in the above table and in the circuits below. Open baudmodes allow the PICmicrotm to share a line, however it is up to your program to resolve other networking issues such as who talks when, and how to detect, prevent and fix data errors.

See also :
RSINScribble2009, RSOUTScribble2029, HRSINScribble1309, HRSOUTScribble1329, HSERINScribble1339, HSEROUTScribble1344, SERINScribble2049.
SERVO

Syntax

SERVO Pin , Rotation Value

Overview

Control a remote control type servo motor.

Operators

Pin is a Port.Pin constant that specifies the I/O pin for the attachment of the motor's control terminal.

Rotation Value is a 16-bit (0-65535) constant or WORDScribble2729 variable that dictates the position of the motor. A value of approx 500 being a rotation to the farthest position in a direction and approx 2500 being the farthest rotation in the opposite direction. A value of 1500 would normally centre the servo but this depends on the motor type.

Example

' Control a servo motor attached to pin 3 of PORTA

DEVICE 16F628

' We'll use the new PICmicro

DIM Pos AS WORD

' Servo Position

SYMBOL Pin = PORTA.3

' Alias the servo pin

CMCON = 7

' PORTA to digital

CLS

' Clear the LCD

Pos = 1500

' Centre the servo

PORTA = 0

' PORTA lines low to read buttons

TRISA = %00000111

' Enable the button pins as inputs

' ** Check any button pressed to move servo **

Main:

IF PORTA.0 = 0 Then IF Pos < 3000 Then Pos = Pos + 1
' Move servo left

IF PORTA.1 = 0 Then Pos = 1500

' Centre servo

IF PORTA.2 = 0 Then IF Pos > 0 Then Pos = Pos - 1

' Move servo right

SERVO Pin , Pos

DELAYMS 5

' Servo update rate

PRINT AT 1 , 1 , "Position=" , DEC Pos , " "

GOTO Main

Notes

Servos of the sort used in radio-controlled models are finding increasing applications in this robotics age we live in. They simplify the job of moving objects in the real world by eliminating much of the mechanical design. For a given signal input, you get a predictable amount of motion as an output.

To enable a servo to move it must be connected to a 5 Volt power supply capable of delivering an ampere or more of peak current. It then needs to be supplied with a positioning signal. The signal is normally a 5 Volt, positive-going pulse between 1 and 2 milliseconds (ms) long, repeated approximately 50 times per second.

The width of the pulse determines the position of the servo. Since a servo's travel can vary from model to model, there is not a definite correspondence between a given pulse width and a particular servo angle, however most servos will move to the centre of their travel when receiving 1.5ms pulses.

Servos are closed-loop devices. This means that they are constantly comparing their commanded position (proportional to the pulse width) to their actual position (proportional to the resistance of an internal potentiometer mechanically linked to the shaft). If there is more than a small difference between the two, the servo's electronics will turn on the motor to eliminate the error. In addition to moving in response to changing input signals, this active error correction means that servos will resist mechanical forces that try to move them away from a commanded position. When the servo is unpowered or not receiving positioning pulses, the output shaft may be easily turned by hand. However, when the servo is powered and receiving signals, it won't move from its position.

Driving servos with PROTON+ is extremely easy. The SERVO command generates a pulse in 1microsecond (µs) units, so the following code would command a servo to its centred position and hold it there: -

Again:

SERVO PORTA.0 , 1500

DELAYMS 20

GOTO Again

The 20ms delay ensures that the program sends the pulse at the standard 50 pulse-per-second rate. However, this may be lengthened or shortened depending on individual motor characteristics.

The SERVO command is oscillator independent and will always produce 1us pulses regardless of the crystal frequency used.
See also :
PULSOUT.

SETBIT

Syntax

SETBIT Variable , Index

Overview

Set a bit of a variable or register using a variable index to the bit of interest.

Operators

Variable is a user defined variable, of type BYTEScribble2709, WORDScribble2729, or DWORDScribble2749.

Index is a constant, variable, or expression that points to the bit within Variable that requires setting.

Example

' Clear then Set each bit of variable EX_VAR

DEVICE = 16F877

XTAL = 4

DIM EX_VAR AS BYTE

DIM INDEX AS BYTE

CLS

EX_VAR = %11111111

AGAIN:

FOR INDEX = 0 TO 7

' Create a loop for 8 bits

CLEARBIT EX_VAR,INDEX

' Clear each bit of EX_VAR

PRINT AT 1,1,BIN8 EX_VAR

' Display the binary result

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

FOR INDEX = 7 TO 0 STEP -1

' Create a loop for 8 bits

SETBIT EX_VAR,INDEX

' Set each bit of EX_VAR

PRINT AT 1,1,BIN8 EX_VAR

' Display the binary result

DELAYMS 100

' Slow things down to see what's happening

NEXT

' Close the loop

GOTO AGAIN

' Do it forever

Notes
There are many ways to set a bit within a variable, however, each method requires a certain amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using the FSRScribble2649, and INDF Scribble2669registers. Each method has its merits, but requires a certain amount of knowledge to accomplish the task correctly. The SETBIT command makes this task extremely simple using a register rotate method, however, this is not necessarily the quickest method, or the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to experience.

To SET a known constant bit of a variable or register, then access the bit directly using PORT.n.

PORTA.1 = 1

or

VAR1.4 = 1

If a PORT is targeted by SETBIT, the TRIS Scribble2659register is NOT affected.

See also :
CLEARBITScribble719, GETBITScribble1119, LOADBITScribble1479.

SET_OSCCAL

Syntax

SET_OSCCAL

Overview

Calibrate the on-chip oscillator found on some PICmicrotm devices.

Notes

Some PICmicrotm devices, such as the PIC12C67x or 16F62x range, have on-chip RC oscillators. These devices contain an oscillator calibration factor in the last location of code space. The on-chip oscillator may be fine-tuned by reading the data from this location and moving it into the OSCCAL register. The command SET_OSCCAL has been specially created to perform this task automatically each time the program starts: -

DEVICE 12C671

SET_OSCCAL

' Set OSCCAL for 1K device 12C671

Add this command near the beginning of the program to perform the setting of OSCCAL.

If a UV erasable (windowed) device has been erased, the value cannot be read from memory. To set the OSCCAL register on an erased part, add the following line near the beginning of the program: -

OSCCAL = $C0
' Set OSCCAL register to $C0

The value $C0 is only an example. The part would need to be read before it is erased to obtain the actual OSCCAL value for that particular device.

Always refer to the Microchip data sheets for more information on OSCCAL.
SET

Syntax
SET Variable or Variable.Bit

Overview
Place a variable or bit in a high state. For a variable, this means filling it with 1's. For a bit this means setting it to 1.

Operators
Variable can be any variable or register.

Variable.Bit can be any variable and bit combination.

Example

SET VAR1.3

' Set bit 3 of VAR1

SET VAR1

' Load VAR1 with the value of 255

SET STATUS.0
' Set the carry flag high

Notes
SET does not alter the TRIS register if a PORT is targeted.

See also :
CLEARScribble709, HIGHScribble1289, LOWScribble1569.
SHIN

Syntax

SHIN dpin , cpin , mode , [result { \bits } { ,result { \bits }...}]

or

Var = SHIN dpin , cpin , mode , shifts

Overview

Shift data in from a synchronous-serial device.

Operators

Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-serial device's data output. This pin's I/O direction will be changed to input and will remain in that state after the instruction is completed.

Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-serial device's clock input. This pin's I/O direction will be changed to output.

Mode is a constant that tells SHIN the order in which data bits are to be arranged and the relationship of clock pulses to valid data. Below are the symbols, values, and their meanings: -

	Symbol
	Value
	Description

	MSBPRE MSBPRE_L
	0
	Shift data in highest bit first. Read data before sending clock. Clock idles low

	LSBPRE LSBPRE_L
	1
	Shift data in lowest bit first. Read data before sending clock. Clock idles low

	MSBPOST MSBPOST_L
	2
	Shift data in highest bit first. Read data after sending clock. Clock idles low

	LSBPOST LSBPOST_L
	3
	Shift data in highest bit first. Read data after sending clock. Clock idles low

	MSBPRE_H
	4
	Shift data in highest bit first. Read data before sending clock. Clock idles high

	LSBPRE_H
	5
	Shift data in lowest bit first. Read data before sending clock. Clock idles high

	MSBPOST_H
	6
	Shift data in highest bit first. Read data after sending clock. Clock idles high

	LSBPOST_H
	7
	Shift data in lowest bit first. Read data after sending clock. Clock idles high

Result is a bit, byte, or word variable in which incoming data bits will be stored.

Bits is an optional constant specifying how many bits (1-16) are to be input by SHIN. If no bits entry is given, SHIN defaults to 8 bits.

Shifts informs the SHIN command as to how many bit to shift in to the assignment variable, when used in the inline format.

Notes

SHIN provides a method of acquiring data from synchronous-serial devices, without resorting to the hardware SPI modules resident on some PICmicrotm types. Data bits may be valid after the rising or falling edge of the clock line. This kind of serial protocol is commonly used by controller peripherals such as ADCs, DACs, clocks, memory devices, etc.

The SHIN instruction causes the following sequence of events to occur: -

Makes the clock pin (cpin) output low.

Makes the data pin (dpin) an input.

Copies the state of the data bit into the msb (lsb-modes) or lsb (msb modes) either before (-pre modes) or after (-post modes) the clock pulse.

Pulses the clock pin high.

Shifts the bits of the result left (msb- modes) or right (lsb-modes).

Repeats the appropriate sequence of getting data bits, pulsing the clock pin, and shifting the result until the specified number of bits is shifted into the variable.

Making SHIN work with a particular device is a matter of matching the mode and number of bits to that device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock and data.

SYMBOL CLK = PORTB.0

SYMBOL DTA = PORTB.1

SHIN DTA , CLK , MSBPRE , [VAR1]

' Shiftin msb-first, pre-clock.

In the above example, both SHIN instructions are set up for msb-first operation, so the first bit they acquire ends up in the msb (leftmost bit) of the variable.

The post-clock Shift in, acquires its bits after each clock pulse. The initial pulse changes the data line from 1 to 0, so the post-clock Shiftin returns %01010101.

By default, SHIN acquires eight bits, but you can set it to shift any number of bits from 1 to 16 with an optional entry following the variable name. In the example above, substitute this for the first SHIN instruction: -

SHIN DTA , CLK , MSBPRE , [VAR1 \ 4] 'Shift in 4 bits.

Some devices return more than 16 bits. For example, most 8-bit shift registers can be daisy-chained together to form any multiple of 8 bits; 16, 24, 32, 40... You can use a single SHIN instruction with multiple variables.

Each variable can be assigned a particular number of bits with the

backslash (\) option. Modify the previous example: -

' 5 bits into VAR1; 8 bits into VAR2.

SHIN DTA , CLK , MSBPRE , [VAR1 \ 5 , VAR2]

PRINT "1st variable: " , BIN8 VAR1

PRINT "2nd variable: " , BIN8 VAR2

Inline SHIN Command.
The structure of the INLINE SHIN command is: -

Var = SHIN dpin , cpin , mode , shifts
DPIN, CPIN, and MODE have not changed in any way, however, the INLINE structure has a new operand, namely SHIFTS. This informs the SHIN command as to how many bit to shift in to the assignment variable. For example, to shift in an 8-bit value from a serial device, we would use: -

VAR1 = SHIN DT , CK , MSBPRE , 8

To shift 16-bits into a WORDScribble2729 variable: -

WRD = SHIN DT , CK , MSBPRE , 16

SHOUT

Syntax

SHOUT Dpin, Cpin, Mode, [OutputData {\Bits} {,OutputData {\Bits}..}]

Overview

Shift data out to a synchronous serial device.

Operators

Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous serial device's data input. This pin will be set to output mode.

Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous serial device's clock input. This pin will be set to output mode.

Mode is a constant that tells SHOUT the order in which data bits are to be arranged. Below are the symbols, values, and their meanings: -

	Symbol
	Value
	Description

	LSBFIRST

LSBFIRST _L
	0
	Shift data out lowest bit first.

Clock idles low

	MSBFIRST

MSBFIRST_L
	1
	Shift data out highest bit first.

Clock idles low

	LSBFIRST _H
	4
	Shift data out lowest bit first.

Clock idles high

	MSBFIRST_H
	5
	Shift data out highest bit first.

Clock idles high

OutputData is a variable, constant, or expression containing the data to be sent.

Bits is an optional constant specifying how many bits are to be output by SHOUT. If no Bits entry is given, SHOUT defaults to 8 bits.

Notes

SHIN Scribble2129and SHOUT provide a method of acquiring data from synchronous serial devices. Data bits may be valid after the rising or falling edge of the clock line. This kind of serial protocol is commonly used by controller peripherals like ADCs, DACs, clocks, memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip flops that receive data bits in a bucket brigade fashion from a single data input pin. Another bit is input each time the appropriate edge (rising or falling, depending on the device) appears on the clock line.

The SHOUT instruction first causes the clock pin to output low and the data pin to switch to output mode. Then, SHOUT sets the data pin to the next bit state to be output and generates a clock pulse. SHOUT continues to generate clock pulses and places the next data bit on the data pin for as many data bits as are required for transmission.

Making SHOUT work with a particular device is a matter of matching the mode and number of bits to that device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock and data. One of the most important items to look for is which bit of the data should be transmitted first; most significant bit (MSB) or least significant bit (LSB).

Example

SHOUT DTA , CLK , MSBFIRST , [250]

In the above example, the SHOUT command will write to I/O pin DTA (the Dpin) and will generate a clock signal on I/O CLK (the Cpin). The SHOUT command will generate eight clock pulses while writing each bit (of the 8-bit value 250) onto the data pin (Dpin). In this case, it will start with the most significant bit first as indicated by the Mode value of MSBFIRST.

By default, SHOUT transmits eight bits, but you can set it to shift any number of bits from 1 to 16 with the Bits argument. For example: -

SHOUT DTA , CLK , MSBFIRST , [250 \ 4]

Will only output the lowest 4 bits (%0000 in this case). Some devices require more than 16 bits. To solve this, you can use a single SHOUT command with multiple values. Each value can be assigned a particular number of bits with the Bits argument. As in: -

SHOUT DTA , CLK , MSBFIRST , [250 \ 4 , 1045 \ 16]

The above code will first shift out four bits of the number 250 (%1111) and then 16 bits of the number 1045 (%0000010000010101). The two values together make up a 20 bit value.

See also :
SHIN. Scribble2129
SNOOZE

Syntax

SNOOZE Period

Overview

Enter sleep mode for a short period. Power consumption is reduced to approx 50 µA assuming no loads are being driven.

Operators

Period is a variable or constant that determines the duration of the reduced power nap. The duration is (2^period) * 18 ms. (Read as "2 raised to the power of ‘period', times 18 ms.") Period can range from 0 to 7, resulting in the following snooze lengths: -

Period
Length of SNOOZE

0 - 1

18ms

1 - 2

36ms

2 - 4

72ms

3 - 8

144ms

4 - 16

288ms

5 - 32

576ms

6 - 64

1152ms (1.152 seconds)

7 - 128

2304ms (2.304 seconds)

Example

SNOOZE 6

'Low power mode for approx 1.152 seconds

Notes

SNOOZE intervals are directly controlled by the watchdog timer without compensation. Variations in temperature, supply voltage, and manufacturing tolerance of the PICmicrotm chip you are using can cause the actual timing to vary by as much as -50, +100 percent

See also :
SLEEP. Scribble2189
SLEEP

Syntax

SLEEP { Length }

Overview

Places the PICmicrotm into low power mode for approx n seconds. i.e. power down but leaves the port pins in their previous states.

Operators

Length is an optional variable or constant (1-65535) that specifies the duration of sleep in seconds. If length is omitted, then the SLEEP command is assumed to be the assembler mnemonic, which means the PICmicrotm will sleep continuously, or until the Watchdog timer wakes it up.

Example

SYMBOL LED = PORTA.0

Again:

HIGH LED

' Turn LED on.

DELAYMS 1000
' Wait 1 second.

LOW LED

' Turn LED off.

SLEEP 60

' Sleep for 1 minute.

GOTO Again

Notes

SLEEP will place the PICmicrotm into a low power mode for the specified period of seconds. Period is 16 bits, so delays of up to 65,535 seconds are the limit (a little over 18 hours) SLEEP uses the Watchdog Timer so it is independent of the oscillator frequency. The smallest units is about 2.3 seconds and may vary depending on specific environmental conditions and the device used.

The SLEEP command is used to put the PICmicrotm in a low power mode without resetting the registers. Allowing continual program execution upon waking up from the SLEEP period.

Waking a 14-bit core PICmicrotm from SLEEP

All the PICmicrotm range have the ability to be placed into a low power mode, consuming micro Amps of current.

The command for doing this is SLEEP. The compiler's SLEEP command or the assembler's SLEEP instruction may be used. The compiler's SLEEP command differs somewhat to the assembler's in that the compiler's version will place the PICmicrotm into low power mode for n seconds (where n is a value from 0 to 65535). The assembler's version still places the PICmicrotm into low power mode, however, it does this forever, or until an internal or external source wakes it. This same source also wakes the PICmicrotm when using the compiler's command.

Many things can wake the PICmicrotm from its sleep, the WATCHDOG TIMER is the main cause and is what the compiler's SLEEP command uses.

Another method of waking the PICmicrotm is an external one, a change on one of the port pins. We will examine more closely the use of an external source. There are two main ways of waking the PICmicrotm using an external source. One is a change on bits 4..7 of PORTB.

Another is a change on bit-0 of PORTB. We shall first look at the wake up on change of PORTB,bits-4..7.

As its name suggests, any change on these pins either high to low or low to high will wake the PICmicrotm. However, to setup this mode of operation several bits within registers INTCON Scribble2668 and OPTION_REG need to be manipulated. One of the first things required is to enable the weak PORTB pull-up resistors. This is accomplished by clearing the RBPU bit of OPTION_REG (OPTION_REG.7). If this was not done, then the pins would be floating and random input states would occur waking the PICmicrotm up prematurely. Although technically we are enabling a form of interrupt, we are not interested in actually running an interrupt handler. Therefore, we must make sure that GLOBAL interrupts are disabled, or the PICmicrotm will jump to an interrupt handler every time a change occurs on PORTB. This is done by clearing the GIE Scribble2666 bit of INTCON Scribble2668 (INTCON.7).
The interrupt we are concerned with is the RB port change type. This is enabled by setting the RBIE bit of the INTCON Scribble2668 register (INTCON.3). All this will do is set a flag whenever a change occurs (and of course wake up the PICmicrotm). The flag in question is RBIF, which is bit-0 of the INTCON Scribble2668 register. For now we are not particularly interested in this flag, however, if global interrupts were enabled, this flag could be examined to see if it was the cause of the interrupt. The RBIF flag is not cleared by hardware so before entering SLEEP it should be cleared. It must also be cleared before an interrupt handler is exited.

The SLEEP command itself is then used. Upon a change of PORTB, bits 4..7 the PICmicrotm will wake up and perform the next instruction (or command) after the SLEEP command was used. A second external source for waking the PICmicrotm is a pulse applied to PORTB.0. This interrupt is triggered by the edge of the pulse, high to low or low to high. The INTEDG bit of OPTION_REG (OPTION_REG.6) determines what type of pulse will trigger the interrupt. If it is set, then a low to high pulse will trigger it, and if it is cleared then a high to low pulse will trigger it.

To allow the PORTB.0 interrupt to wake the PICmicrotm the INTE bit must be set, this is bit-4 of the INTCON Scribble2668 register. This will allow the flag INTF (INTCON.1) to be set when a pulse with the right edge is sensed. This flag is only of any importance when determining what caused the interrupt. However, it is not cleared by hardware and should be cleared before the SLEEP command is used (or the interrupt handler is exited). The program below will wake the PICmicrotm when a change occurs on PORTB, bits 4-7.

SYMBOL LED = PORTB.0

' Assign the LED's pin

SYMBOL RBIF = INTCON.0

' PORTB[4..7] Change Interrupt Flag

SYMBOL RBIE = INTCON.3

' PORTB[4..7] Change Interrupt Enable

SYMBOL RBPU = OPTION_REG.7
' PortB pull-ups

SYMBOL GIE = INTCON.7

' Global interrupt enable/disable

Main:
GIE = 0

' Turn OFF global interrupts

TRISB.4 = 1

' Set PORTB.4 as an Input

RBPU = 0

' Enable PORTB Pull-up Resistors

RBIE = 1

' Enable PORTB[4..7] interrupt

Again: DELAYMS 100

LOW LED

' Turn off the LED

RBIF = 0

' Clear the PORTB[4..7] interrupt flag

SLEEP

' Put the PICmicro to sleep

DELAYMS 100

' When it wakes up, delay for 100ms

HIGH LED

' Then light the LED

GOTO Again

' Do it forever

SOUND

Syntax

SOUND Pin, [Note,Duration {,Note,Duration...}]

Overview

Generates tone and/or white noise on the specified Pin. Pin is automatically made an output.

Operators

Pin is a Port.Pin constant that specifies the output pin on the PICmicrotm.

Note can be an 8-bit variable or constant. 0 is silence. Notes 1-127 are tones. Notes 128-255 are white noise. Tones and white noises are in ascending order (i.e. 1 and 128 are the lowest frequencies, 127 and 255 are the highest). Note 1 is approx 78.74Hz and Note 127 is approx 10,000Hz.

Duration can be an 8-bit variable or constant that determines how long the Note is played in approx 10ms increments.

Example

' Star Trek The Next Generation...Theme and ship take-off

DEVICE 16F877

XTAL = 4

DIM LOOP AS BYTE

SYMBOL PIN = PORTB.0

THEME:

SOUND PIN, [50,60,70,20,85,120,83,40,70,20,50,20,70,20,90,120,90,20,98,160]

DELAYMS 500

FOR LOOP = 128 TO 255

' Ascending white noises

SOUND PIN, [LOOP,2]

' For warp drive sound

NEXT

SOUND PIN, [43,80,63,20,77,20,71,80,51,20,_

90,20,85,140,77,20,80,20,85,20,_

90,20,80,20,85,60,90,60,92,60,87,_

60,96,70,0,10,96,10,0,10,96,10,0,_

10,96,30,0,10,92,30,0,10,87,30,0,_

10,96,40,0,20,63,10,0,10,63,10,0,_

10,63,10,0,10,63,20]

DELAYMS 10000

GOTO THEME

Notes

With the excellent I/O characteristics of the PICmicrotm, a speaker can be driven through a capacitor directly from the pin of the PICmicrotm. The value of the capacitor should be determined based on the frequencies of interest and the speaker load. Piezo speakers can be driven directly.

See also :
FREQOUTScribble1109, DTMFOUTScribble989, SOUND2Scribble2219.
SOUND2

Syntax

SOUND2 Pin2, Pin2, [Note1\Note2\Duration {,Note1,Note2\Duration...}]

Overview

Generate specific notes on each of the two defined pins. With the SOUND2 command more complex notes can be played by the PICmicrotm.

Operators

Pin1 and Pin2 are Port.Pin constants that specify the output pins on the PICmicrotm.

Note is a variable or constant specifying frequency in Hertz (Hz, 0 to 16000) of the tones.

Duration can be a variable or constant that determines how long the Notes are played. In approx 1ms increments (0 to 65535).

Example 1

' Generate a 2500Hz tone and a 3500Hz tone for 1 second.

' The 2500Hz note is played from the first pin specified (PORTB.0),

' and the 3500Hz note is played from the second pin specified (PORTB.1).

DEVICE = 16F877

XTAL = 20

SYMBOL PIN1 = PORTB.0

SYMBOL PIN2 = PORTB.1

SOUND2 PIN1 , PIN2 , [2500 \ 3500 \ 1000]

STOP
Example 2

' Play two sets of notes 2500Hz and 3500Hz for 1 second

' and the second two notes, 2500Hz and 3500Hz for 2 seconds.

DEVICE = 16F877

XTAL = 20

SYMBOL PIN1 = PORTB.0

SYMBOL PIN2 = PORTB.1

SOUND2 PIN1 , PIN2 , [2500 \ 3500 \ 1000 , 2500 \ 3500 \ 2000]

STOP

Notes

SOUND2 generates two pulses at the required frequency one on each pin specified. The SOUND2 command can be used to play tones through a speaker or audio amplifier. SOUND2 can also be used to play more complicated notes. By generating two frequencies on separate pins, a more defined sound can be produced. SOUND2 is somewhat dependent on the crystal frequency used for its note frequency, and duration.

[image: image113.png]Install New Programmer

O Instal selected programmer
@ Create a custom programmer entry

SOUND2 does not require any filtering on the output, and produces a cleaner note than FREQOUTScribble1109. However, unlike FREQOUTScribble1109, the note is not a SINE wave. See diagram: -

See also :
FREQOUTScribble1109, DTMFOUTScribble989, SOUNDScribble2209.
STOP

Syntax

STOP

Overview

STOP halts program execution by sending the PICmicrotm into an infinite loop.

Example

IF A > 12 THEN STOP

{ code data }

If variable A contains a value greater than 12 then stop program execution. code data will not be executed.

Notes

Although STOP halts the PICmicrotm in its tracks it does not prevent any code listed in the BASIC source after it being compiled. To do this, use the END command.

See also :
ENDScribble1029, SLEEPScribble2189, SNOOZE. Scribble2169
STRN

Syntax

STRN Byte Array = Item

Overview

Load a Byte Array with NULL terminated data, which can be likened to creating a pseudo String variable.

Operators

Byte Array is the variable that will be loaded with values.

Item can be another STRN command, a STR command, STR$ command, or a quoted character string

Example
' Load the Byte Array STRING1 with NULL terminated characters

INCLUDE "PROTON_4.INC"
' Demonstration based on the PROTON dev board

DIM STRING1[21] as BYTE

' Create a Byte array with 21 elements

DELAYMS 200

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

STRN STRING1 = "HELLO WORLD"

' Load STRING1 with characters and NULL terminate it

PRINT STR STRING1

' Display the string

STOP
See also:
Arrays as Strings, STR$.
STR$

Syntax
STR Byte Array = STR$ (Modifier Variable)
Overview
Convert a DECIMAL, HEX, BINARY, or FLOATING POINT value or variable into a NULL terminated string held in a byte array. For use only with the STR and STRN commands.

Operators

Modifier is one of the standard modifiers used with PRINT, RSOUT, HSEROUT etc. See list below.
Variable is a variable that holds the value to convert. This may be a BIT, BYTE, WORD, DWORD, or FLOAT.

Byte Array must be of sufficient size to hold the resulting conversion and a terminating NULL character (0).

Notice that there is no comma separating the Modifier from the Variable. This is because the compiler borrows the format and subroutines used in PRINT. Which is why the modifiers are the same: -

BIN{1..32}

Convert to binary digits

DEC{1..10}

Convert to decimal digits

HEX{1..8}

Convert to hexadecimal digits

SBIN{1..32}

Convert to signed binary digits

SDEC{1..10}
Convert to signed decimal digits

SHEX{1..8}

Convert to signed hexadecimal digits

IBIN{1..32}

Convert to binary digits with a preceding '%' identifier

IDEC{1..10}

Convert to decimal digits with a preceding '#' identifier

IHEX{1..8}

Convert to hexadecimal digits with a preceding '$' identifier

ISBIN{1..32}

Convert to signed binary digits with a preceding '%' identifier

ISDEC{1..10}
Convert to signed decimal digits with a preceding '#' identifier

ISHEX{1..8}

Convert to signed hexadecimal digits with a preceding '$' identifier

Example 1
' Convert a WORD variable to a NULL terminated STRING of characters in a BYTE array.

INCLUDE "PROTON_4.INC"
' Use the PROTON board for the demo

' Create a byte array long enough to hold converted value, and NULL terminator

DIM STRING1[11] AS BYTE

DIM WRD1 AS WORD

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

WRD1 = 1234

' Load the variable with a value

STRN STRING1 = STR$(DEC WRD1)
' Convert the Integer to a STRING

PRINT STR STRING1

' Display the string

STOP

Example 2
' Convert a DWORD variable to a NULL terminated STRING of characters in a BYTE array.

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

' Create a byte array long enough to hold converted value, and NULL terminator

DIM STRING1[11] AS BYTE

DIM DWD1 AS DWORD

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

DWD1 = 1234

' Load the variable with a value

STRN STRING1 = STR$(DEC DWD1)
' Convert the Integer to a STRING

PRINT STR STRING1

' Display the string

STOP

Example 3
' Convert a FLOAT variable to a NULL terminated STRING of characters in a BYTE array.

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

' Create a byte array long enough to hold converted value, and NULL terminator

DIM STRING1[11] AS BYTE

DIM FLT1 AS FLOAT

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

FLT1 = 3.14

' Load the variable with a value

STRN STRING1 = STR$(DEC FLT1)
' Convert the Float to a STRING

PRINT STR STRING1

' Display the string

STOP

Example 4
' Convert a WORD variable to a NULL terminated BINARY STRING

‘ of characters in a BYTE array.

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

' Create a byte array long enough to hold converted value, and NULL terminator

DIM STRING1[34] AS BYTE

DIM WRD1 AS WORD

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

WRD1 = 1234

' Load the variable with a value

STRN STRING1 = STR$(BIN WRD1)
' Convert the Integer to a STRING

PRINT STR STRING1

' Display the string

STOP
If we examine the resulting string (Byte Array) converted with example 2, it will contain: -

character 1, character 2, character 3, character 4, 0

The zero is not character zero, but value zero. This is a NULL terminated string.

Notes
The Byte Array created to hold the resulting conversion, must be large enough to accommodate all the resulting digits, including a possible minus sign and preceding identifying character. %, $, or # if the I version modifiers are used. The compiler will try and warn you if it thinks the array may not be large enough, but this is a rough guide, and you as the programmer must decide whether it is correct or not. If the size is not correct, any adjacent variables will be overwritten, with potentially catastrophic results.

See also :
STRN, Arrays as Strings.

SWAP

Syntax

SWAP Variable , Variable

Overview

Swap any two variable's values with each other.

Operators

Variable is the value to be swapped

Example

' If Dog = 2 and Cat = 10 then by using the swap command

' Dog will now equal 10 and Cat will equal 2.

VAR1 = 10

' VAR1 equals 10

VAR2 = 20

' VAR2 equals 20

SWAP VAR1 , VAR2
' VAR2 now equals 20 and VAR1 now equals 10
SYMBOL

Syntax

SYMBOL Name { = } Value

Overview

Assign an alias to a register, variable, or constant value

Operators

Name can be any valid identifier.

Value can be any previously declared variable, system register, or a Register.Bit combination.

The equals '=' symbol is optional, and may be omitted if desired.

When creating a program it can be beneficial to use identifiers for certain values that don't change: -

SYMBOL Meter = 1

SYMBOL Centimetre = 100

SYMBOL Millimetre = 1000

This way you can keep your program very readable and if for some reason a constant changes later, you only have to make one change to the program to change all the values. Another good use of the constant is when you have values that are based on other values.

SYMBOL Meter = 1

SYMBOL Centimetre = Meter / 100

SYMBOL Millimetre = Centimetre / 10

In the example above you can see how the centimetre and millimetre were derived from the Meter.

Another use of the SYMBOL command is for assigning Port.Bit constants: -

SYMBOL LED = PORTA.0

HIGH LED

In the above example, whenever the text LED is encountered, Bit-0 of PORTA is actually referenced.

Floating point constants may also be created using SYMBOL by simply adding a decimal point to a value.

SYMBOL PI = 3.14

' Create a floating point constant named PI

SYMBOL FL_NUM = 5.0

' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

' Create a floating point constant holding the result of the expression

SYMBOL QUANTA = 5.0 / 1024

Notes

SYMBOL cannot create new variables, it simply aliases an identifier to a previously assigned variable, or assigns a constant to an identifier.

TOGGLE

Syntax
TOGGLE Port.Bit

Overview
Sets a pin to output mode and reverses the output state of the pin, changing 0 to 1 and 1 to 0.

Operators
Port.Bit can be any valid Port and Bit combination.

Example

HIGH PORTB.0

' Set bit 0 of PORTB high

TOGGLE PORTB.0

' And now reverse the bit

STOP
See also :
HIGHScribble1289, LOWScribble1569.
TOLOWER

Syntax

Destination String = TOLOWER (Source String)
Overview

Convert the characters from a source string to lower case.

Overview

Destination String can only be a STRING variable, and should be large enough to hold the correct amount of characters extracted from the Source String.

Source String can be a STRING variable, or a Quoted String of Characters. The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM. A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 1
' Convert the characters from SOURCE_STRING to lowercase and place the result into

‘ DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

DEST_STRING = TOLOWER (SOURCE_STRING)
' Convert to lowercase

PRINT DEST_STRING

' Display the result, which will be "hello world"

STOP
Example 2
' Convert the characters from a Quoted Character String to lowercase and place the result into

‘ DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

DEST_STRING = TOLOWER ("HELLO WORLD")
' Convert to lowercase

PRINT DEST_STRING

' Display the result, which will be "hello world"

STOP
Example 3
' Convert to lowercase from SOURCE_STRING into DEST_STRING using a pointer to

‘ SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

SOURCE_STRING = "HELLO WORLD"

' Load the source string with characters

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

DEST_STRING = TOLOWER(STRING_ADDR)
' Convert to lowercase

PRINT DEST_STRING

' Display the result, which will be "hello world"

STOP
Example 4
' Convert characters from a CDATA table to lowercase and place result into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

DEST_STRING = TOLOWER (SOURCE)
' Convert to lowercase

PRINT DEST_STRING

' Display the result, which will be "hello world"

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "HELLO WORLD" , 0

See also :
Creating and using Strings

Creating and using VIRTUAL STRINGS with CDATA, CDATA, LEN

LEFT$, MID$, RIGHT$, STR$, TOUPPER, VARPTR .
TOUPPER

Syntax

Destination String = TOUPPER (Source String)
Overview

Convert the characters from a source string to UPPER case.

Overview

Destination String can only be a STRING variable, and should be large enough to hold the correct amount of characters extracted from the Source String.

Source String can be a STRING variable, or a Quoted String of Characters . The Source String can also be a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable, in which case the value contained within the variable is used as a pointer to the start of the Source String's address in RAM. A third possibility for Source String is a LABEL name, in which case a NULL terminated Quoted String of Characters is read from a CDATA table.

Example 1
' Convert the characters from SOURCE_STRING to uppercase and place the result into

‘ DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

SOURCE_STRING = "hello world"

' Load the source string with characters

DEST_STRING = TOUPPER (SOURCE_STRING)
' Convert to uppercase

PRINT DEST_STRING

' Display the result, which will be "HELLO WORLD"

STOP
Example 2
' Convert the characters from a Quoted Character String to uppercase and place the result into

‘ DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

DEST_STRING = TOUPPER ("hello world")
' Convert to uppercase

PRINT DEST_STRING

' Display the result, which will be "HELLO WORLD"

STOP
Example 3
' Convert to uppercase from SOURCE_STRING into DEST_STRING using a pointer to

‘ SOURCE_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM SOURCE_STRING as STRING * 20
‘ Create a String of 20 characters

DIM DEST_STRING as STRING * 20

‘ Create another String

' Create a WORD variable to hold the address of SOURCE_STRING

DIM STRING_ADDR as WORD

' Load the source string with characters

SOURCE_STRING = "hello world"

' Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

DEST_STRING = TOUPPER (STRING_ADDR)
' Convert to uppercase

PRINT DEST_STRING

' Display the result, which will be "HELLO WORLD"

STOP
Example 4
' Convert characters from a CDATA table to uppercase and place result into DEST_STRING

DEVICE = 18F452

' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20

‘ Create a String of 20 characters

DEST_STRING = TOUPPER (SOURCE)
' Convert to uppercase

PRINT DEST_STRING

' Display the result, which will be "HELLO WORLD"

STOP
' Create a NULL terminated string of characters in code memory

SOURCE:

CDATA "hello world" , 0

See also :
Creating and using Strings

Creating and using VIRTUAL STRINGS with CDATA, CDATA, LEN

LEFT$, MID$, RIGHT$, STR$, TOLOWER, VARPTR .
UNPLOT

Syntax

UNPLOT Ypos , Xpos
Overview

Clear an individual pixel on a 64x128 element graphic LCD.

Operators

Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to clear. This must be a value of 0 to 127. Where 0 is the far left row of pixels.

Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to clear. This must be a value of 0 to 63. Where 0 is the top column of pixels.

Example

DEVICE 16F877

LCD_TYPE = GRAPHIC

' Use a Graphic LCD

' Graphic LCD Pin Assignments

LCD_DTPORT = PORTD

LCD_RSPIN = PORTC.2

LCD_RWPIN = PORTE.0

LCD_ENPIN = PORTC.5

LCD_CS1PIN = PORTE.1

LCD_CS2PIN = PORTE.2

DIM XPOS AS BYTE

ADCON1 = 7

' Set PORTA and PORTE to all digital

' Draw a line across the LCD

Again:

FOR XPOS = 0 TO 127

PLOT 20 , XPOS

DELAYMS 10

NEXT

' Now erase the line

FOR XPOS = 0 TO 127

UNPLOT 20 , XPOS

DELAYMS 10

NEXT

GOTO Again

See also :
LCDREADScribble1449, LCDWRITEScribble1469, PIXELScribble1709, PLOTScribble1729. See PRINT Scribble1789for circuit.
VAL

Syntax
Variable = VAL (Array Variable , Modifier)
Overview
Convert a Byte Array containing DECIMAL, HEX, or BINARY numeric text into it's integer equivalent.

Operators
Array Variable is a byte array containing the alphanumeric digits to convert and terminated by a NULL (i.e. value 0).

Modifier can be HEX, DEC, or BIN. To convert a HEX string, use the HEX modifier, for BINARY, use the BIN modifier, for DECIMAL use the DEC modifier.

Variable is a variable that will contain the converted value. Floating point characters and variables cannot be converted, and will be rounded down to the nearest integer value.

Example 1

' Convert a string of HEXADECIMAL characters to an integer

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

DIM STRING1[10] AS BYTE

' Create a byte array as a STRING

DIM WRD1 AS WORD

' Create a variable to hold result

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

STR STRING1 = "12AF",0

' Load the STRING with HEX digits

WRD1 = VAL(STRING1,HEX)

' Convert the STRING into an integer

PRINT HEX WRD1

' Display the integer as HEX

STOP

Example 2

' Convert a string of DECIMAL characters to an integer

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

DIM STRING1[10] AS BYTE

' Create a byte array as a STRING

DIM WRD1 AS WORD

' Create a variable to hold result

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

STR STRING1 = "1234",0

' Load the STRING with DECIMAL digits

WRD1 = VAL(STRING1,DEC)

' Convert the STRING into an integer

PRINT DEC WRD1

' Display the integer as DECIMAL

STOP

Example 3

' Convert a string of BINARY characters to an integer

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

DIM STRING1[17] AS BYTE

' Create a byte array as a STRING

DIM WRD1 AS WORD

' Create a variable to hold result

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

STR STRING1 = "1010101010000000",0
' Load the STRING with BINARY digits

WRD1 = VAL(STRING1,BIN)

' Convert the STRING into an integer

PRINT BIN WRD1

' Display the integer as BINARY

STOP
Notes

There are limitations with the VAL command when used on a 14-bit core device, in that the array must fit into a single RAM bank. But this is not really a problem, just a little thought when placing the variables will suffice. The compiler will inform you if the array is not fully located inside a BANK, and therefore not suitable for use with the VAL command.

This is not a problem with 16-bit core devices, as they are able to access all their memory very easily.

The VAL command is not recommended inside an expression, as the results are not predictable. However, the VAL command can be used within an IF-THEN, WHILE-WEND, or REPEAT-UNTIL construct, but the code produced is not as efficient as using it outside a construct, because the compiler must assume a worst case scenario, and use DWORD comparisons.

INCLUDE "PROTON_4.INC"

' Use the PROTON board for the demo

DIM STRING1[10] AS BYTE

' Create a byte array as a STRING

DELAYMS 500

' Wait for PICmicro to stabilise

CLS

' Clear the LCD

STR STRING1 = "123",0

' Load the STRING with DEC digits

IF VAL(STRING1,HEX) = 123 THEN
' Compare the result

PRINT AT 1,1,DEC VAL (STRING1,HEX)

ELSE

PRINT AT 1,1,"NOT EQUAL"

ENDIF

STOP
See also:
STR, STR$.
VARPTR

Syntax
Assignment Variable = VARPTR (Variable)

Overview
Returns the address of the variable in RAM. Commonly known as a pointer to a variable.

Operators
Assignment Variable can be any of the compiler's variable types, and will receive the pointer to the variable's address.

Variable can be any variable name used in the BASIC program.

Notes
Be careful if using VARPTR to locate the starting address of an array when using a 14-bit device, as arrays can cross bank boundaries, and the finishing address of the array may be in a different bank to its start address. The compiler can track bank changes internally when accessing arrays, but BASIC code generally cannot. For example, the most common use for VARPTR is when implementing indirect addressing using the PICmicro's FSR and INDF registers. This is not the case with 16-bit core devices, as the FSR0, 1, and 2 registers can access all memory areas.
WHILE...WEND

Syntax

WHILE Condition

Instructions

Instructions

WEND

or

WHILE Condition { Instructions : } WEND

Overview

Execute a block of instructions while a condition is true.

Example

VAR1 = 1

WHILE VAR1 <= 10

PRINT DEC VAR1 , " "

VAR1 = VAR1 + 1

WEND

or

WHILE PORTA.0 = 1: WEND
' Wait for a change on the Port

Notes

WHILE-WEND, repeatedly executes Instructions WHILE Condition is true. When the Condition is no longer true, execution continues at the statement following the WEND. Condition may be any comparison expression.

See also :
IF-THENScribble1349, REPEAT-UNTILScribble1949, FOR-NEXTScribble1089.
USBINIT

Syntax

USBINIT

Overview

Initialise the USB hardware of the PICmicrotm and wait until the USB bus is configured and enabled. This instruction may only be used with a PICmicrotm that has an on-chip USB port such as the PIC16C745 or PIC16C765.

Notes

USBINIT needs to be one of the first statements in a program that uses USB communications.

USB communications is a whole lot more complicated than synchronous (SHIN Scribble2129and SHOUTScribble2149) and asynchronous (SERINScribble2049, SEROUT Scribble2069etc) communications. There is much more to know about USB operation that can possibly be described in this document, as whole books have been written dealing with USB.

The USB subdirectory, located in the INC folder, contains the Microchip USB libraries modified for the PROTON+ Compiler. USB programs require several additional files to operate correctly, some of which may require modification for your particular application. The files in the USB subdirectory are: -

HIDCLASS.ASM

Modified Microchip HID class assembler file

MOUSDESC.ASM
Descriptor file for mouse demo

USB_CH9.ASM

Modified Microchip USB chapter 9 assembler file

USB_DEFS.INC

Modified Microchip USB definitions file

USB-UGV1.PDF

Microchip USB PDF file

The modifications involved removing all linker specific operands, includes to header files and END instructions. Label names that were the same except for the case have been changed to make them unique. Variable names now have a preceding underscore to help prevent duplicate variable errors in the BASIC program.

A USB program consists of the BASIC source code along with the appropriate USB files, including HIDCLASS.ASM, USB_CH9.ASM, USB_DEFS.INC and a USB descriptor file. The BASIC program must setup an assembler interrupt handler, as most USB operations are handled by interrupts.

When the compiler sees that a PIC16C745 or PIC16C765 is required, it will automatically include the required Microchip files into the BASIC program. However, a DESCRIPTOR file must be created and loaded into the BASIC program. This is done by a DECLARE: -

DECLARE USB_DESCRIPTOR "FILENAME"
The above DECLARE will load the appropriate DESCRIPTOR file for use with the USB routines. The descriptor file may be in the BASIC program's directory, or located in the USB directory (found in the INC folder). The compiler will first look in the BASIC program's directory, and if the file is there, it will use that, otherwise, it will look in the USB directory. This allows descriptors with the same name to have unique features. If the file named in the DECLARE is not found, then an error will be produced.

There are three other DECLARES that may be used when implementing USB. These are: -

DECLARE USB_CLASS_FILE = "FILENAME"

' Point to the CLASS file

This DECLARE points to the CLASS file required. Not all USB operation use the HID class, some use a more efficient and unique communications method. However, the PICmicrotm is really only intended for HID class, slow speed communications, so this DECLARE may be omitted from the program, and the HIDCLASS.ASM file will automatically be loaded.

DECLARE USB_COUNT_ERRORS TRUE/FALSE ON/OFF 1 or 0

The USB routines supplied by Microchip have some error detection pointers built into the software. The above DECLARE enables or disables these. To use the error pointers, the following ALIAS's should be created at the top of the BASIC program: -

SYMBOL USB_WRITE_ERROR = _USB_WRT_ERR.WORD
SYMBOL USB_BTO_ERROR = _USB_BTO_ERR.WORD
SYMBOL USB_OWN_ERROR = _USB_OWN_ERR.WORD
SYMBOL USB_BTS_ERROR = _USB_BTS_ERR.WORD
SYMBOL USB_DFN8_ERROR = _USB_DFN8_ERR.WORD
SYMBOL USB_CRC16_ERROR = _USB_CRC16_ERR.WORD
SYMBOL USB_CRC5_ERROR = _USB_CRC5_ERR.WORD
SYMBOL USB_PID_ERROR = _USB_PID_ERR.WORD
DECLARE USB_SHOW_ENUM TRUE/FALSE ON/OFF 1 or 0

The Microchip USB routines can indicate the state of the bus by means of LED's attached to PORTB of the PICmicrotm. The above DECLARE enables or disables this feature.

USB Code and Memory Concerns.
The Microchip USB routines occupy the whole of PAGE3 within the PICmicrotm, and also require several RAM spaces. The variable names used by the USB routines are listed below. Make sure you do not use the same variables names in the BASIC program, or a duplicate variable error will be produced: -

_BUFFER_DESCRIPTOR

_BUFFER_DESCRIPTOR#1

_BUFFER_DESCRIPTOR#2

_BUFFER_DATA

_BUFFER_DATA#1

_BUFFER_DATA#2

_BUFFER_DATA#3

_BUFFER_DATA#4

_BUFFER_DATA#5

_BUFFER_DATA#6

_BUFFER_DATA#7

_USBMASKEDINTERRUPTS

_USB_CURR_CONFIG

_USB_STATUS_DEVICE

_USB_DEV_REQ

_USB_ADDRESS_PENDING

_USBMASKEDERRORS

_PIDS

EP0_START

EP0_STARTH

_EP0_END

_EP0_MAXLENGTH

TEMP

TEMP2

_GP_TEMP

_BUF_INDEX

_USB_INTERFACE

_USB_INTERFACE#1

_USB_INTERFACE#2

_USB_INNER

_USB_OUTER

_DEST_PTR

_SOURCE_PTR

_HID_DEST_PTR

_HID_SOURCE_PTR

_USB_COUNTER

_BYTE_COUNTER

_RP_SAVE

_IS_IDLE

_USB_USTAT

_USB_PID_ERR

_USB_PID_ERRH

_USB_CRC5_ERR

_USB_CRC5_ERRH

_USB_CRC16_ERR

_USB_CRC16_ERRH

_USB_DFN8_ERR

_USB_DFN8_ERRH

_USB_BTO_ERR

_USB_BTO_ERRH

_USB_WRT_ERR

_USB_WRT_ERRH

_USB_OWN_ERR

_USB_OWN_ERRH

_USB_BTS_ERR

_USB_BTS_ERRH

The USB information on the Microchip web site needs to be studied carefully. Also, the books "USB Complete", and "USB by example" may be helpful.

See also :
USBOUTScribble2569, USBINScribble2559 for an example and circuit..
USBIN

Syntax

USBIN Endpoint, Buffer, Countvar, Label
Overview
Receive USB data from the host computer and place it into Buffer.

Operators

Endpoint is a constant value (0 - 2) that indicates which ENDPOINT to receive data from.

Buffer is a BYTEScribble2709 array consisting of no more than 8 elements. The USB adopted by the PICmicrotm, only allows 8 pieces of data to be received in a single operation.

Countvar is a constant value (2 - 8) that indicates how many bytes are transferred from the Buffer.

Label must be a valid BASIC label, that USBIN will jump to in the event that no data is available.

Example 1

DIM BUFFER[8] AS BYTE
TRY_AGAIN:

USBIN 1, BUFFER, 4, TRY_AGAIN

Example 2
' Program to demonstrate the USB commands

' Moves the computer's cursor in a small square

DEVICE = 16C765

XTAL = 24

USB_DESCRIPTOR = "MOUSDESC.ASM"
' Point to the DESCRIPTOR file

' Point to the CLASS file (not always required)

USB_CLASS_FILE = "HIDCLASS.ASM"

USB_COUNT_ERRORS = False

' Enable/Disable error monitors

USB_SHOW_ENUM = False

' Enable/Disable PORTB monitor

DIM BUFFER[8] AS BYTE

DIM LOOPCNT AS BYTE

DIM DIRECTION AS
 Byte

SYMBOL LED = PORTA.5

' Red LED on PORTA bit 5

' Define the hardware interrupt handler for the USB vector

ON_INTERRUPT GOTO USBINT

'---

 GOTO START

' Jump over the interrupt handler

'---

' Assembly language interrupt handler to check interrupt source and vector to it

USBINT:

MOVLW (Service@USBInt >> 8)

MOVWF PCLATH

' Point PCLATH to the USB subroutines

BTFSC PIR1, USBIF

' Make sure it is a USB interrupt

CALL (Service@USBInt)

' Implement the USB subroutines

CONTEXT RESTORE

' Restore saved registers

'---

' *** THE MAIN PROGRAM LOOP STARTS HERE ***

START:

ALL_DIGITAL = True

' Make PORTA, and PORTE all digital

LOW LED

USBINIT

' Initialise USB and wait until configured

HIGH LED

' Turn on LED for USB ready

STR BUFFER = 0,0,0,0,0,0,0,0

' Clear the buffer array

' Move the computer's cursor in a small square

MOVECURSOR:

DIRECTION = 0

REPEAT

LOOPCNT = 0

REPEAT

IF DIRECTION = 0 THEN BUFFER#1 = 0 : BUFFER#2 = -2 : GOTO SENDIT

IF DIRECTION = 1 THEN BUFFER#1 = -2 : BUFFER#2 = 0 : GOTO SENDIT

IF DIRECTION = 2 THEN BUFFER#1 = 0 : BUFFER#2 = 2 : GOTO SENDIT

IF DIRECTION = 3 THEN BUFFER#1 = 2 : BUFFER#2 = 0

SENDIT:

USBOUT 1, BUFFER, 4, SENDIT

' Send BUFFER to endpoint 1

INC LOOPCNT

UNTIL LOOPCNT = 16

' 16 steps in each direction

INC DIRECTION

UNTIL DIRECTION = 4

GOTO MOVECURSOR

' Do it forever
A suitable circuit for the above example is shown below: -

[image: image114.png]Install New Programmer

Select Display Name

Type in the name of the programmer to be displayedin
the Proton IDE crop down selecton boxes, For example,
MicroCode Loader. The name s for csplay purposes only,
and can be anyihing you ike.

Display Name : [My New Programmer

Notes
USB communications is a whole lot more complicated than synchronous (SHIN Scribble2129and SHOUTScribble2149) and asynchronous (SERINScribble2049, SEROUT Scribble2069etc) communications. There is much more to know about USB operation that can possibly be described in this help file, as whole books have been written dealing with USB.

The USB information on the Microchip web site needs to be studied carefully. Also, the books "USB Complete", and "USB by example" may be helpful.

See also :
USBINITScribble2549, USBOUTScribble2569.
USBOUT

Syntax

USBOUT Endpoint, Buffer, Countvar, Label
Overview
Take Countvar number of bytes from the array variable Buffer and send them to the USB Endpoint.

Operators

Endpoint is a constant value (0 - 2) that indicates which ENDPOINT to send data to.

Buffer is a BYTEScribble2709 array consisting of no more than 8 elements. The USB adopted by the PICmicrotm, only allows 8 pieces of data to be sent in a single operation.

Countvar is a constant value (2 - 8) that indicates how many bytes are transferred to the Buffer.

Label must be a valid BASIC label, that USBOUT will jump to in the event that the USB buffer does not have room for the data because of a pending transmission.

Example

DIM BUFFER[8] AS BYTE
TRY_AGAIN:

USBOUT 1, BUFFER, 4, TRY_AGAIN

Notes
The USB subdirectory contains modified Microchip USB libraries. USB programs requires several additional files to operate, some of which will require modification for your particular application. See the text file in the USB subdirectory for more information on the USB commands.

USB communications is a whole lot more complicated than synchronous (SHIN Scribble2129and SHOUTScribble2149) and asynchronous (SERINScribble2049, SEROUT Scribble2069etc) communications. There is much more to know about USB operation that can possibly be described in this help file, as whole books have been written dealing with USB.

The USB information on the Microchip web site needs to be studied carefully. Also, the books "USB Complete", and "USB by example" may be helpful.

See also :
USBINITScribble2549, USBINScribble2559 for an example and circuit.
XIN

Syntax

XIN DataPin , ZeroPin , {Timeout , Timeout Label} , [Variable{,...}]

Overview

Receive X-10 data and store the House Code and Key Code in a variable.
Operators
DataPin is a constant (0 - 15), Port.Bit, or variable, that receives the data from an X-10 interface. This pin is automatically made an input to receive data, and should be pulled up to 5 Volts with a 4.7K resistor.

ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross event. This pin is automatically made an input to received the zero crossing timing, and should also be pulled up to 5 Volts with a 4.7Kresistor.

Timeout is an optional value that allows program continuation if X-10 data is not received within a certain length of time. Timeout is specified in AC power line half-cycles (approximately 8.33 milliseconds).

Timeout Label is where the program will jump to upon a timeout.

Example

DIM HOUSEKEY AS WORD

CLS

LOOP:

' Receive X-10 data, go to NODATA if none

XIN PORTA.2 , PORTA.0 , 10 , NODATA , [HOUSEKEY]

' Display X-10 data on an LCD

PRINT AT 1 , 1 , "House=" , @HOUSEKEY.BYTE1 , "Key=" , @HOUSEKEY.BYTE0

GOTO LOOP

' Do it forever

NODATA:

PRINT "NO DATA"

STOP
XOUT and XIN Declares
In order to make the XIN command's results more in keeping with the BASIC Stamp interpreter, two declares have been included for both XIN and XOUT These are.

DECLARE XOUT_TRANSLATE = On/Off, True/False or 1/0

and

DECLARE XIN_TRANSLATE = On/Off, True/False or 1/0

Notes

XIN processes data at each zero crossing of the AC power line as received on ZeroPin. If there are no transitions on this line, XIN will effectively wait forever.

XIN is used to receive information from X-10 devices that can transmit the appropriate data. X-10 modules are available from a wide variety of sources under several trade names. An interface is required to connect the PICmicrotm to the AC power line. The TW-523 for two-way X-10 communications is required by XIN. This device contains the power line interface and isolates the PICmicrotm from the AC line.

If Variable is a WORD sized variable, then each House Code received will be stored in the upper 8-bits of the WORD And each received Key Code will be stored in the lower 8-bits of the WORD variable. If Variable is a BYTE sized variable, then only the Key Code will be stored.

The House Code is a number between 0 and 15 that corresponds to the House Code set on the X-10 module A through P.

The Key Code can be either the number of a specific X-10 module or the function that is to be performed by a module. In normal operation, a command is first sent, specifying the X-10 module number, followed by a command specifying the desired function. Some functions operate on all modules at once so the module number is unnecessary. Key Code numbers 0-15 correspond to module numbers 1-16.

WARNING. Under no circumstances should the PICmicrotm be connected directly to the AC power line. Voltage potentials carried by the power line will not only instantly destroy the PICmicrotm, but could also pose a serious health hazard.
See also :
XOUTScribble2589.
XOUT

Syntax

XOUT DataPin , ZeroPin , [HouseCode\KeyCode {\Repeat} { , ...}]

Overview

Transmit a HouseCode followed by a KeyCode in X-10 format.

Operators
DataPin is a constant (0 - 15), Port.Bit, or variable, that transmits the data to an X-10 interface. This pin is automatically made an output.

ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross event. This pin is automatically made an input to received the zero crossing timing, and should also be pulled up to 5 Volts with a 4.7Kresistor.

HouseCode is a number between 0 and 15 that corresponds to the House Code set on the X-10 module A through P. The proper HouseCode must be sent as part of each command.

KeyCode can be either the number of a specific X-10 module, or the function that is to be performed by a module. In normal use, a command is first sent specifying the X-10 module number, followed by a command specifying the function required. Some functions operate on all modules at once so the module number is unnecessary. KeyCode numbers 0-15 correspond to module numbers 1-16.

Repeat is an optional operator, and if it is NOT included, then a repeat of 2 times (the minimum) is assumed. Repeat is normally reserved for use with the X-10 Bright and Dim commands.

Example

DIM HOUSE AS BYTE

DIM UNIT AS BYTE
' Create some aliases of the keycodes

SYMBOL UnitOn = %10010

' Turn module on

SYMBOL UnitOff = %11010

' Turn module off

SYMBOL UnitsOff = %11100

' Turn all modules off

SYMBOL LightsOn = %10100

' Turn all light modules on

SYMBOL LightsOff = %10000

' Turn all light modules off

SYMBOL Bright = %10110

' Brighten light module

SYMBOL DimIt = %11110

' Dim light module

' Create aliases for the pins used

SYMBOL DATAPIN = PORTA.1

SYMBOL ZERO_C = PORTA.0

HOUSE = 0

' Set house to 0 (A)

UNIT = 8

' Set unit to 8 (9)

' Turn on unit 8 in house 0

XOUT DATAPIN ,ZERO_C,[HOUSE \ UNIT,HOUSE \ UnitOn]

XOUT DATAPIN ,ZERO_C,[HOUSE \ LightsOff]' Turn off all the lights in house 0

XOUT DATAPIN ,ZERO_C,[HOUSE \ 0]
' Blink light 0 on and off every 10 seconds

LOOP:

XOUT DATAPIN ,ZERO_C,[HOUSE \ UnitOn]

DELAYMS 10000

' Wait 10 seconds

XOUT DATAPIN ,ZERO_C,[HOUSE \ UnitOff]

DELAYMS 10000

' Wait 10 seconds

GOTO LOOP

XOUT and XIN Declares
In order to make the XOUT command's results more in keeping with the BASIC Stamp interpreter, two declares have been included for both XIN and XOUT. These are.

DECLARE XOUT_TRANSLATE = On/Off, True/False or 1/0

and

DECLARE XIN_TRANSLATE = On/Off, True/False or 1/0

Notes

XOUT only transmits data at each zero crossing of the AC power line, as received on ZeroPin. If there are no transitions on this line, XOUT will effectively wait forever.

XOUT is used to transmit information from X-10 devices that can receive the appropriate data. X-10 modules are available from a wide variety of sources under several trade names. An interface is required to connect the PICmicrotm to the AC power line. Either the PL-513 for send only, or the TW-523 for two-way X-10 communications are required. These devices contain the power line interface and isolate the PICmicrotm from the AC line.

The KeyCode numbers and their corresponding operations are listed below: -

KeyCode

KeyCode No.
Operation

UnitOn

%10010

Turn module on

UnitOff

%11010

Turn module off

UnitsOff

%11100

Turn all modules off

LightsOn

%10100

Turn all light modules on

LightsOff

%10000

Turn all light modules off

Bright

%10110

Brighten light module

Dim

%11110

Dim light module

Wiring to the X-10 interfaces requires 4 connections. Output from the X-10 interface (zero crossing and receive data) are open-collector, which is the reason for the pull-up resistors on the PICmicrotm.

Wiring for each type of interface is shown below: -

PL-513 Wiring

Wire No.
Wire Colour

Connection

1

Black

Zero crossing output

2

Red

Zero crossing common

3

Green

X-10 transmit common

4

Yellow

X-10 transmit input

TW-523 Wiring

Wire No.
Wire Colour

Connection

1

Black

Zero crossing output

2

Red

Common

3

Green

X-10 receive output

4

Yellow

X-10 transmit input

WARNING. Under no circumstances should the PICmicrotm be connected directly to the AC power line. Voltage potentials carried by the power line will not only instantly destroy the PICmicrotm, but could also pose a serious health hazard.
See also :
XINScribble2579.
Protected Compiler Words

Below is a list of protected words that the compiler uses internally. Be sure not to use any of these words as variable or label names, or errors will be produced.

ABS, ACTUAL_BANKS, ADC_RESOLUTION, ADIN, ADIN_RES, ADIN_STIME, ADIN_TAD

ALL_DIGITAL, ASM, AVAILABLE_RAM

BANK0_END, BANK0_START, BANK10_END, BANK10_START, BANK11_END, BANK11_START

BANK12_END, BANK12_START

BANK13_END, BANK13_START, BANK14_END, BANK14_START, BANK15_END, BANK15_START

BANK1_END, BANK1_START

BANK2_END, BANK2_START, BANK3_END, BANK3_START, BANK4_END, BANK4_START

BANK5_END, BANK5_START

BANK6_END, BANK6_START, BANK7_END, BANK7_START, BANK8_END, BANK8_START

BANK9_END, BANK9_START

BANK_SELECT_SWITCH, BANKA_END, BANKA_START, BIT, BOOTLOADER, BOX, BRANCH

BRANCHL, BRESTART, BREAK, BSTART, BSTOP, BUS_DELAYMS, BUSACK

BUSIN, BUSOUT

BUTTON, BUTTON_DELAY, BYTE, CALL, CCP1_PIN, CCP2_PIN, CASE, CDATA

CERASE, CIRCLE, CLEAR, CLEARBIT, CLS, CON, CONFIG, CONTEXT, CORE, COS COUNT, COUNT_ERRORS, COUNTER, CREAD, CURSOR, CWRITE, CF_READ, CF_WRITE, CF_INIT, CF_SECTOR, DATA, DB, DC

DCD, DE, DEC, DECLARE, DEFINE, DELAYMS, DELAYUS, DEVICE

DIG, DIM, DISABLE, DIV2, DT, DTMFOUT, DW, DWORD, EDATA

EEPROM_SIZE, ELSE, ELSEIF, ENABLE, END, ENDCASE ENDASM, ENDIF, ENDM

EQU, EREAD, EWRITE, EXITM, FILE_REF, FLASH_CAPABLE

FLOAT, FONT_ADDR, FOR, FREQOUT, FSRSAVE

GETBIT, GLCD_CS_INVERT, GLCD_FAST_STROBE, GOSUB, GOTO

HBRESTART, HBSTART, HBSTOP, HBUS_BITRATE, HBUSACK

HBUSIN, HBUSOUT, HIGH, HPWM, HRSIN, HRSOUT, HSERIAL_BAUD

HSERIAL_CLEAR, HSERIAL_PARITY, HSERIAL_RCSTA, HSERIAL_SPBRG

HSERIAL_TXSTA

I2CREAD, I2CWRITE, IF, INC, INCLUDE, INKEY, INPUT, INTERNAL_BUS

INTERNAL_FONT, KEYPAD_PORT, KEYBOARD_IN
LCD_CS1PIN, LCD_CS2PIN, LCD_DTPIN, LCD_DTPORT, LCD_ENPIN

LCD_INTERFACE, LCD_LINES, LCD_RSPIN, LCD_RWPIN, LCD_TYPE

LCDOUT, LCDREAD, LCDWRITE, LET, LIBRARY, LINE, LOADBIT, LOCAL

LOOKDOWN, LOOKDOWNL, LOOKUP, LOOKUPL, LOW, LREAD, LREAD8,

LREAD16, LREAD32, MACRO_PARAMS, MAX, MIN, MSSP_TYPE, MOUSE_IN, NCD

NEXT, ON_INTERRUPT, ON_LOW_INTERRUPT, ONBOARD_ADC, ONBOARD_UART

ONBOARD_USB, OREAD, ORG, OUTPUT, OWRITE

PAUSE, PAUSEUS, PEEK, PEEKCODE, PIC_PAGES

PIXEL, PLOT, POKE, POKECODE, PORTB_PULLUPS

POT, PRINT, PSAVE, PULSIN, PULSIN_MAXIMUM

PULSOUT, PWM, RAM_BANK, RAM_BANKS

RANDOM, RCIN, RCTIME, READ, REM, REMARKS

REPEAT, RES, RESTORE, RESUME, RETURN, REV

RSIN, RSIN_MODE, RSIN_PIN, RSIN_TIMEOUT, RSOUT

RSOUT_MODE, RSOUT_PACE, RSOUT_PIN, S_ASM

SCL_PIN, SDA_PIN, SERIAL_BAUD, SEED, SELECT, SERIAL_DATA

SERIN, SERIN2, SEROUT, SEROUT2, SERVO

SET, SETBIT, SET_DEFAULTS, SET_OSCCAL, SHIFT_DELAYUS

SHIN, SHOUT, SIN, SLEEP, SLOW_BUS, SNOOZE

SOUND, SOUND2, SQR, SSAVE, STEP, STOP, STR, SWAP, SYMBOL

THEN, TO, TOGGLE

UNPLOT, UNTIL, UPPER, USB_CLASS_FILE

USB_DESCRIPTOR, USB_SHOW_ENUM, USBIN

USBINIT, USBOUT

VAR, VAL, VARPTR, WATCHDOG, WEND, WHILE, WORD

WRITE, WSAVE, XIN, XOUT, XTAL

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

�EMBED Visio.Drawing.5���� �

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

2
1
Crownhill Associates Limited 2004 - All Rights Reserved
 Revision 1.1
 2004-09-30

[image: image115.png]Install New Programmer

Select Programmer Executable

@

Type in the name of the programmer executable name.
For example, epicuin.exe or meloader.exe. Doritindude
the pathname, Just the executable name.

Programmer Filename : program.exe|

[image: image116.png]Install New Programmer

‘Select Programmer Path

Proton IDE can automatically search for the path that
contains the programmer executable, o you can choose it

[image: image117.png]Install New Programmer

Select Parameters

@

Proton IDE enables you to pass certain parameters when
the programmer s started. You can also bind hex.
flenames and target devices using Shex-flenames and
Starget-devices respectively.

Clck here to view an example
Parameters : | shex-flenames -pstarget-devices|

[image: image118.emf]C2

0.1uF

5 Volts

A9

VCC

A10

OE

CE1

WE

RDY/BSY

CSEL

GND

13

CF CARD

20

A0

A1

A5

A4

A3

A2

D1

D0

GND

RESET

19

18

17

16

15

14

12

10

8

7

9

36

41

37

32

39

21

1 50

44

D7

D6

D5

D4

D3

D2

CD1

CE2

REG

VCC

38

26

22

23

2

3

4

5

6

11

A6

A7

A8

R1

47k

PORTD.0

PORTD.1

PORTD.2

PORTD.3

PORTD.4

PORTD.5

PORTD.6

PORTD.7

PORTA.5

PORTE.0

PORTE.1

PORTE.2

PORTC.0

PORTC.1

PORTC.3

PORTC.4

PORTC.2

0V

TO PICMICRO

[image: image119.png]ASCII Table.

e
00000000
00000001
00000010
00000011
00000100
00000101,
00000110
00000111,
00001000
00001001

Desarpton
Nl character
Start of Header
Startof Text

End of Text

End of Transmission
Enguiry
Adaowledgment

[image: image120.png]® HEX View - LEDSequence.hex

52308
2306
sa701
50330
sasos
52407
50000
3400
53408
$AE00

[image: image121.png]Configuration % -8

Configuration Options

3 Port Number
D Baudrate

O Parity.

O Byte Size

O Stop Bits

19200 Configuration

D COM1, available
3 19200 baud

S No parity
Ssytesizeiss

5 1 stop bit

Status

Not connected

[image: image122.png]Add to Favorites...
Manage Favorites...

(5] Defaut Confguration

(5] 9600 Configuration

B 19200 Configuration
) 115200 Configuration

[image: image123.png]Clear

Word wrep
Auto Clear Afte Transmit
[ransmiton Carage Retun

Line Terminator

Parse Control Characters

[image: image124.png]

[image: image125.png]2 Instal New Programmer.
e

[F e ———

[image: image126.png]VHB Explorer - ISIS (16F877 ® 20Mi1z)

e View Help
& rodes | S Favortes < | [E

[image: image127.png]VHB Explorer

ar o |[v]pcis aico_we
Copy clic

[paste cois

X pelete coliod
SeectAl Coiea
Change Case »

G .. coisr

Dresce.. o

SavePsge Culss

[image: image128.png]2 Update Manager

Update Notification

One or more files installed on your system are now out of date and require updating.

Before running an online update, it is important that you review
the changes that will be made to your system by selecting the
following links.

Broton IDE Help File
What do you want to do?

@ Yes please, [would like to update these files now.
Mo thanks, T'll update them at a later time.,

[image: image129.png]Update Notification

Your installation is up to date. No updating
of your system files are required at the
present time.

[image: image130.wmf]C1

1uF

+5 Volts

V+

V+

VCC

GND

MAX232

10

9

12

11

14

15

13

8

7

6

5

4

3

2

1

16

C1+

C1-

C2+

C2-

V-

T1in

T2in

R1out

R2out

T1out

T2out

R1in

R2in

C2

1uF

C3

1uF

C4

1uF

6

2

1

5

3

7

4

8

9

RX

TX

GND

9-way

D-Socket

0V

PIC RC.6

PIC RC.7

C5

1uF

+5 Volts

R2

100

W

R1

4.7k

W

RESET

PIC MCLR

_1064500406.vsd
R2
1K�

To PC's
Serial Port�

To PIC
Circuit's GND�

From PIC
Serial Output�

R1
1K�

To PIC
Serial Input�

6�

2�

1�

5�

3�

7�

4�

8�

9�

RX�

TX�

GND�

9-way
D-Socket�

_1088018258.vsd
5 Volts�

C8
22pF�

C5
10uF�

4MHz
Crystal�

C6
0.1uF�

R3
4.7k�

5 Volts�

C7
22pF�

4MHz
Crystal�

R2
10k�

SENDER�

RECEIVER�

TO
LCD MODULE�

_1158043246.vsd
C1
1uF�

+5 Volts�

C2
1uF�

C3
1uF�

C4
1uF�

6�

2�

1�

5�

3�

7�

4�

8�

9�

RX�

TX�

GND�

9-way
D-Socket�

0V�

PIC RC.6�

PIC RC.7�

C5
1uF�

+5 Volts�

R2
100W�

R1
4.7kW�

RESET�

PIC MCLR�

_1159184933.vsd
A6�

A9�

VCC�

A10�

OE�

R1
47k�

CE1�

WE�

RDY/BSY�

CSEL�

A7�

A8�

GND�

13�

CF CARD�

C2
0.1uF�

PORTD.0�

PORTD.1�

PORTD.2�

PORTD.3�

PORTD.4�

PORTD.5�

PORTD.6�

PORTD.7�

PORTA.5�

PORTE.0�

PORTE.1�

PORTE.2�

PORTC.0�

PORTC.1�

5 Volts�

20�

A0�

A1�

A5�

A4�

A3�

A2�

D1�

D0�

PORTC.3�

PORTC.4�

GND�

RESET�

PORTC.2�

19�

18�

17�

16�

15�

14�

12�

10�

8�

7�

9�

36�

41�

37�

32�

39�

21�

1�

50�

44�

D7�

D6�

D5�

D4�

D3�

D2�

CD1�

CE2�

REG�

VCC�

38�

26�

22�

23�

2�

3�

4�

5�

6�

11�

0V�

TO PICMICRO�

_1105170428.vsd
R1
220�

R2
220�

PIN 1�

PIN 2�

_1105251121.vsd
RB7�

VDD�

RB6�

RB5�

RB4�

RB3�

RB2�

RB1�

RB0�

RA4�

RA3�

RA2�

RA1�

RA0�

MCLR�

OSC1�

OSC2�

VSS�

20�

PIC16F876�

C4
15pF�

C2
0.1uF�

C1
10uF�

C3
15pF�

Regulated 5 Volts�

18�

RC0�

RC1�

RC2�

RC3�

RC4�

RC5�

RC6�

RC7�

VSS�

RA5�

20MHz
Crystal�

0v�

R1
4.7k�

17�

16�

15�

14�

13�

12�

11�

28�

27�

26�

25�

24�

23�

22�

21�

7�

6�

5�

4�

3�

2�

19�

8�

10�

9�

1�

To
Serial
LCD�

VR1
100k
linear�

_1088012970.vsd
Xpos 0 - 127 �

Ypos 0 - 63�

0�

0�

63�

0�

127�

63�

0�

127�

Line 0�

Line 1�

Line 2�

Line 3�

Line 4�

Line 5�

Line 6�

Line 7�

_1088015229.vsd
RB7�

VDD�

RB6�

RB5�

RB4�

RB3�

RB2�

RB1�

RB0�

13�

RA4�

RA3�

RA2�

RA1�

RA0�

MCLR�

OSC1�

OSC2�

VSS�

14�

PIC16F84�

C4
56pf�

C1
10uf�

C2
0.1uf�

R1
4.7k�

Regulated 5 Volts�

C3
56pf�

4Mhz
Crystal�

12�

11�

10�

9�

8�

7�

6�

3�

2�

1�

18�

17�

5�

4�

16�

14�

0v�

IN�

OUT�

GND�

78L05�

IC1�

IC2�

IC3�

9 Volts�

R2
10k�

C5
1uf�

LED�

R3
470�

LMC662�

3�

2�

4�

8�

1�

9 Volts
In�

0- 5 Volts
Out�

C6
.1uf�

_1087928279.vsd
R2
10k�

R1
10k�

To RB1 or RC4
To RB0 or RC3�

0v�

+5 Volts�

_1088009640.vsd
DS1820�

VDD�

DQ�

GND�

3�

1�

2�

R1
4.7k�

+5 Volts�

0v�

To RA1�

1�

2�

3�

DS1820�

1..GND
2..DQ
3..VCC�

_1081621209.vsd
+5V�

0V�

47k
Pullup�

To Pin of the PIC�

Push
Switch�

+5V�

0V�

47k
Pulldown�

To Pin of the PIC�

Push
Switch�

Active LOW�

Active HIGH�

_1048961432.vsd
220W�

To
I/O Pin�

R�

C�

+5 Volts�

_1060462127.vsd

_1064496686.vsd
C1
1uF�

From PIC
Serial Output
�

5 Volts�

C2
1uF�

C3
1uF�

C4
1uF�

0V�

To PIC
Serial Input�

C5
1uF�

To PC
Serial Port�

6�

2�

1�

5�

3�

7�

4�

8�

9�

RX�

TX�

GND�

9-way
D-Socket�

_1064294389.vsd
R1
1k�

C1
0.1uF�

From PIC
I/O pin�

From PIC
I/O pin�

Speaker�

C1
10uF�

C2
10uF�

C2
0.1uF�

R2
1k�

To Audio
Amplifier�

_1060462045.vsd
$
7E�

$
1
1�

$
0
0�

$
1
1�

$
1
1�

$
7E�

_1053330632.vsd
msb�

Xpos 0 - 127 �

Ypos 0 - 63�

lsb�

Line 0�

Line 1�

Line 2�

Line 3�

_1048888647.vsd
To
I/O Pin�

5-50k�

0.1uF�

_1048961382.vsd
220W�

To
I/O Pin�

R�

C�

+5 Volts�

_1048528471.vsd
To
I/O Pin�

Analogue
Voltage
Output�

10k�

10uF�

