(sr BlueCore™3-Multimedia
~

Kalimba DSP

User Guide

June 2005

CSR

Churchill House
Cambridge Business Park
Cowley Road

Cambridge CB4 0WZ
United Kingdom

Registered in England 3665875

Tel: +44 (0)1223 692000
Fax: +44 (0)1223 692001
WWW.CSr.com

http://www.csr.com/home.htm

CSr

b’ /‘ Contents

Contents
A [0 1o T 1U o4 4 o IR 5
2 KBY FEAIUIES ...ttt sttt 5585555555858 8 585858888 £ 8855555585 s ks £ s s st e e e e e nnnnnnnnen 6
SYSTEIM OVEIVIBW ...iiieiiiiee ettt ettt e oo oottt e e e e e e o a bbbttt e e e e e o a b be e et e e e e e e e sb bbbttt e e e e aanbeeeeeeaanbbeneeaeeeeannnn 7
G T I =110 T o X T I 1] o T S 8
3.2 Kalimba DSP MEMOIY ...ttt e e e e e ettt e e e e e s et e e e e e e eassssaeeeaaeseasssseseeaeeeassaseaaeeeannes 8
3.3 Kalimba DSP PerPREIralSciiiiiiiiiiii ettt e e et 8
3.3.1 Memory Management Unit INterfacCeccuuviiiiiiiiiieee et e 8
3.3.2 Programmable [/O CONLrOlccueiiiiiiee ettt e e e e e e et e e seneee e e snneeeeenneeeanns 8
B TR T I 101 =Y ¢ (] o A @7 o (o] LSS TR USSR PP 8
3.3.4 Clock Source Select and TIMETr...... ... ittt e e e e e e e e e e e e e e e e e e e snnneas 8
3.3.5 DeBUG INTEITACE.coi ittt 8
4 Kalimba DSP COre ArCRITECIUIEciiiiiiiiiiiit ettt st e s b e sne e 9
4.1 Arithmetic LOGIC UNit.....ooii ittt e e e et e e e e e e e st r e e e e e e sessanteaaeessesansneeeeaess 9
4.2 AAAreSS GENEIALOIScciiiiiiiiiiei ettt et e ettt e et e e e b bt e e e ettt e e abe e e e e aabe e e e aabb e e saneeeeabbeeenan 9
4.3 REGISIEIS ...t e et n e et e e s 10
4.4 BanK 1 REGISIEIS ...ttt e e e e e ettt e e e e e e e st et e e e e e e e e e nbaee e e e aennnteeeeeeean 10
R T 4 o P= Lo E (o £ (Y RS 11
o Tt B L= F= LAV o F= o {1 USRS UPRRRT 11
N - (ol o - To [74 SRR SPRRRTN 11
TG T O T VA o = To TN (O PSP PR PRI 11
4.5.4 OVEMIOW FIAG (V) 1etiutiiiiiiitie ettt ettt ettt he ettt e et e e bt e e be e e ae e e s bbeesaeeesrbeenneennneas 11
455 Sticky OVErfIOW FIAg (SV) ...uuuiiiiiiiiieiieit ettt e e e e e e e e e e e s e e eanraeeaaaeeanes 11
456 User Definable FIag (UD)........ueiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e esnnrseaeaaeeanes 12
457 Bit REVEISE FIag (BR) .. .eeeeiiiiiieiiiii ettt e ettt e e et e e et e e e snae e e e e nee e e ennne e e e nneeean 12
4.5.8 User Mode FIag (UM).... ..ottt et e e st e e et e e et e e e smnee e e e nnee e e s enneeeesneeean 12
e B 0o g To [11T0] o I 0o T == S PSSR UURRRT 12
I 4 Y O Y=Y | 1] () PRSPPI 13
4.7 BanK 2 REGISIEIS ..ottt aa e a e s s 14
o B o Loy gl =T 1] (=] PP UPPRPRN 14
A Y oo 11V =Y 53 (Y S SS 14
4.7.3 Length REGISTEIS ..ottt e e e e e e ettt e e e e e e e nnb et e e e e e e e s anneneeeeeannn 14
S I =) (40 o1 o] T =Y T Yo = PR 15
R Tt B 1N o T PP SPRRRRN 15
R T I o T = PSP PRRPRN 15
4.8.3 TYPE € ittt e e e et e e n e e e et e e e s 15
4.8.4 SPECIAI CASESeiiieiiie ittt e e e e s s 15
e T e (o Te =T .4 I 0 PP 16
S L0 1= o 18 o [PPSR 16
I Y, (T g To Y YA @ o = T T 1=T= 11T 0] o [P PRSP 17
5.1 IMEMOTY P ..ttt e et e e et e e et e e ek et e e e e e e e e Rt e et e e e e e e e e e 17
511 PM MEMOTY IMAP ...ceiiiiiiiiitiiee ettt ettt e e e e e et e e e e e s et a e e e e e e e s e sassaeeeeeeseanntseeaaaeeanrenes 17
5.1.2 DM MEMOIY MAP ... ittt e e e e e ettt e e e e e e st e e e e e e e s satbsaeeeaeeesesbanaeeaeessasnees 18
LT IR R B 1V b2 1V =Y o To oV /= T o HO SRR 18
(O [(U Tod Ao g IS =] B TS o] o] A o] o [P UUSPR 19
6.1 SUBTRACT and SUBTRACT With BOIMOW..........cciuiiiiiiiiieiitie ettt 21
6.2 Bank1/2 Register Operations: ADD and SUBTRACTcccciiiiiiiiieiiiiee e e et seeee e nneeee s 22
6.3 Logical Operations: AND, OR and XORuiiiiiiiiiiiiiiiie et e e e s e e e e e e e s e e eansreeeaaeeannes 23
6.4 Shifter: LSHIFT @nd ASHIFT ..ottt ettt et nereas 24
6.5 IMAC MOVE OPEIALIONSeeiiuiiiiiiiie ettt ettt e ettt e e s e e e e b et e e et et e e sneeeabbeeenans 25
6.6 Multiply: Signed 24-Bit Fractional and INtEGEroccuiiiiiiiiiii e 26
6.7 MULTIPLY and ACCUMULATE (56-Dit)ccuttiiiiiiieiiieiiee ettt 27
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 2 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b’ /‘ Contents

6.8 LOAD / STORE With MemOry OffSEt..........coiiiiiiiiiiieiit ettt e 28

6.9 Sign Bits Detect and Block Sign BitsS DeteCtcooiiiiiiiiiiiiiieee e 29
6.10 DiVide INSIFUCHION ...ttt e e e e e e ettt e e e e e s nnteeeeaaeeaaannteeeeeeaansnnneeaaaaeaannns 30
6.11 Program Flow: CALL, JUMP, RTS, RTI, SLEEP, DO...LOOP and BREAKccccceiiiiieiiieeenieene 31
6.12 Indexed MEM_ACCESS_1 and MEM_ACCESS 2.ttt a e 32

A [=3 (U Tod Ao T o I @Zo Lo 112 o [USRS 33
7.1 TYPE A INSIIUCHION ...t e et e e s e e e st e e et e e nan e e e e annreeenaas 34

7.2 TYPE B INSIIUCHION.....ceiiiiiiie e e e e e et e e et e s s e e e e e nnre e e e 34

4 T 1Y/ o Y= 3 O [T3 (0T (o o SRR 34

A S o1 Tor =1 O 1T SO POPRPRPRRN 34

A I O] O1 0]] 7o e 13T TSP 35

A0S T AN N =Y o USSP 36

A 7 15 072 1= (o I (O 7= o SRS 36

7.8 Bank 1/2 Register Select Field (B2RS Field)c..coiiiiiiiiiiie et e e 36

7.9 Saturation Select Field (V FIeld)uuiiiiiiiii et e e e e e e e s e e aane e e e e e e eanes 36
7.10 Sign Select Field (S FIld)ioiiieiiieiiee ittt ettt ettt et e et e e e saee st e e enneesnneas 37
7.11 kig Coding for LSHIFT @nd ASHIFTttt ettt e et e e e ennae e e snnaeeeenneeeenns 37
712 IMAC SUD REGISIEIS ...ttt ettt e e et e e st e e e e st e e e e neee e e s neeeeeanteeeeanneeeenneeeeanneeeeenns 37
A S 2 ST | RSSO USPOPSR 37
A R S 1 PRSP SUPPROURPPRTOPRR 38
7.15 K16 Coding Divide INSITUCHIONS......ooiiieii et e e e e e st e e e e e e s snteeaeeeennes 38

8 Kalimba DSP PeriPNErals ...ttt e e e e bbb e e e e e e s b e e e e e e e e nntnne s 39
S 0 I |V 11 I T =Y o =TSSR 40
Tt T (== To [o o =T PSR 40

< T I T 41 (N o] o £ PR S 40

S I] e I 4 T= OSSR 40

8.3 Kalimba INterrupt CONIIOIIET.........co et e e e e e e e e e e e e e e s e saeaeeaeeeeannnes 41
8.3.1 DSP Core Functionality DUring INtErTUPLeeiiiiiiee e 41

8.3.2 Interrupt Controller FUNCHONANILYcooiiiiiiiiiie e 41

8.4 Generation Of MCU INTEITUPTo.oooiiieeeiie et e e e e e e e e s e e e e e e e s eesanreeeeeeeannnes 42

S T = (@ 1 @70 o)i o SRR UOTPRRR 42

8.6 MCU Memory WINdOW iN DIM2 ..ottt ettt e e e e e nie e e 42

8.7 Flash Memory WINdOW iN DIM2........coooiiiiiiii ettt et e s e e e srne e e 42

8.8 PM WINAOW iN DM ..ottt et e et e e et e e e st e e e s e e e s emseeeesmneeeeeasteeeeanneeeesneeeeannaeeeenns 43

8.9 GENEIAl REGISIEIS. .. eeiiiiiii ittt e e e e et e e e e e e et et e ea e e e s e ntaeeeeesasbnaeeeaeeeaanne 43
8.10 Clock Rate Divider CONIIOlcoiiiiiiiiii ettt e e e e ettt e e e e e e e snebeeeeaaeeesnsaeeaaeeeaannes 43

L I B B T=T o 0T o[o TS PSSP TP P U PP OPPPPPORRRT 43
Appendix A: NUMDBDEr REPIESENTALIONc.uiiiiiiie et e s e e e e e s s e bt e e e e e e sstbaeaeaaeesannnes 44
APPENIX B: DSP REQISTEIS iiiiiiiiiiiiiie e eecte et e oot e e e e e e et e e e e e s s e bt e e taee e s e tbtb e et eeeesaasssaaeeeessnstbaaseaaeesannnes 46
Appendix C: SOFtWAre EXAMPIESoooiiiiiiiiiiii ettt e e e e st bt e e nnr e e s nane e s 66
DOCUMENT REFEIENCES ...ttt oottt e oo oottt e e e oo e et bttt e e e e e e e e s a e et eeeaeeeaanntbeeeaeseannnteeeeaaeeeeannseneeas 72
ACTONYMS AN DEFINTTIONSceiiiiiie et e oottt e e e e e bbb e et e e e e e e e nbe e e e e e e anbbaeeeaeeeeanens 73
[RY=ToTo T o lo)l = Ty [=TSO PESRRT 74

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 3 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

v /‘ Contents

List of Figures

Figure 3.1: Kalimba DSP Co-Processor SUD SYStEM...........oii i 7
Figure 4.1: Kalimba DSP Core Base ArChitECIUIE...........ccoueiiiiiie et e e 9
FIQUIe 4.2: IMAC REISTETttt e et e e e e e et eeeee e e e s esasaeeaeeaeeesaasbaeeeessanssssaeeeaeseesnssnnes 13
Figure 5.1: MemOry OrganiSation..........c.eeii ittt ettt e e et e et e e s sbe e e e e nnbeee e 17
Figure 8.1: Kalimba DSP Peripheral INterfaces...........c.ooiiiiiiiiiiic e 39
Figure 8.2: Example of MMU Interface Usage for a Wireless MP3 Player............ooccoiiiiiieeiiie e 40

List of Tables

Table 4.1: BANK 1 REQISTEIScci ittt e e e e ettt e e e e e e e a et e ee e e e e e e abeeeeeeeeeaannnneeeaeaeesannns 10
Table 4.2: TFIAQS REGISTETocii ittt e e e e e et e e e e e e s e b abeeeeeessasbaaeeaaeeesessssseaaeeesanes 11
L] o) (TR 30 S @704 o [oo T @70 To L= PSS PUPRRP 12
Table 4.4: BanK 2 REGISIEISc..iiiiiiiiii ettt h bttt et e et e e s 14
Table 5.1: PIM MEMOIY IMAPD ...ttt ettt e et e e st e e ettt e e b e e e re e e e eb e e e s nne e e e nannee s 17
Table 5.2: DM MEMOTY IMBP ...ttt oottt e e e e e e e te e et e e e s e e nnte et e e e e e ea e nteeeeeeaansnneeeaaeaeaannns 18
Table 5.3: DM2 MEMOTY IMAP......cciiiiiiiiitie e e ee ettt e e e e ettt e e e e e e ettt e e e e e eessataeeeaaeeeassntsaeeeaeseeaanseaaeessasssseseaaeeesanns 18
Table 6.1: Notational CONVENTIONiiiiiiiiitiiii ettt e e e e e ettt e e e e e st eaeeeeaessasnaeeeaeeesansrnaeeaaaeesannes 19
Table 7.1: Instruction CodiNg FOIMAL..........oiiiiiiiie et e e as 33
Table 7.2: OPCODE CodiNG FOIMALuiiiiiiiiieiiee ettt e e eesr e e s e e e s neneee s 35
JLIE= 1oL S N 1V N 7= o S 36
Table 7.4: C Field OPIONSeoeiiieiiiiitiiee ettt e e e e e ettt e e e e e s e aaa e e e e e e e e easantaaeeaaeeesbaaeeaeeessnssssseaaeeesannns 36
TabIE 7.5: B2RS FIEIA ...ttt e e et e e e et e e e ae e e e s ase e e e astaeeeeseeessbaeaeesbeeeeansaaaesnsseens 36
JLIE= 1oL TV =Y OO E 36
JLIE= 1L 0 A0S T =Y o S 37
Table 7.8: kie Coding Shift FOrMAL.........oooiiiiiii e e e e e e e e e e e e e s e eaaeeesnnes 37
Table 7.9: IMAC SUD-REGISLEISueiiiiiiii ittt e e e e et e e e e e s et e et e eaesesanteaeeessnsbsaseaaeeeaanes 37
TADIE 7.10: ASHIF T ittt e e ettt e e e et e e e s aa e e e e esbeeeeaasaeeeasseeeeastaeeeanseeessbaeeeasbeeeeanraeeeannreans 37
L= o L= T T S [S PR 38
L= Lo L= 7 I 1 To L= =Y o SRS 38
Table 7.13: Divide FIeld STAtEScoouiiiiiiiie et e bt e e et e s bt e e e ettt e e e nnneeeeanneeeas 38
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 4 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

v /‘ Introduction

1 Introduction

The BlueCore™3-Multimedia Kalimba DSP User Guide is a user guide for developers of software
applications and algorithms for the DSP co-processor on the BlueCore3-Multimedia device. It documents the
architecture of the Kalimba DSP; instruction set mnemonics, peripheral features, and includes some example
code. Read this document in conjunction with the other Kalimba tools documents that are available:

= BlueLab Kalimba DSP Assembler User Guide (CSR reference bc3-ug-002Pd) which covers the
assembler software

= BlueLab xIDE User Guide (CSR reference blab-ug-002Pa) which covers xIDE, the software debugging
tool

One of the features of the BlueCore3-Multimedia device is an on-chip DSP co-processor Kalimba. The Kalimba
DSP particularly targets audio processing applications for BlueCore. The likely audio processing applications
include:

= Sub-Band Coding (SBC) decoding and encoding, as defined in the Bluetooth Advanced Audio
Distribution Profile

= MP3 decoding, as defined in ISO/IEC 11172-3, and the sample rate extensions defined in
ISO/IEC 13818-3

= Advanced Audio Coding (AAC) decoding, as defined in ISO/IEC 13818-7
= Alternative voice/Hi-Fi CODECs

= Echo and noise cancellation

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 5 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Key Features

2 Key Features

The key features of the Kalimba DSP core include:

24-bit fixed point Kalimba DSP core

32MIPS performance which can be divided down for power saving

32-bit instruction word, dual 24-bit data memory:

= 16-bit program address space with 4Kword (4K x 32-bits) of physical RAM
= 16-bit data address space with 2 x 8Kword (8K x 24-bits) of physical RAM
Up to two data memory accesses can be performed in the same cycle as a program memory read
Single cycle 24 x 24-bit multiply with 56-bit accumulator

Single cycle barrel shifter with 56-bit input and 24-bit output

Multi-cycle divide (performed in the background)

Majority of instructions can be conditional

Zero overhead ring buffer indexing

Zero overhead looping and branching

Bit reversed addressing capability

Largely orthogonal instruction set, which is quick to learn and easy to write in algebraic assembler

language

The key features of the Kalimba DSP peripherals include:

Close integration into the rest of the BlueCore3-Multimedia

Four low overhead read/write ports to transfer streaming data to and from the BlueCore3-Multimedia
subsystem

Four shared memory mapped registers

Two memory mapped windows into the BlueCore3-Multimedia MCU RAM for data exchange
A window for access to the flash memory

Multiple interrupt sources including two 24-bit timers

Read and write access to external programmable I/O (PIO) lines

bc3-ug-001Pc Advance Information Page 6 of 74

© Copyright CSR 2003

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

System Overview

3 System Overview

The BlueCore3-Multimedia contains the Kalimba DSP shown in Figure 3.1 and consists of the following functional
elements:

Kalimba DSP core

DSP memory, this RAM is used for:

= Data memory

= Program memory

= Memory mapped I/O

Memory management unit (MMU) interface
Programmable 1/O control

Interrupt control

Clock source

Timer

Debug interface

Memory Management Unit
Of BlueCore3
Subsystem

MCU Register Interface (including Debug) >

Kalimba DSP

DSP MMU Port

4

LN 4 O

DSP Program Control

Data Momory 2 (OM2) <
' BK x 24-bit

DSP's MCU and FLASH Window Control >

Programmable Clock € 32MHz

Kalimba DSP Core

Kalimba DSP Peripherals

Data Memory 1 (DM1) <

DSP Data Memory 2 Interface (DM2) >

DSP Data Memory 1 Interface (DM1) >

4Kx 32

DSP Program Memory Interface (PM) >

PIO In/Out

Y

IRQ to BlueCore3 Subsystem

MMU Interface
o : < IRQ from BlueCore3 Subsystem
o 1L 1us Timer Clock
MCU Window
Flash Window

Figure 3.1: Kalimba DSP Co-Processor Sub System

bc3-ug-001Pc

© Copyright CSR 2003

Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 7 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

v /‘ System Overview

3.1 Kalimba DSP Core

The Kalimba DSP core is an open platform DSP that can perform signal processing functions on over air data or
CODEC data in order to enhance audio applications. Figure 3.1 and Section 8 shows how the DSP interfaces to
other functional blocks within BlueCore3-Multimedia.

3.2 Kalimba DSP Memory

The Kalimba DSP contains on-chip RAM as follows:

= 8K x 24-bit for data memory 1 (DM1)
= 8K x 24-bit for data memory 2 (DM2)
= 4K x 32-bit for program memory (PM)

3.3 Kalimba DSP Peripherals

3.3.1 Memory Management Unit Interface

The MMU Interface consists of a series of virtual read and write ports that are used to stream transfers to/from
the rest of the BlueCore3-Multimedia.

3.3.2 Programmable I/O Control

BlueCore3-Multimedia has 16 programmable 1/O terminals (12 digital and 4 analogue/digital) controlled by
firmware running on the device. The Kalimba DSP core can read any digital I/O directly but can only write to
digital 1/0 that the MCU has enabled (this is done through your VM application). A full description of the 1/0
control is in Section 8.5.

3.3.3 Interrupt Control

The interrupt controller function within the Kalimba DSP covers interrupt control of the Kalimba DSP core. It
allows interrupt sources selection and control of their priority setting within three levels. Alongside the interrupts
caused by hardware, there are four software event interrupts available.

3.3.4 Clock Source Select and Timer

The Kalimba DSP consists of a clock source select interface, which is a clock-rate divider circuit that is
controllable from both the Kalimba DSP core and the on board MCU. The Kalimba DSP also has two timers with
a 1us time base available.

3.3.5 Debug Interface

The BlueCore3-Multimedia contains hardware interface that assists in the debugging of applications running on
the Kalimba DSP core.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 8 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

M/ Kalimba DSP Core Architecture

4 Kalimba DSP Core Architecture

The Kalimba DSP core architecture is in Figure 4.1 below:

H Address Generator AG1
<——Data Memory 1 Interface—» pata Memory
<«——Data Memory 2 Interface—| Interface

H Address Generator AG2

ALU
| AddSub | | Multiply | Registers

[shifter | [Divider |
Instruction Bank 1
[sign Bits Detect | > becode [>

Logic:
AND, OR, XOR ¢
Program Memory Interface— 5 = <) i Debug Interf
rogram Flow ebu €—Debug Interface—
Clock and Interrupts ——— g g g

Figure 4.1: Kalimba DSP Core Base Architecture

4.1 Arithmetic Logic Unit

The arithmetic logic unit (ALU) performs the following functions:

= Add and subtract arithmetic
= Logic operations:
= AND, OR, and XOR
= Single-cycle multiply, multiply/add and multiply/subtract
= Logical and arithmetic shift operations with a 56-bit input and 24-bit output
= Derive exponent and block derive exponent operations, which detect the number of redundant sign bits

» Signed divide, taking a 48-bit dividend (numerator) and a 24-bit divisor (denominator)."

This operation performed in the background taking 24 clock cycles
4.2 Address Generators

The address generators (AGs) form data memory addresses for when indexed memory reads or writes occur.
Each AG has four associated address pointers (index registers). When an index register is used for a memory
access, it is post-modified by a value in a specified modify register, or by a 2-bit constant. With two independent
AGs, the DSP can generate two addresses simultaneously for dual indexed memory accesses.

Length values may be associated with four of the index registers to implement automatic modulo addressing for
circular buffers.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

When the appropriate mode bit is set in the rFlags register, the output of AG1 is bit-reversed then driven on to the
address bus. This feature enables addressing in radix-2 Fast Fourier Transform (FFT) algorithms; see the Radix-
2 FFT code in appendix C for an example of the usage of this feature.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 9 of 74
This material is subject to CSR’s non-disclosure agreement.

CSr

M/ Kalimba DSP Core Architecture

4.3 Registers

There are two banks of 16 registers. Bank 1 are general registers described in Section 4.4 that can be used by
virtually all instructions and Bank 2 registers are used for the control of index memory accesses described in
Section 4.5.

4.4 Bank 1 Registers

Bank 1 registers are general registers used by virtually all instructions.

No. | Name # bits | Description
0 Null NA Always read as zero, writing only affects flags (hence can be used for condition testing)
rMAC 56 The 56-bits are used for multiply accumulate instructions and the input to shift
operations.
For 24-bit operations:
* Read as bits [47:24] (with saturation and unbiased rounding)",
= Written as bits [47:24] with sign extension and trailing zero padding to make
56-bits
2 r0 24 General register
3 r1 24 General register
4 r2 24 General register
5 r3 24 General register
6 r4 24 General register
7 r5 24 General register
8 ré 24 General register
9 r7 24 General register
10 r8 24 General register
11 r9 24 General register
12 r10 24 General register and is used as the loop counter for zero overhead loops
13 rLink 16 Call instructions put the return PC address in this register for use by rts instructions®
14 rFlags 16 Status and mode flags see below for a description
15 rintLink | 16 The return PC address is stored in this register for use by rti instructions
Table 4.1: Bank 1 Registers
Notes:
Only registers rMAC, rO-r5 can be used by indexed memory access instructions
16-bit registers (rLink, rFlags and rintLink) are zero padded to 24-bit. Writing to them does not affect the
flags register
All registers are set to 0 (zero) on DSP reset
™" Unbiased rounding is as follows:
rMACrounded = rMAC[47:24] + rMACI[23];
if (rMAC[23:0] == 0x800000) then rMACrounded[0] = 0;
This has the effect of rounding odd rMAC[47:24] values away from zero and even rMAC[47:24] values
towards zero, yielding a zero large sample bias assuming uniformly distributed values
@ There is no hardware stack, so to allow multi depth subroutine calls a software stack implementation or
equivalent is required
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 10 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

M/ Kalimba DSP Core Architecture

4.5 rFlags Register

The rFlags register is a 16-bit register that is located in register bank 1 of Kalimba indicated in Table 4.1. The
individual bits that make up the rFlags register and their value after reset are as shown in Table 4.2. Table 4.2
indicates that the rFlags register has a natural split into two bytes, the least significant byte contains the presently
active flags used by Kalimba. The most significant byte contains a stored value of the flags. The flags are stored
when an interrupt has occurred and then restored back to these values after Kalimba has finished servicing the
interrupt. Interrupts are serviced three instructions after the interrupt request line goes high (not including prefix
instructions). The INT_ versions of the various flags are the copies that are stored at the point of interrupt service.
The rti instruction then automatically restores the flags to their previous value.

CloOo|lo| O
<< |z |<|o|Oo|lo|oO
2id| 2|2 S[S[3]S],
| o o
Name sl S| H[E| 5 Y <|s|2|s|lololalo
Sla|d|d|>|o|N|Zz|d|Fdldldl << <]|<
8 S T U O N N N e Bl ' e i B i
ElelElElE|lE|lE|lE|S||S|a|S|S] Y
2| 2| Z2|Z2|2|Z2|Z2|Z2|5|a|b|D|>|0|N|Z
Reset State ojo0/0}0;0)0}0(O0jO}|O0O|lOjJ]O0OjO|O0O]|O0]|O
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 4.2: rFlags Register

4.5.1 Negative Flag (N)

Set if the result of the instruction is negative (most significant bit set), and cleared otherwise.

45.2 Zero Flag (2)

Set if the result of the instruction is zero, and cleared otherwise.

4.5.3 Carry Flag (C)

The state of the carry flag and interrupt carry flag is as follows:

= For an addition, C is set if the addition produced a carry (that is, an unsigned overflow), and is cleared
otherwise

= For a subtraction, C is cleared if the subtraction produced a borrow (that is, an unsigned underflow), and
is set otherwise

= For other operations (including multiply accumulate), C is left unchanged
4.5.4 Overflow Flag (V)

The state of the overflow flag and interrupt overflow flag is as follows:

= For addition, subtraction, arithmetic shifts, integer multiplies, and multiply accumulates, V is set if signed
overflow occurred, regarding the operands and result as two’s complement signed integers, and is
cleared otherwise

= The setting/clearing of the V flag for the rMAC register occurs if there is overflow past the 56th bit,
whereas for the 24-bit registers it is if overflow occurs past the 24th bit. When writing to the 16-bit
registers overflow has limited meaning and so the V flag remains unchanged

= For other operations, V is left unchanged
455 Sticky Overflow Flag (SV)

Set whenever the V flag is set but can only be cleared in software by explicitly writing to the rFlags register.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 11 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Kalimba DSP Core Architecture

4.5.6 User Definable Flag (UD)

A special ‘USERDEF’ condition code is TRUE if this flag is set and FALSE if this flag is clear. Use it in the code
sections to improve speed and code clarity where optionally a particular instruction needs to execute.

4.5.7 Bit Reverse Flag (BR)

If set, the output of Address Generator 1 (index registers 10-3) is bit-reversed before being driven to the address

bus.

4.5.8 User Mode Flag (UM)

If set, interrupts will be serviced. On entry to the interrupt service routine (PC address 0x0002), this flag is cleared

and so no further interrupt will be serviced unless the flag is manually set for example to support interrupt priority.

Execution of a return from interrupt (rti) instruction will set this flag to the value of INT_UM_FLAG (normally set

unless altered in software). During an interrupt service routine, the INT_UM_FLAG contains the stored value of
the user mode flag prior to the interrupt.

459 Condition Codes

The state of the flags present in the rFlags register form the basis of the condition codes in Table 4.3 for the

Kalimba DSP.

Condition Condition Flag State Condition Code
Z (Zero) | EQ (Equal) Z=1 0000
NZ (Not Zero) / NE (Not equal) Z=0 0001
C (ALU carry) c=1 0010
NC (Not ALU carry) Cc=0 0011
NEG (Negative) N=1 0100
POS (Positive) N=0 0101
V (ALU overflow) V=1 0110
NV (Not ALU overflow) V=0 0111
HI (unsigned higher) C=1ANDZ=0 1000
LS (unsigned lower or same) C=00RZ=1 1001
GE (Signed Greater than or equal) N=V 1010
LT (Signed Less than) N!=V 1011
GT (Signed Greater than) Z=0ANDN=V 1100
LE (Signed Less than or equal) Z=10RN!=V 1101
USERDEF (user defined) USERDEF =1 1110
Always true don’t care 1111

Table 4.3: Condition Codes

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information

This material is subject to CSR’s non-disclosure agreement.

Page 12 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Kalimba DSP Core Architecture

4.6 rMAC Register

The rMAC register is a 56-bit register that is located in register bank 1 of Kalimba indicated in Table 4.1. The
rMAC register splits into a set of separately accessible sub registers, listed below is the size of these registers
and shown in Figure 4.2:

= rMAC is the overall 56-bit register

= rMACQO is a 24-bit register that forms the lower part of the rMAC register
= rMACH1 is a 24-bit register that forms the middle part of the rMAC register
= rMAC2is a 8-bit register that forms the higher part of the rMAC register

= rMAC12 is a 32-bit register that is a combination of rMACO and rMAC1 that forms part of the rMAC

register

rMAC

55

48

a7

24 23

rMAC2

rMAC1

rMAC12

rMACO

Figure 4.2: rMAC Register

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 13 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

M/ Kalimba DSP Core Architecture

4.7 Bank 2 Registers

Bank 2 registers are for the control of index memory accesses, and set up modulo addressing through a circular
memory buffer.

No. | Name # bits | Description
0 10 16 Index register for Address Generator 1 (AG1)
1 11 16 Index register for AG1
2 12 16 Index register for AG1
3 I3 16 Index register for AG1
4 14 16 Index register for Address Generator 2 (AG2)
5 15 16 Index register for AG2
6 16 16 Index register for AG2
7 17 16 Index register for AG2
8 MO 16 Modify register for any index register
9 M1 16 Modify register for any index register
10 M2 16 Modify register for any index register
11 M3 16 Modify register for any index register
12 LO 16 Length register for Index register 10
13 L1 16 Length register for Index register I1
14 L4 16 Length register for Index register 14
15 LS 16 Length register for Index register 15
Table 4.4: Bank 2 Registers
Note:

All Bank 2 registers are sign extended to 24-bit for arithmetic operations
All registers are set to 0 (zero) on DSP reset
4.7.1 Index Registers
The index register contains the address pointers to data memory used with indexed addressing. These registers
allow transfer of data to and from selected Bank1 registers using the address contained with this register see

Section 6.13 for further details. The index registers 10 to 13 are associated with AG1 and 14 to I7 are associated
with AG2.

4.7.2 Modify Registers

When an index register is used for a memory access, it can be post-modified by a value contained in the modify
register, or by a 2-bit constant.

4.7.3 Length Registers

Length register values are associated with four of the index registers listed in Table 4.4 to implement automatic
modulo addressing for circular buffers. To disable automatic modulo addressing set the corresponding length
register to zero.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 14 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

M/ Kalimba DSP Core Architecture

4.8 Instruction Decode

There are three basic instruction types these are Type A, Type B and Type C, alongside special cases.

4.8.1 TypeA

A Type A instruction has the following syntax:
<if cond> RegC = RegA OP" RegB <MEM ACCESS 1>;

Type A is a conditional instruction, with an additional single memory read or write operation. The instruction can
accept two input operands and one output operand (which may be different). Operands can be any of the 16
Bank1 registers (Load/Store instructions permit the usage of Bank2 registers). For the memory access, index
registers 10-13 select the address, the destination or source register can be any of the first eight Bank1 registers:
rMAC, r0 - r5. At the end of the instruction the index register is post modified by one of the modify registers
MO-M3.

482 TypeB

A Type B instruction has the following syntax:
RegC = RegA opt constant;

Type B is a non-conditional instruction similar to Type A, but with one of the operands being a 16-bit constant
stored in the instruction word. To use a 24-bit constant prefix the Type B instruction with the prefix (PFIX)
instruction. No additional memory access operation permitted. The PFIX instruction is automatic if needed by the
assembler kalasm2.

483 TypeC

A Type C instruction has the following syntax:
RegC = RegC OP" RegA <MEM ACCESS 1> <MEM ACCESS 1>;

Type C is a non-conditional instruction similar to a Type A, except that one of the input operands is also the
output operand. In addition, two memory reads or writes may occur in the same clock cycle; one memory access
uses Address Generator 1 (index registers 10-13) and the other uses Address Generator 2 (index registers 14-17).
The index registers can be either post modified by the M0-M3 registers or by a 2-bit signed modify constant (valid
values: -1, 0, 1, or 2).

4.8.4 Special Cases

Program flow instructions such as jump, call, rts, etc; use a slight variation on the above types, as they can
always be conditional. Also the multiply accumulate instructions all write their result to the rMAC register.

Note:
M OP refers to operation which can include Addition, Subtraction, Multiplication, OR, AND, Exclusive OR
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 15 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

M/ Kalimba DSP Core Architecture

4.9 Program Flow

The program counter (PC) supplies addresses to the program memory. An instruction register holds the currently
executing instruction. This instruction register introduces a single level of pipelining into the program flow. During
one clock cycle, the instruction register has instructions fetched and loaded into it and during the following cycle
are executed. To allow zero overhead branching and no pipeline hazards with memory reads the processor also
acts on the direct signal from the memory, i.e. the next instruction executed, to set up the address bus and
control lines for a memory read.

Hence, there are no stall cycles in the following code examples:

= Zero overhead branching:
r0 = r0 - 1;
if POS jump dont add ten;
r0 = r0 + 10;
dont_ add_ten:

= No pipeline hazards:

r0 = 100; // memory location 100 will be read. i.e. the new
rl = M[r0]; // value of r0 is fed though to the DM address bus

Another feature of the program flow of the Kalimba DSP is the hardware zero overhead looping instruction. The
register r10 is loaded with the number of times that the code between the DO instruction and the ‘loop’ label
executes. r10 is then automatically decremented and a jump taken (if needed) at the same time as executing the
instruction before the ‘loop’ label. For example:

= Zero overhead looping:

rl0 = 10;

DO loop; // copies 10 words of data from
r0 = M[IO,1]; // address I0 to address I2.
M[I2,1] = rO0; // Takes 22 cycles in total.

loop:

410 Debug

There is debugging hardware in the Kalimba DSP used by the debugger, xIDE. It provides the following features:

= Reset, Run, Stop, Step

= Setting and reading of the program counter (PC)

= Program breakpoint

= Data memory breakpoint (read, write, or read/write)
= |nstruction Break

= Read/write of register values

= External to the DSP core itself there is debug circuitry to read/write memory locations as seen by the
DSP on either of its 3 memory buses PM, DM1 and DM2

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 16 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

»"/ Memory Organisation

5 Memory Organisation

The Kalimba DSP core has two 24-bit data memory banks, DM1 and DM2, each having a 15-bit address space,
and a single 32-bit program memory (PM) having a 16-bit address space. Accessing of all three memories
simultaneously is possible in the same clock cycle, assuming no conflicts; this is a three bank Harvard
architecture. Conflicts introduce an appropriate number of wait cycles. Figure 5.1 is a view of the Kalimba DSP
memory organisation containing size information and peripheral memory mapping.

BlueCore3-Multimedia has the following physical RAM for the Kalimba DSP:
= DM1 = 8K x 24-bit
= DM2 = 8K x 24-bit
= PM = 4K x 32-bit

The BlueCore3-Multimedia subsystem MCU initialises the Kalimba DSP. During initialisation the Kalimba DSP
memory maps into the MCU memory map, to enable program and data coefficient download. The MCU then sets
the initial clock frequency for the Kalimba DSP to use before starting it running. API calls from the virtual machine
(VM) running on the MCU invokes the program download, and Kalimba DSP initialisation.

Program Memory (PM) Data Memory 1 (DM1) Data Memory 2 (DM2)
OXFFFF OX7FFF OXFFFF
alimba Memory Mapped Reqister OXFFO0
Unmapped MCU Access Window 2
0x7000 0xF000
Mapped PM "
LS 16-bits MCU Access Window 1
0x6000 0xE000
Unmapped Flash Access Window
0x5000 0xD000
Mapped PM
Unmapped MS 16-bits
0x4000
Unmapped
Unmapped
0x2000 0xA000
Physical RAM Physical RAM
0x1000 DM1 DM2
Physical RAM PM
0x0000 0x0000 0x8000
-4—————32-bit——————— - 24-bit———— ———————24-bit———— P

Figure 5.1: Memory Organisation

5.1 Memory Map

The memory organisation shown in Figure 5.1 can be broken down into their individual memory maps as
depicted in the tables listed in Section 5.1.1 to Section 5.1.3 (and Appendix B Table 1 for the DSP memory map).

5.1.1 PM Memory Map

The program memory map for Kalimba shown in Table 5.1 contains 4Kwords (4K x 32-bits) of physical program
memory RAM, the remaining 60Kwords are available for future variants.

- Length Description
(Words) P
Start End
0x0000 | OxOFFF 4K General purpose RAM (program memory)
0x1000 | OXFFFF 60K Available for RAM expansion in future variants
Table 5.1: PM Memory Map
© Copyright CSR 2003

bc3-ug-001Pc Advance Information Page 17 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Memory Organisation

5.1.2 DM1 Memory Map

The first data memory bank DM1 has a memory map shown in Table 5.2 containing:

= 8Kwords (8K x 24-bits) of data memory for the DSP
= A window of 4Kwords of program memory split into the most and least significant halves

= The remaining areas of the memory map allow for future variants

ot Length Description
Start End (Words)

0x0000 | Ox1FFF 8K General purpose RAM (data memory 1)
0x2000 | Ox3FFF 8K Available for RAM expansion in future variants
0x4000 | Ox4FFF 4K Mapped to program memory MS-16bits
0x5000 | Ox5FFF 4K Available for RAM expansion in future variants
0x6000 | Ox6FFF 4K Mapped to program memory LS-16bits
0x7000 | Ox7FFF 4K Available for RAM expansion in future variants

Table 5.2: DM1 Memory Map

5.1.3 DM2 Memory Map

The second data memory bank DM2 memory map shown in Table 5.3 has distinct areas, these are:

= 8Kwords (8K x 24-bits) of general purpose data RAM for the DSP

= A 4Kwords window into the flash memory, which could be used by the DSP for items such as slower
access coefficient tables

= There are two MCU windows 4K and 3.75Kwords into the MCU memory to allow for control information
and message passing

= 16Kwords of memory map for future variants

= The final 256words of the memory map are reserved for the memory mapped 1/O for the DSP that is
explained further in Appendix B: DSP Registers.

Data
Length o
(Words) Description
Start End
0x8000 | Ox9FFF 8K General purpose RAM (data memory 2)
0xA000 | OXCFFF 16K Available for RAM expansion
0xD000 | OxDFFF 4K Flash window
OxEO000 | OXEFFF 4K Window into MCU memory 1
0xFO00 | OxFEFF 4K-256 Window into MCU memory 2
OXFF00 | OXFFFF 256 DSR Memory mapped I/O registers (See Section Appendix B: DSP
Registers for details)
Table 5.3: DM2 Memory Map
© Copyright CSR 2003

bc3-ug-001Pc Advance Information Page 18 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Set Description

6 Instruction Set Description

The instruction set for the BlueCore3-Multimedia is an algebraic assembler instruction set compared to the
mnemonic assemblers found in traditional microcontrollers. Algebraic assemblers suit the architecture of a DSP,
as it is able to express complex and parallel instructions in an understandable way. This section describes each

instruction in more detail.

Table 6.1 outlines the notation conventions that used in describing the syntax:

Parallel lines | |

Vertical parallel bars enclose lists of syntax options. One of the choices listed must be
chosen.

Angled brackets
<non bold italics>

Anything in non bold italics enclosed by angled brackets is an optional part of the
instruction statement.

AB,C

Denotes a register operand. By default, the register must be chosen from the list of
Bank1 registers. If subscribed with ‘Bank1/2’ then the register can be chosen from
either Bank1 or Bank2

k1e, ks Denotes a constant, the subscripted number being the size of the number in bits.

M[x] Means the data in the memory location with address x'.

M[i,m] Means the data in the memory location with address ‘', and that after the read/write the
value of the register ‘i’ is modified according to the equation: i=i+m;

cond A condition code from Table 4.3, e.g. NZ

MEM_ACCESS_1
MEM_ACCESS_2

Represents a memory access instruction that can be appended to an instruction where
indicated. The valid memory access instructions that can be appended are covered by
the Indexed MEM_ACCESS_1/2 in Section 6.13

Important Note:

Table 6.1: Notational Convention

The Kalimba DSP architecture has been designed to carry out single cycle instructions, any exceptions from
this are noted in the description for the instruction, e.g. the divide instruction. If the cycle time is not stated, it
is a single cycle instruction. Any other exceptions are also noted in the description for each instruction.

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 19 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.1 ADD and ADD with CARRY

Syntax:
Type A: <iffcond> | C=A+B <+Carry> <MEM_ACCESS_1>;
C=A+M[B]
C=MA]+B

M[C] =A+B (note 1)
(e 1) Gonditional memory writes are not supported on BlueCore3-Multimedia
Example: if Z r3 = rl + M[r2] + Carry r4 = M[i0, mO];

Type B: C=A+Ks <+Carry>;
C = A+ M[kig]
C = M[A] + k+s
Mlkig] =A+C

Example: r3 = M[rl] + 10+ Carry;

Type C: C=C+A <+Carry> <MEM_ACCESS_1> <MEM_ACCESS_2>;
C=C+M[A]
Example: r3 = r3 + M[rl] + Carry
r4 = M[IO,MO]
r5 = M[I4,M1];

Description:

Test the optional condition and, if TRUE, perform the addition. If the condition is FALSE, perform a no-operation
(NOP) but MEM_ACCESS__1 still carried out. Omitting the condition performs the addition unconditionally. The
addition operation adds the first source operand to the second source operand and, if designated by the “+
Carry” notation, adds the ALU carry bit, C. The result is stored in the destination operand. The operands may be
either one of the 16 Bank1 registers, a 16-bit sign extended constant (24-bit with prefix instruction), or memory
pointed to by the register or constant.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Set if an arithmetic overflow occurs and cleared C Setifacarryis generated and cleared otherwise
otherwise

Note:
If one of the source operands is Null then a load/store assumed. Therefore, the C and V flags are
unchanged.
If all operands are Null then a NOP assumed. Therefore, all flags are unchanged.
When writing to rLink, rintLink or rFlags all flags are affected

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 20 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.2 SUBTRACT and SUBTRACT With Borrow

Syntax:
Type A: <ifcond> | C=A-B <-Borrow> <MEM_ACCESS_1>;
C=A-M[B]
C=M[A]-B

M[C] =A-B (note 1)
(hete 1) Gonditional memory writes are not supported on BlueCore3-Multimedia
Example: if Z r3 = rl - r2 - Borrow r4 = M[i0, mO0];

Type B: C=A-ki <-Borrow>;
C = A - M[k1¢]
C = M[A] - kis
Mlkig] =A-C
Example: r3 = M[rl] - 10- Borrow;

Type C=C-A <-Borrow> <MEM_ACCESS_1> <MEM_ACCESS_2>;
c1/2:

=C-MA]

Example: r3 r3 - rl - Borrow
M[IO,MO]

M[I4,M1];

-
N
I n

Description:

Test the optional condition and, if TRUE, perform the subtraction. If the condition is FALSE, perform a NOP, but
MEM ACCESS_1 still carried out. Omitting the condition performs the subtraction unconditionally. The subtraction
operation subtracts the second source operand from the first source operand and optionally, if designated by the
“- Borrow” notation, subtracts the inverse of the ALU carry bit, C. The result is stored in the destination
operand. The operands may be either one of the 16 Bank1 registers, a 16-bit sign extended constant (24-bit with
prefix instruction), or memory pointed to by the register or constant.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Set if an arithmetic overflow occurs and cleared C Setifaborrow is generated and set otherwise
otherwise

Note:

If one of the source operands is Null then a load/store or negate assumed. The C and V flags are left
unchanged

When writing to rLink, rintLink or rFlags all flags are affected

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 21 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.3 Bank1/2 Register Operations: ADD and SUBTRACT

Syntax:
Type A: <if cond> Caanki1/2 = Asanki/2 + Beankir2 <MEM_ACCESS_1>;
Caanki1/2 = Asankir2 - Beankir
Example: if Z i0 = i4 + r2 rl = M[i1l,M1];
Type B: Ceank12 = Asankiiz + Kie ;
Ceank1/2 = Asankir2 - Kis
Example: 10 = r2 + 5;
Type C1/2: Ceanki1/2 = Ceank1/2 + ABaNK1/2 <MEM_ACCESS_1> <MEM_ACCESS_2>;
Caank1i2 = Caank1/2 - ABankii2
Example: r2 = r2 + 1i2
r0 = M[IO,MO0]
rl = M[I4,M1];
Description:

Test the optional condition and, if TRUE, perform the specified cross-bank addition or subtraction. If the condition
is FALSE, perform a NOP, but MEM _ACCESS_1 still carried out. Omitting the condition performs the addition or
subtraction unconditionally. The operands may be either one of the 16 Bank1 or 16 Bank2 registers or a 16-bit
sign extended constant (24-bit with prefix instruction).

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise
V Set if an arithmetic overflow occurs and cleared C For addition: set if a carry generated.

otherwise For subtraction: cleared if a borrow is generated.

Notes:

If one of the source operands is Null then a load/store assumed. The C and V flags are left unchanged
If the destination register is from bank2 (i.e. 16-bit) then the C and V flags are left unchanged

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 22 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Set Description

6.4 Logical Operations: AND, OR and XOR

Syntax:
Type A:
Type B:
Type C1/2:
Description:

<if cond>

Example:

Example:

Example:

C=
C=
C=

if

C=
C=
C=

r3

C=
C=
C=

r3
r0
r2

A AND B <MEM_ACCESS_1>;
AORB
A XOR B
Z r3 = rl AND r2 r0O = M[IO,MO];

A AND k16 | ;
A OR kis
A XOR kig
= rl XOR 10;

CANDA | <MEM_ACCESS 1> <MEM_ACCESS_2>;
CORA
C XOR A

r3 OR rl
M[IO,MO]
M[I4,M1];

Test the optional condition and, if TRUE, perform the specified bit wise logical operation (logical AND, OR, or XOR).
If the condition is FALSE, perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the
operation unconditionally. The operands may be either one of the 16 Bank1 registers or a 16-bit sign extended

constant (24-bit with prefix instruction).

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Setif the result is negative and cleared otherwise

V Left unchanged

C Left unchanged

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 23 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Instruction Set Description

6.5 Shifter: LSHIFT and ASHIFT

Syntax:

Type A: <ifcond> | C=AOPB | <MEM_AccEss_1>;
Example: if Z r3 = r2 LSHIFT rl rO = M[IO,MO];

Type B: C=A0Pks ;
rMACO = A OP ky
rMAC12 = A OP ky
rMAC2 = A OP ky
rMAC = A OP k7 (LO)
rMAC = A OP k7 (MI)
rMAC = A OP k7 (HI)
Example: rMACO = r2 LSHIFT 4;

Type C1/2: C=COPA | <MEM_AcCESS 1> <MEM_ACCESS_2>;

r2 ASHIFT r7
M[IO0,M2]
M[I4,M1];

Example: r2
r5
rl

Description:

Test the optional condition and, if TRUE, perform the specified shift operation (arithmetic or logical). If the
condition is FALSE, perform a NOP, but MEM AcCESS 1 still carried out. Omitting the condition performs the shift
unconditionally. A positive number causes a shifting to the left and a negative number causes a shifting to the
right. For an arithmetic shift to the right sign extension bits added as needed. If overflow occurs in an arithmetic
shift, i.e. non-sign bits being shifted out, then the overflow flag is set and the result is saturated to 21 or-2%
depending on the sign of the input. No rounding occurs for ASHIFT or LSHIFT. The operands may be either one
of the 16 Bank1 registers or a constant specified in the instruction.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V ASHIFT: Setif an arithmetic overflow occurs C Left unchanged
and cleared otherwise

LSHIFT: Left unchanged

Note:

OP is either ASHIFT (arithmetic) or LSHIFT (logical)
If rMAC is the source operand, the full 56-bits are used as input to the shifter
For Type B instructions the destination operand can be:

= Either, rMACO, rMAC12, or rMAC2, causing the other bits of rMAC to be unaffected (writing to
rMAC12 writes the data into rMAC1 and causes sign extension (ASHIFT) or zero fill (LSHIFT)
into rMAC2)

= Or, rMAC, with a data format tag (LO, MI, HI) to select which word of rMAC the 24-bit result from
the shifter should be written to, the other bits of rMAC are sign-extended / zero-padded as
appropriate

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 24 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Set Description

(SE) |:
(ZP)

(SE)
(ZP)
(zP) ;

6.6 rMAC Move Operations
Syntax:
Type B: rMACO rMACO
rMAC2 = rMAC1
rMAC2
A
Example: rMACO = rMAC1;
rMAC12 = rMACO
rMACH1
rMAC2
A
Example: rMAC12 = rMACO (SE);
C = rMACO
rMACA1
Example: r3 = rMACO;
C = rMAC2
Example: r3 = rMAC2
Description:

These are move instructions, implemented as a special case of LSHIFT and ASHIFT, to support loading and

reading of the individual sections of the rMAC register (rMAC2, rMAC1, and rMACO) shown in Figure 4.2. When
writing to rMACL, the data is either sign extended or zero padded into rMAC2. The format specifiers, SE and ZP,
are required to specify how rMAC2 filled.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Left unchanged

C Left unchanged

bc3-ug-001Pc

© Copyright CSR 2003

Advance Information Page 25 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Instruction Set Description

6.7 Multiply: Signed 24-Bit Fractional and Integer

Syntax:
Type A: <if cond> |C=A*B (frac) | <(sat)> <MEM_ACCESS_1>;
(int)
Example: if Z r3 = r2 * rl (int) (sat) r5 = M[IO,M2];
Type B: |C=A*k16 (frac) | <(sat)>;
(int)
Example: r6 = r2 * 0.34375 (frac);
Type C1/2: |C=C*B (frac) | <(sat)> <MEM_ACCESS_1> <MEM_ACCESS_2>;
(int)
Example: r2 = r2 * r7 (int) (sat)
r0 = M[IO,1]
rl = M[I4,-1];
Description:

Test the optional condition and, if TRUE, perform the specified multiply operation (fractional or integer). If the
condition is FALSE, perform a NOP, but MEM ACCESS_ 1 still carried out. Omitting the condition performs the
operation unconditionally. A fractional multiply, (frac), treats the source and destination operands as
fractional numbers with 22 representing +1 and 2% representing -1. An integer multiply, (int), treats the
source and destination operands as integer numbers. Optionally, if designated by the (sat) notation, the result of
an integer multiply is saturated if overflow occurs. Unbiased rounding is always done for a fractional multiply
operation. The operands may be either one of the 16 Bank1 registers or a 16-bit left justified constant (24-bit
with prefix instruction). See Appendix A on number representation for information on multiply operations

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared
otherwise

V frac: Left unchanged C Left unchanged

int: Set if an arithmetic signed overflow occurs
and cleared otherwise

Note:

A saturated fractional multiplication has no significance therefore (sat) is not an option with (frac)

The 16-bit constant is left justified to 24-bits by adding 8 zeros as the LSBs. This allows the 16-bit constant
to represent fixed point fractional numbers between +1 and -1.

Unbiased rounding is as follows:
rMACrounded = rMAC[47:24] + rMACI[23];
if (rMAC[23:0] == 0x800000) then rMACrounded[0] = 0;

This has the effect of rounding odd rMAC[47:24] values away from zero and even rMAC[47:24] values
towards zero, yielding a zero large sample bias assuming uniformly distributed values

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 26 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Set Description

6.8 MULTIPLY and ACCUMULATE (56-bit)

Syntax:
Type A: <if cond> | rMAC=A*B <(SS)> | <MEM_ACCESS_1>;
rMAC =rMAC + A* B <(Sv)>
rMAC =rMAC-A*B <(USs)>
<(UU)>
Example: 1if Z rMAC = rMAC + rl*r2 (SS)
r5 = M[IO,MO0];
Type B: rMAC = A * ks <(SS)>
rMAC =rMAC + A * ki | <(SU)>
rMAC =rMAC - A * kg | <(US)>
<(UU)>
Example: rMAC = rMAC + rl * 0.24254 (SS);
Type C1/2: rMAC=C*A <(SS)> <MEM_ACCESS 1> <MEM_ACCESS_2>;
rMAC =rMAC + C * A <(Sv)>
rMAC =rMAC-C *A <(USs)>
<(UU)>
Example: rMAC = rMAC - r3 * rl (SS)
r2 = M[IO,1]
rl = M[I4,-1];
Description:

Test the optional condition and, if TRUE, perform the specified multiply/accumulate. If the condition is FALSE,
perform a NOP, but MEM ACCESS 1 still carried out. Omitting the condition performs the operation unconditionally.
The data format field to the right of the operands specifies whether each respective operand is in signed (S) or
unsigned (U) format. The effective binary point is between bits 47 and 46. The operands may be either one of the
16 Bank1 registers or a 16-bit left justified constant (24-bit with prefix instruction). See Appendix A on number

representation for information on multiply operations

Flags Generated:

Z Setif the result equals zero and cleared otherwise

V Setif overflow occurs past the 56™ bit and cleared
otherwise

Note:

N Set if the result is negative and cleared otherwise
C Left unchanged

Where (SS) is the default if no data format is specified

The 16-bit constant is left justified to 24-bits by adding 8 zeros as the LSBs. This allows the 16-bit constant to
represent fixed point fractional numbers between +1 and -1.

To get the result of the equivalent integer multiplication, the result should be shifted to the right by 1-bit.

© Copyright CSR 2003

bc3-ug-001Pc

Advance Information

Page 27 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.9 LOAD / STORE with Memory Offset

Syntax:

Type A: <if cond> C=M[A + B]
M[C + A] =B (note 1)

(hete 1) Gonditional memory writes are not supported on BlueCore3-Multimedia

<MEM_ACCESS_1>;

Example: if Z r3 = M[rl + r2]
r4d = M[IO,MO];

Type B:
M[C+k16]=A
Example: M[r3 + 6] = rl;

C = M[A + kie] | ;

Type C: | c=mic+al | <MEM_AccESs 1> <MEM_AcCESS 2>;
M[r3 + r2]

M[I0,1]

M[I4,-1];

Example: r3
r4
r5

Description:

Test the optional condition and, if TRUE, perform the specified load/store, including memory offset. If the condition
is FALSE, perform a NOP, but MEM _AccCESS_ 1 still carried out. Omitting the condition performs the load/store
unconditionally. The operands may be either one of the 16 Bank1 registers or a 16-bit constant specified in the
instruction.

Flags Generated:

Z Setif the result operand equals zero and cleared N Set if the result is negative and cleared otherwise

otherwise
V Left unchanged C Left unchanged
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 28 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.10 Sign Bits Detect and Block Sign Bits Detect

Syntax:
Type A: <if cond> | C = SIGNDET A | <MEM_AccEss_1>;
Example: if Z r3 = SIGNDET rMAC
r4 = M[IO,MO];
Type C: |C=BLKSIGNDETA |<MEM_ACCESS_1> <MEM_ACCESS_2>;
Example: r3 = BLKSIGNDET rl
r4d = M[IO,1]
r5 = M[I4,-1];
Description:

SIGNDET returns the number of redundant sign bits of the source operand. For example:

0000 1101 0101 0101 1100 1111 - has 3 redundant sign bits

1001 0101 0101 0100 0111 1111 - has 0 redundant sign bits

0000 0000 0000 0000 0000 0001 - has 22 redundant sign bits

11111111 1111 1111 1111 1111 - has 23 redundant sign bits

0000 0000 0000 0000 0000 0000 - has 23 redundant sign bits (special case)

Valid results are 0 to 23 for the 24-bit registers, and -8 to 47 for rMAC.

BLKSIGNDET returns the smaller of the result of SIGNDET and the present value of the destination operand.
When performed on a series of numbers, it can derive the effective exponent of the number largest in magnitude.

Flags Generated:

Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Left unchanged C Left unchanged
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 29 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Set Description

6.11 Divide Instruction

Syntax:
Type B: Div=rMAC/A ;
C = DivResult
C = DivRemainder
Example: Div = rMAC / rl;
r2 = DivResult;
r3 = DivRemainder;
Description:

The Div = rMAC/A instruction initiates the divide block to start its multi-cycle 48-bit / 24-bit integer divide. The
overflow flag is set if the DivResult is wider than 24-bits. In this case, the result is saturated to 28 0r 22 _ 1 and the
remainder is invalid. The result or remainder of the divide is available after 24 cycles. If the result or remainder is
requested before the 24 cycles has elapsed then program flow is suspended until the result is ready. To carry out a
fractional divide the value in rMAC needs to be first right shifted by 1 bit before carrying out the divide operation.

Integer Divide example (86420 / 7 = 12345 remainder 5):

rMAC = 0; // clear rMAC

r0 = 86420;

rMACO = rO0; // LS word of rMAC now equals 86420;
r0 = 7;

Div = rMAC / r0;

rl = DivResult; // rl = 12345

r2 = DivRemainder; // r2 =5

Fractional Divide example (0.25/0.75 = 0.3333):

rMAC = 0.25;

r0 = 0.75;

rMAC = rMAC ASHIFT -1;

Div = rMAC / r0;

rl = DivResult; // rl = 0.33333;

Flags Generated:

After: Div = rMAC/A;
Z Left unchanged

pd

Left unchanged

V Setif a divide exception occurs and cleared C Left unchanged
otherwise

After: C = DivResult;orC = DivRemainder;
Z Setif the result equals zero and cleared otherwise N Set if the result is negative and cleared otherwise

V Left unchanged C Left unchanged
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 30 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Instruction Set Description

6.12 Program Flow: CALL, JUMP, RTS, RTI, SLEEP, DO...LOOP and BREAK

Syntax:
Type A: <if cond> | jump A ;
call A
rts
rti
sleep
Example: if Z jump rl;
Type B: <if cond> | jump kie ;
call k16
Do k15
Example: rl0 = 100;
DO loop;
rMAC = rMAC + r0 * rl
loop:
Type C: <if cond> | rts ;
rti
Example: 1if NZ rts;
| break | ;
Example: break;
Description:

Omitting the condition performs the program flow. If condition TRUE perform program flow below, else a NOP
jump Program execution jumps to the address in operand (either a constant, e.g. an address label or register)

do For zero overhead looping, instructions between DO and 100p are executed until register r10 is zero,
r10 is decremented by one each loop. If r10 is zero at start then no loop instructions executed and a
jump to Toop occurs. If a do...10op is executed in an interrupt service routine (ISR), r10 and the
memory mapped registers MM_DOLOOP_START and MM_DOLOOP__END should be saved

sleep Program execution paused and the DSP put in lower power mode. Interrupts still handled in sleep. The ISR
is responsible for issuing a software event that causes wake up from a sleep instruction.

call Loads L INK register with return address (PC+1) and jumps to address in operand (either a constant e.g.
an address label or register)

rti Sets PC equal to value of r IntLinK register, and restores flags to their pre-interrupt status, i.e. the MS
byte of rFlags register is copied to the LS byte

rts Sets PC equal to value of rLinkK register. Stack depths greater than one must be implemented in software

break For program debug, used by xIDE, a break instruction either acts as a nop, or jump to self

Flags Generated:

Flags Z, N, V and C left unchanged

Note:

The instruction pipeline is not stalled by a program flow instruction, i.e. “if cond jump <address>"
instruction takes 1 clock cycle with or without jump. Condition for program flow is evaluated the cycle before

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 31 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Instruction Set Description

6.13 Indexed MEM_ACCESS_1 and MEM_ACCESS_2

Syntax:

MEM_ACCESS_1 MEM_ACCESS_2
Type A: Regact = M[lag1, Mag1] ;
M[lac1, Mag1] = Regac1
Example: M[IO,MO0] = rl;

Type C: Regact = M[lag1, Mag1]
M[lag1, Mag1] = Regac1

Regac2 = M[lag2, Macz] ;
M[lag2, Macz2] = Regacz

M[lag1, MKag1] = Regac1 M[lac2, MKag2] = Regac2
Example: r0 = M[IO,M0] M[I4,M1] = rl;

Regact = M[lag1, MKag1] | Regacz2 = M[lag2, MKag2] |

Permitted Registers

Regact / Regacz 10, r1,r2,r3, r4, r5 and rMAC lac1 10,11, 12 and 13
MAG1 / MAGZ MO, M1, M2 and M3 |AG2 |4, |5, 16 and |7
MKAG1 / MKAG2 -1, 0, 1and 2

Description:

Any Type C instructions can also perform up to two memory reads/writes in the same instruction cycle as the main
ALU part of the instruction. Regac1/ac2 selects the source or destination register for the memory read or write. lag1/ac2
selects the index register to use for the memory read, and either Mag1/ac2 selects the modify register or MKag1/ac2
selects the modify constant (-1, 0, +1, or +2) to use for the post modify of the index register. Type A instruction can
perform single memory read/write with limitation that the modify operand is not a constant, i.e. must be Mag1/ac2

Memory Access Timing:

Only one access (read or write) permitted per memory bank per clock cycle. If AG1 and AG2 both access DM1 in the
same instruction then the two memory accesses are queued with the AG1 access occurring first. Memory reads set
up the memory bus the instruction before, whereas memory writes take place at the end of the current instruction.
This means that if the previous instruction does a memory write, then the current instruction delays by one clock
cycle if it tries to read the same memory bank as the previous instruction wrote to. External wait signal from
peripherals may slow down the instruction cycle.

Flags Generated:

No flags affected by the memory access part of instructions.

Note:
Regac1/acz selects one of the first eight Bank1 register, i.e. Nul I, rMAC, rO-r5. If Nul I register selected
then no memory read/write is performed

Type A instructions use Address Generator 1 (AG1) so can only use index registers 10-13. They must use a
modify register rather than a modify constant.

Type C instructions use AG1 and AG2 so one memory access must use 10-13 and the other must use 14-17.
They must either both use a modify register or both use a modify constant.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 32 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Coding

7 Instruction Coding

Instruction coding is relatively simple and orthogonal so that the instruction decode is efficient. There are three

basic coding formats:

Type A, B, and C. Table 7.1 outlines The format of the instruction with corresponding

definitions covered in Section 7.5 to Section 7.15.

31[30[29[28]27]26

25 [24 23\22\21\20 19‘18‘17‘16 15 14‘13‘12 11‘10 9‘8 7|s|5|4 3|2|1|o Type

AG1

[N] Write Reg g, lact Mao1 RegB cond A
OP_CODE 2 ; RegC RegA " Ko " i
1 1 V/-\\/S[j;? RegAG1 IAGl Mljel Vl?lﬁlze REGAGZ IAGZ MI:GZ CREG
AG1 AG2 CONST
tJaJ1J1J1J1Jo]1]o o o 0o o 0 o 0o 0 0 0 0 0 0 0 O Komernd 7:0] PFIX

Notes:
OP_CODE

RegA
RegB

RegC

cond

k16 / KPREFIX
AG1/AG2

Regaci1 /
Regae2

la1 / lac2

Mag1/ Magz2
Mkag1 / MKag2

Table 7.1: Instruction Coding Format

Selects the instruction operation, see Section 7.5

Selects a register to use as the first source operand for instructions. Bank1 registers are
used by default, Bank 2 is selected within OP_CODE for certain instructions

Selects a register to use as the first source operand for instructions. Bank1 registers are
used by default, Bank 2 is selected within OP_CODE for certain instructions

Selects 1 of 16 registers to use as the destination register for instructions. For Type C
instructions RegC also defines the first source operand, see Table 7.2. Bank1 registers are
used by default, Bank2 is selected within OP_CODE for certain instructions

Selects an optional condition to be met for the instruction to be executed, otherwise a
no-operation will be executed

A 16-bit / 8-bit constant used by Type B instructions
Selects whether the indexed memory access is a read (0) or a write (1)

Selects one of the first eight Bank1 registers: rMAC, r0-r5; for the source/destination
register of multifunction memory reads and writes. If Null is selected then no read or write is
performed

Selects one of the index registers, 10-13 for AG1, and 14-17 for AG2, for multifunction
memory reads and writes

Selects one of the modify registers, M0-M3, for multifunction memory reads and writes
Selects a fixed constant to use for the modify: -1, 0, +1, or +2

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 33 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Instruction Coding

7.1 Type A Instruction

Type A is a conditional instruction, with an additional single memory read or write operation. The instruction can
accept two input operands and one output operand (which may be different). Operands can be any of the 16
Bank1 registers (Load/Store instructions permit the usage of Bank2 registers). For the memory access, index
registers 10-13 select the address, the destination or source register can be any of the first eight Bank1 registers:
rMAC, r0 - r5. At the end of the instruction the index register is post modified by one of the modify registers
MO-M3.

A Type A instruction has the following syntax:

<if cond> RegC = RegA OP" RegB <MEM ACCESS 1>;

7.2 Type B Instruction

Type B is a non-conditional instruction similar to Type A, but with one of the operands being a 16-bit constant
stored in the instruction word. To use a 24-bit constant prefix the Type B instruction with the prefix (PFIX)
instruction. No additional memory access operation permitted. The PFIX instruction is automatic if needed by the
assembler kalasm2.

A Type B instruction has the following syntax:

RegC = RegA opt" constant;

7.3 Type C Instruction

Type C is a non-conditional instruction similar to a Type A, except that one of the input operands is also the
output operand. In addition, two memory reads or writes may occur in the same clock cycle; one memory access
uses Address Generator 1 (index registers 10-13) and the other uses Address Generator 2 (index registers 14-17).
The index registers can be either post modified by the M0-M3 registers or by a 2-bit signed modify constant (valid
values: -1, 0, 1, or 2).

A Type C instruction has the following syntax:
RegC = RegC OP" RegA <MEM ACCESS 1> <MEM ACCESS 2>;

7.4 Special Cases

Program flow instructions such as jump, cal l, rts, etc; use a slight variation on the above types, as they can
always be conditional. Also the multiply accumulate instructions all write their result to the rMAC register.

Note:
M OP refers to operation which can include Addition, Subtraction, Multiplication, OR, AND, Exclusive OR

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 34 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Coding

7.5 OP_CODE Coding
Table 7.2 shows the instruction decoding of the OP_CODE field shown in Table 7.1
OP_CODE Action (Type A)(l) Action (Type B) Action (Type CREG/CONST)(Z) Description
000 AM C | RegC = RegA + RegB RegC = RegA + kig RegC = RegC + RegA Add®
001 AM C | RegC = RegA — RegB RegC = RegA - kig RegC = RegC — RegA Subtract
010 B2RS RegCgi2 = RegAgi2 + RegB a1 RegC g1z = RegAgi2 + K1s Szgf_\: s12 = RegCeip + Bank1/2 Add
B1/2
011 B2RS RegC g2 = RegAg12 - RegBgi2 RegC g1/ = RegAgis2 - kig RegCg12 = RegCg12 - RegAgi2, | Bank1/2 Subtract
100 0 O O | RegC=RegAAND RegB RegC = RegA AND k4 RegC = RegC AND RegA Logical AND
100 0 0 1| RegC =RegAOR RegB RegC = RegA OR ki RegC = RegC OR RegA Logical OR
100 0 1 0 | RegC =RegA XOR RegB RegC = RegA XOR kg RegC = RegC XOR RegA Logical XOR
100 0 1 1 | RegC =RegA LSHIFT RegB RegC = RegA LSHIFT ket RegC = RegC LSHIFT RegA Logical Shift
100 1 0 0 | RegC =RegAASHIFT RegB RegC = RegA ASHIFT ki RegC = RegC ASHIFT RegA Arithmetic Shift
100 1 1 V| RegC=RegA * RegB (int) RegC = RegA * ki (int) RegC = RegC * RegA (int) :2;‘73;;99”9"
100 1 0 1| RegC =RegA * RegB (frac) RegC = RegA * ki (frac) RegC = RegC * RegA (frac) ;rjlfit")‘l’;a' signed
101 0 S S| rMAC=rMAC + RegA * RegB MAC = rMAC + RegA *kis | rMAC = rMAC + RegC * RegA '(\g‘é'tg?t';' accumulate
101 1 S S| rMAC =rMAC - RegA * RegB MAC = rMAC — RegA *kis | rMAC = rMAC — RegC * RegA ?ﬁ‘é“é‘?t')y subtract
110 0 S S| rMAC =RegA * RegB rMAC = RegA * kis rMAC = RegC * RegA Multiply (48-bit)
110 1 0 0 | RegC = M[RegA + RegB] RegC = M[RegA + kig] RegC = M[RegC + RegA] Load with offset
110 1 0 1| M[RegA + RegB] =RegC M[RegA + k6] = RegC - Store with offset
Div = rMAC / RegA
= Si = Dj @) - ’ Sign detect / Divide
110 1 1 0 | RegC = SignDet RegA RegC = DivResult RegC = BlkSignDet RegA / Block sign detect
RegC = DivRemainder®
Jump to program
110 1 1 1| JUMP RegA if [RegC=cond] JUMP ks if [RegC = cond] RTS address / return
from subroutine
. _ . _ Call subroutine /
111 0 0 O | CALLRegA if [RegC=cond] CALL ks if [RegC = cond] RTI return from interrupt
Go into sleep mode
111 0 0 1| SLEEP DO LOOP BREAK / Do Loop / Debug
Break point
111 1 0
11 11 FUTURE USE®
111 1 x X
Allows 24-bit
constants for Type
B operations — by
M1 1 11 PREFIX instruction prefixing the
following
instruction’s k4 by
the 8-bit kererix
value.
Table 7.2: OPCODE Coding Format
Note:

Type A is conditional with 1 F[cond] and can contain single memory access MEM_ACCESS_1
Type C permits two simultaneous memory access MEM_ACCESS_1 and MEM_ACCESS_2

The add instruction is also used to implement load/stores to registers/memory by setting one of the
source registers as Null. Setting all 3 operands as Null implements a no-operation (NOP) instruction

See Section 7.11 and Section 7.15 for encoding of ks for rMAC shift instructions and Divide instructions

There is six spare OP_CODES plus various other spare coding space for future instructions

bc3-ug-001Pc

© Copyright CSR 2003

Advance Information

This material is subject to CSR’s non-disclosure agreement.

Page 35 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

7.6

Instruction Coding

AM Field

Selects different memory addressing modes

AM Type A Type B Type CreciconsT
00 RegC = RegA [OP] RegB RegC = RegA [OP] K16 RegC = RegC [OP] RegA
01 RegC = RegA [OP] M[RegB] RegC = RegA [OP] M[K16] | RegC = RegC [OP] M[RegA]
10 RegC = M[RegA] [OP] RegB RegC = M[RegA] [OP] K16 | -
11 M[RegC] = RegA [OP] RegB M[K16] = RegC [OP] RegA | -
Table 7.3: AM Field
7.7 Carry Field (C Field)

Selects whether addition/subtraction performed with carry and the appropriate state shown in Table 7.4.

C Description
0 Do not use carry / borrow
1 Use carry / borrow
Table 7.4: C Field Options
7.8 Bank 1/2 Register Select Field (B2RS Field)

Bank 1/2 register select for add/subtract instructions are shown in Table 7.5

B2RS Type A Type B Type CreciconsT
000 | RegCgank1 = RegAgankt + RegBgankt | RegCgank1 = RegAgank1 + Kis | RegCgank1 = RegCrank1 = RegAgank1
001 | RegCaanki = RegAganki + RegBgank2 RegCgankt = RegCeank1 = RegAgankz
010 | RegCgankt = RegAgank2 = RegBgank1 | RegCgankt = RegAgank2 + K1
011 | RegCgankt = RegAgank2 + RegBgank2
100 | RegCgankz = RegAgank1 + RegBgank1 | RegCaankz = RegAgank1 + Kie
101 | RegCegankz = RegAgank1 = RegBgankz
110 | RegCgank2 = RegAsank2 £ RegBgank1 | RegCrank2 = RegAgank2 £ Kis | RegCgank2 = RegCaanke + RegAgank1
111 | RegCgank2 = RegAgank2 + RegBgank2 RegCgank2 = RegCaank2 £ RegAgank2

Table 7.5: B2RS Field
7.9 Saturation Select Field (V Field)

Selects whether to enable saturation on the result and the options shown in Table 7.6.

\% Description
0 No saturation
1 Saturation

Table 7.6: V Field

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information

Page 36 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

~

Instruction Coding

7.10 Sign Select Field (S Field)

Selects signed/unsigned multiplies and the various options shown in Table 7.7.

S Description

00 unsigned x unsigned
01 unsigned x signed
10 signed x unsigned
11 signed x signed

Table 7.7: S Field

7.11 kis Coding for LSHIFT and ASHIFT

k1 coding section from the instruction coding format shown in Table 7.1 splits into its individual bits and their
functionality listed in Table 7.8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o o] o o] o] o Destsel ShiftAmount

Table 7.8: ki Coding Shift Format
Note:
ShiftAmount: Is a signed 7-bit number that is the amount to shift the input.
Positive is a left shift, negative is a right shift.

Dest_Sel: When the destination register is rMAC, selects how the 24-bit output from the shifter is

used.

7.12 rMAC Sub Registers

The full 56-bits of the rMAC register are accessible as their individual sub-registers outlined in Table 7.9. See
Section 7.13 and Section 7.14 for further details on how to load the individual sub registers.

Bit 55-48 47 - 24 23-0

rMAC Register rMAC2 rMACA1 rMACO

Table 7.9: rMAC Sub-Registers

7.13 ASHIFT

Table 7.10 represents how the arithmetic shift instruction is encoded within the instruction coding format shown in
Table 7.1 for further information on the LSHIFT instruction see Section 6.5.

Dest_Sel | New rMAC2 New rMAC1 New rMACO Example
001 Sign extend Sign extend SHIFTER_OUTPUT | rMAC = r? ASHIFT k45 (0)
000 Sign extend SHIFTER_OUTPUT | Trailing zeros rMAC = r? ASHIFT kig (1)
010 SHIFTER_OUTPUT Trailing zeros Trailing zeros rMAC = r? ASHIFT k1 (2)
101 Old rMAC2 Old rMACA1 SHIFTER_OUTPUT | rMACO = r? ASHIFT k1
100 Sign extend SHIFTER_OUTPUT | Old rMACO rMAC1 = r? ASHIFT ke
110 SHIFTER_OUTPUT Old rMAC1 Old rMACO rMAC2 = r? ASHIFT ke

Table 7.10: ASHIFT

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

bc3-ug-001Pc Page 37 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Instruction Coding

7.14 LSHIFT

Table 7.11 represents how the logical shift instruction is encoded within the instruction coding format shown in
Table 7.1, for further information on the LSHIFT instruction see Section 6.5.

Dest_Sel New rMAC2 New rMAC1 New rMACO Example
001 Sign extend Sign extend SHIFTER_OUTPUT | rMAC = r? LSHIFT k6 (0)
000 Sign extend SHIFTER_OUTPUT | Trailing zeros rMAC = r? LSHIFT kie (1)
010 SHIFTER_OUTPUT | Trailing zeros Trailing zeros rMAC = r? LSHIFT kie (2)
101 Old rMAC2 Old rMAC1 SHIFTER_OUTPUT | rMACO = r? LSHIFT k4
100 Sign extend SHIFTER_OUTPUT | Old rMACO rMAC1 = r? LSHIFT ky¢
110 SHIFTER_OUTPUT | Old rMAC1 Old rMACO rMAC2 = r? LSHIFT ki

Table 7.11: LSHIFT

Both the LHIFT and ASHIFT instruction enable the user to write to the three individual sub-registers rMAC2/1/0,
hence providing a way of loading rMAC with a double precision number. It also allows shift operations of rIMAC
with the destination being the rMAC register, which speeds up double precision calculations. See rMAC move
operations in Section 6 for more details.

7.15 ki Coding Divide Instructions

Table 7.12 ks coding divide instruction represents how the background divide instruction is encoded within the
instruction coding format shown in Table 7.1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Not used Div

Table 7.12: Divide Field

The functionality of the individual divide bits is explained more fully in Table 7.13.

Div Assembly Syntax Operation

Initiates a 32-bit/16-bit divide. The overflow flag is set if a divide
00 Div = rMAC / RegA exception occurs. Calculation of the divide takes 16 clock cycles but
program execution continues while the divide is calculated.

01 RegC = DivResult The result and/or remainder of a divide are available 16 cycles after

the divide is initiated. In this period, normal program execution
continues. If the result is requested early then program execution is

10 RegC = DivRemainder automatically delayed until the result is available.

1 NA Not used

Table 7.13: Divide Field States

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 38 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b" 7 Kalimba DSP Peripherals

8 Kalimba DSP Peripherals

The Kalimba DSP for the BlueCore3-Multimedia consists of the DSP core, the DSP peripherals and their
associated interfaces. This section covers the peripherals and interfaces.

See Appendix B for information relating to registers

Kalimba DSP Co-Processor
| Map PM into ! i PM
PM DM PM —
al
Wait el Address L wain -
L Space EEEE— ' A
F9 = Kalimba DM1
L L. » Debug U e)
= Interf: o Kalimba DSP Core
DM1 Controlled :
Wait A 4 by MCU/SPI DM2
! walt
DMm2 : el
LIS > Registor Dobug
T; i Y
Map MCU
i and Flash i
H Z [§
MMU MCU and Flash Window | ¥indow Into g HH
o |€
Address = [®
Space .é
- Flash Bank Select) i 1MHz 32-Bit
I E = / — Timers - Count from
o DSP Event (To MCU Interrupt Controller) Memory Mapped Contoxt Switch Register VF Core
PIO InfOut Kalimb
- - G
Local Timer Control
Registers, [Tl
!, | Mapped into |)
Dm2 Interrupt Control %
: o
‘ H
SWO-3 and PIO Evants L]
slo [of g
MMU Port B-Bit Q18
i MMU Interface oln (35 - o g
| } HIEE -
212 |23 Unmapped Event
1 <
H
o
Kal
- b 5 4 | Interrupt Controller ca,::‘:a
[Clock Rate Soloct MCU Registers o Rﬁ:”sf:p'"s"ltp o 96/n MHz
{ - from
MEU Event
; Registars used for Control Analogue
MCU Register Interface ; Regiaters Lad Ior oo mﬂ | > Sm!gn
1 RAM Bank Select i ey n3
-

Figure 8.1: Kalimba DSP Peripheral Interfaces

The Kalimba DSP peripherals include:

Memory management unit (MMU) interface, for stream transfers to/from the BlueCore3-Multimedia
subsystem

Memory mapped window into the flash

Two memory mapped windows into the MCU RAM

Two 1us timers

Interrupt controller with three priority levels and wake up from sleep
Memory mapped access to the DSP program memory through DM1
Clock rate divider controllable by both the DSP and the MCU

Debug interface

© Copyright CSR 2003

bc3-ug-001Pc Advance Information Page 39 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Kalimba DSP Peripherals

8.1 MMU Interface

The MMU Interface on BlueCore3-Multimedia for the Kalimba DSP contains four virtual read ports and four virtual
write ports; an example of the usage of these ports is in Figure 8.2.

BlueCore3 Multimedia

Radio Link |
! MMU Transfers
1

{ . MP3 Stream » Read Port 0

1

1

1

1

1

1

a a 1
! BlueCore3-Multimedia Kalimba DSP]
] :
1

1

1

1

1

Subsystem .
< Write Port O
n 1: 4 Toft + nght Write Port 1
O i Audio PCM
1
e e e e e e e e e e e e e, ————— F

Figure 8.2: Example of MMU Interface Usage for a Wireless MP3 Player

8.1.1 Read Ports

Four virtual read ports appear as memory mapped registers in DM2. The ports have the ability to use:

= Prefetch, if required, to improve speed
= 8-bit or 16-bit word size

= Byte swap capability (Little Endian/Big Endian)
8.1.2 Write Ports

Four virtual write ports appear as memory mapped registers in DM2. The ports have the ability to use:
= 8-bit or 16-bit word size
= Byte swap capability (Little Endian/Big Endian)

8.2 DSP Timers

The features of the Kalimba DSP timer are as follows:

= A 24-bit TIMER_TIME register (read only) clocked @ 1MHz

= Two trigger value registers, each, if enabled, cause an appropriate interrupt

See Appendix B for control register details.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 40 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Kalimba DSP Peripherals

8.3 Kalimba Interrupt Controller

This section covers the functionality of Kalimba DSP during interrupts looking at the events of the Kalimba DSP
core and the interrupt controller, as well as investigating the interrupt controller registers.

8.3.1 DSP Core Functionality During Interrupt

Upon reception of an interrupt, this is when the IRQ is high; the DSP core performs the following:

= rintLink is loaded with the contents of current Program counter
= Program counter is loaded with the address of the interrupt service routine e.g. 0x0002
= The flags register is saved

= Perform interrupt service routine

When the interrupt service routine completes the DSP needs to return to the routine it had been running prior to
the interrupt; this executed with a rti instruction. The rti instruction carries out the following:

= Restores the rflags register to the non-interrupt state
= Loads the program counter(PC) with the contents of the rintLink register
Note:

Saving/restoring of further registers is up to the programmer
8.3.2 Interrupt Controller Functionality

The functionality of the interrupt controller is

= Selectable interrupt sources:
= Timer1 and Timer2
= MCUEvent
= PIOEvent
= SoftwareEvent0
= SwEvent1, SwEvent2 and SwEvent3
= Three interrupt priority levels as well as wake-up from sleep
= Registers to save and restore the interrupt controller which allows for nested interrupts

= Optional event signal to cause clock rate change

See Appendix B for control register details.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 41 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

"‘/ Kalimba DSP Peripherals

8.4 Generation of MCU Interrupt

Writing to the DSP2MCU_EVENT_DATA register will cause an interrupt to be sent to the MCU, the value of this
register can be seen by the MCU. In a similar way the MCU can generate an interrupt to the DSP, with the event
type being stored in the MCU2DSP_EVENT_DATA register. These registers can be used to pass messages
between MCU and DSP and vice versa.

See Appendix B for control register details.

8.5 PI1O Control

This section describes the interface between the Kalimba DSP and the programmable I/O (PIO) of the
BlueCore3-Multimedia. Control of the PIO from the Kalimba DSP is as follows:

= Kalimba DSP can read BlueCore3-Multimedia PIO lines
= Under the control of the MCU the Kalimba DSP can write to PIO lines

= PIO line change can generate a Kalimba DSP interrupt
The MCU controls which PIO bits are inputs and which are outputs. It also controls which write access

permission for the Kalimba DSP. This information is set through VM functions (PioSetKalimba and PioGetKalimba
— see the BlueLab on-line documentation C Refence guide \ file list \ pio.h for details of these functions)

See Appendix B for control register details.

8.6 MCU Memory Window in DM2

Two windows in DM2 shown in Figure 5.1 allow the Kalimba DSP to access MCU memory. The primary use of
this memory window is for message passing and control information.

The MCU controls access to this window. A start address and a size for each window along with whether the
DSP has read access or read/write access can be set. This information is set by the MCU firmware used.

See Appendix B for control register details.

8.7 Flash Memory Window in DM2

The purpose of the Flash Memory Window in DM2 is to permit the DSP access to the 8Mbit flash, this could be
for example to access further coefficients, download a new program. The window size is 4Kwords and the
FLASH_BANK_SELECT register selects which 4K block is visible to the DSP.

Note:
Firmware does not currently support the use of the DSP’s flash memory window.

See Appendix B for control register details.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 42 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

b"/ Kalimba DSP Peripherals

8.8 PM Window in DM1

The PM window within the DM1 memory bank permits the DSP to change its own program or to be extra data

memory (16-bit). For safety, it is possible to disable the window.

The MCU must enable the DSP to have access to the PM mapped into DM1. The DSP must then enable access

as well.

Note:
MCUirmware does not currently support the use of the DSP’s PM window in DM1.

See Appendix B for control register details.
8.9 General Registers
The General Registers are for communication between the MCU and the Kalimba DSP.

See Appendix B for control register details.

8.10 Clock Rate Divider Control
The Kalimba DSP may control its own clock frequency.

See Appendix B for control register details.

8.11 Debugging

The MCU registers and therefore the serial peripheral interface (SPI) can:

= Read and write any of the DSP core’s internal registers
= Control: Single Step, Run, Stop, Breakpoints, etc
= Read and write any individual location in PM, DM1 or DM2, as seen by the DSP

© Copyright CSR 2003
bc3-ug-001Pc Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 43 of 74

apINg JasN dSd equwife)] eIP3WINNI-Ew, 24039N|d

CSr

v /‘ Appendix A: Number Representation

Appendix A: Number Representation

The number representation used by the Kalimba DSP is outlined in this Appendix.

Binary Integer Representation

Two’s complement, only 8-bits shown for clarity.

Sign Bit Example
_ 7 5 3 2
T o 1o 11]o o] =2 +2+2 2
Wi =-128+32+8+4
Bit Weights 27 26 25 24 23 22 21 20 = .84
Radix Point
Binary Fractional Representation
Only 8-bits shown for clarity.
Integer Multiplication
signBit ~Operand A Operand B

23 Inte?er Bit7/ ! }adix Point D:l:l:l:l:l#l:l
\ /

)
|

Sigr\Bit Result
47 Integer Bits /]
e rrrrrrrr oyl
/.
l l (Optional Saturation)
23 Integer Bits
Output Word D:I:I:ﬁ:l#lj
Example 1: Example 2:
Operand A =123 Operand A = 12345
Operand B =456 Operand B =67890
Output Word = 56088 Output Word = 8388607 (With Saturation)

Output Word = -758750 (Without Saturation)

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 44 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v /‘ Appendix A: Number Representation

Fractional Multiplication

sign Bit Operand A Operand B

23 Fractional Bi tﬁ /]
Radlx Point /

2 Sign Bits | l
. Result 46 Fractional Bits /]
I I I B B B B B N R /A
/ // / (1-Bit Left Shift to Maintain
47 Fractional Bits Normalised Radix Point Position)
_ Q. N I B L[| |//| [0] Double Precision Output
1 Sign Bit - _ Used by MAC Instructions

~—

Unbiased Round

23 Fractional //

Single Precision Output

Example:

Operand A =0x654321 =0.79111111
Operand B = 0x123456 = 0.14222217

Output word = 0xOE66D7F2822C
=0.11251353589 (Double Precision)
= 0x0E66D8 (Unbiased Round)
=0.11251354 (Single Precision)
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 45 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

Appendix B: DSP Registers

DSP Memory Mapped I/0

As described in Section 5.1.3 the DSP memory mapped I/O forms a reserved part of the DM2 memory map.

Listed in Appendix B Table 1are the memory mapped registers.

Address | Name Size (Bit) | RW Description

0xFFO0 INT_GBL_ENABLE 1 RW | Resets interrupt controller state

OxFFO01 INT_ENABLE 1 RW Enable searching for an interrupt source

O0xFF02 INT_CLK_SWITCH_EN 1 RW | Enable switching of DSP clock to a
special interrupt clock rate

O0xFF03 INT_SOURCES_EN 9 RW | Enables interrupt sources for Kalimba

0xFF04 INT_PRIORITIES 18 RW | Set priority levels of individual interrupts

O0xFFO05 INT_LOAD_INFO 12 RW | Restore information of lowest priority
interrupt during a nested interrupt

0xFF06 INT_ACK 1 RW | Clears current interrupt request

OxFFO7 INT_SOURCE 4 R Contains current interrupt source

OxFFO08 INT_SAVE_INFO 11 R Save information of lowest priority
interrupt during a nested interrupt

OxFF09 DSP2MCU_EVENT_DATA 16 RW | Interrupt event data to MCU

O0xFFOA MCU2DSP_EVENT_DATA 16 R Interrupt event data from MCU

O0xFFOB | TIMER_TIME 24 R 24-bit timer value increment every 1us

OxFFOC | TIMER1_EN 1 RW | Enable Timer1 interrupt

OxFFOD | TIMER2_EN 1 RW | Enable Timer2 interrupt

OxFFOE | TIMER1_TRIGGER 24 RW | Timer1 trigger value

OxFFOF TIMER2_TRIGGER 24 RW | Timer2 trigger value

OxFF10 WRITE_PORTO_DATA 8/16 RW | Write port 0

OxFF11 WRITE_PORT1_DATA 8/16 RW | Write port 1

OxFF12 WRITE_PORT2_DATA 8/16 RW | Write port 2

OxFF13 WRITE_PORT3_DATA 8/16 RW | Write port 3

OxFF14 WRITE_PORTO_CONFIG 2 RW | Data size and Endian mode for write
port 0

OxFF15 WRITE_PORT1_CONFIG 2 RW | Data size and Endian mode for write
port 1

OxFF16 WRITE_PORT2_CONFIG 2 RW | Data size and Endian mode for write
port 2

OxFF17 WRITE_PORT3_CONFIG 2 RW | Data size and Endian mode for write
port 3

OxFF18 READ_PORTO_DATA 8/16 R Read port 0

OxFF19 READ_PORT1_DATA 8/16 R Read port 1

OxFF1A | READ_PORT2_DATA 8/16 R Read port 2

OxFF1B READ_PORT3_DATA 8/16 R Read port 3

OxFF1C READ_PORTO_CONFIG 3 RW | Data size, Endian mode and prefetch for
read port 0

OxFF1D READ_PORT1_CONFIG 3 RW | Data size, Endian mode and prefetch for
read port 1

OxFF1E READ_PORT2_CONFIG 3 RW | Data size, Endian mode and prefetch for
read port 2

© Copyright CSR 2003

bc3-ug-001Pc

Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 46 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

Address | Name Size (Bit) | RW Description

OxFF1F READ_PORT3_CONFIG 3 RW | Data size, Endian mode and prefetch for
read port 3

0xFF20 MM_DOLOOP_START 16 RW | Start address of zero overhead loop

OxFF21 MM_DOLOOP_END 16 RW | End address of zero overhead loop

OxFF22 MM_QUOTIENT 24 RW | Quotient result of division instruction

OxFF23 MM_REM 24 RW | Remainder result of division instruction

OxFF24 GENERAL_FROM_MCUO 16 R For message passing from on board
MCU to the Kalimba

O0xFF25 GENERAL_FROM_MCU1 16 R Register for message passing from on
board MCU to the Kalimba

OxFF26 GENERAL_FROM_MCU2 16 R Register for message passing from on
board MCU to the Kalimba

OxFF27 GENERAL_FROM_MCU3 16 R Register for message passing from on
board MCU to the Kalimba

OxFF28 GENERAL_TO_MCUO 16 w Register for message passing from
Kalimba to the on board MCU

O0xFF29 GENERAL_TO_MCU1 16 w Register for message passing from
Kalimba to the on board MCU

O0xFF2A | GENERAL_TO_MCU2 16 w Register for message passing from
Kalimba to the on board MCU

O0xFF2B GENERAL_TO_MCU3 16 w Register for message passing from
Kalimba to the on board MCU

0xFF2C | CLOCK_DIVIDE_RATE 4 RW | Configuration for clock frequency used
by Kalimba during normal operation

OxFF2D | INT_CLOCK_DIVIDE_RATE 4 RW | Configuration for clock frequency used
by Kalimba during interrupt service,
when selected

OxFF2E PIO_IN 16 R Programmable input register used by
DSP to read PIO0 —11 and AlO0-3

OxFF2F PIO OUT 16 RwW | Programmable output register used by

B DSP to write PIO0 —11 and AlO0-3
0xFF30 PIO EVENT EN MASK 16 RW | Used to select which PIOs and AIOs are
B - used for interrupt sources

0xFF31 INT_SWO0_EVENT 1 RW | Select software event 0 to cause
interrupt request on Kalimba

OxFF32 INT_SW1_EVENT 1 RW | Select software event 1 to cause
interrupt request on Kalimba

OxFF33 INT_SW2_EVENT 1 RW | Select software event 2 to cause
interrupt request on Kalimba

OxFF34 INT_SW3_EVENT 1 RW | Select software event 3 to cause
interrupt request on Kalimba

OxFF35 FLASH_BANK_SELECT 12 RW | Selects 4K block of flash overlaid into
the Flash Access Window of DM2 RAM,
see Figure 5.1

OxFF36 NOSIGNX_GENREGS 1 RW | General sign extension enable

OxFF37 NOSIGNX_MCUWIN1 1 RW | Enable sign extension in MCU window 1

OxFF38 NOSIGNX_MCUWIN2 1 RW | Enable sign extension in MCU window 2

© Copyright CSR 2003

bc3-ug-001Pc

Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 47 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

Address | Name Size (Bit) | RW Description

0xFF39 NOSIGNX_FLASHWIN 1 RW | Enable sign extension in flash window

OxFF3A NOSIGNX_PMWIN 1 RW | Enable sign extension in PM window

OxFF3B PM_WIN_ENABLE 1 RW | Allows program memory to be mapped
into DM1 memory map see Figure 5.1

Appendix B Table 1: DSP Memory Mapped 1/0

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 48 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

MMU Interface DSP Registers

Tables in this section list a group of registers used for communication and control between the Kalimba DSP and
the MCU on the BlueCore3-Multimedia.

WRITE_PORT[0/1/2/3]_DATA

Bit

23~0

Description

Data bits 0-23

Note Memory mapped location for the write port 0 to 3 data
Appendix B Table 2: Data Bits for Write Port 0 to 3
WRITE_PORT[0/1/2/3]_CONFIG
Bit Description
23~2 1] o
| | | 1="16-bitwite
0 = 8-bit write
1 = Big Endian
0 = Little Endian
Unused
Note This register is cleared on system reset
The stereo audio interface of BlueCore3-Multimedia uses Little Endian format
Appendix B Table 3: Configuration Bits for Write Port 0to 3
READ_PORT[0/1/2/3]_DATA
Bit Description
23~0
Data bits 0-23
Note Memory mapped location for the read port 0 to 3 data

Appendix B Table 4: Data Bits for Read Port 0 to 3

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 49 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

Appendix B: DSP Registers

(g

READ_PORT[0/1/2/3]_CONFIG

Bit Description

23~4 [3[2]1]o0

| | | 1="16-bitwite

0 = 8-bit write

1 = Big Endian
0 = Little Endian

1 = Pre-fetch
0 = No pre-fetch

1 =No sign
extension
0 = Sign
extension

Unused

Note Configuration bits for the corresponding read port
This register is cleared on system reset
The stereo audio interface of BlueCore3-Multimedia uses Little Endian format

Sign extension is to the 23" bit

Appendix B Table 5: Configuration Bits for Read Port 0to 3

Timers DSP Registers

Three groups of registers make up the Kalimba DSP timer, these are:

TIMER_TIME
Bit Description
23~0
Data bits 0-23 for
1us count value
Note A 24-bit read only register, the value is incremented every 1us

Appendix B Table 6: The Timer Time Register

TIMER[1/2]_TRIGGER

Bit Description

23~0

Data bits 0-23 for
1us trigger count
value

Note A 24-bit trigger value. If the appropriate enable register, TIMER[1/2]_EN, is set then an interrupt
is generated when TIMER_TIME = TIMER[1/2]_TRIGGER

Appendix B Table 7: The Threshold Value Registers for Timer Trigger 1 and 2

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 50 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

Appendix B: DSP Registers

(g

TIMER[1/2]_EN
Bit Description
23~1 | o
| || 1=Enable timer
interrupt
0 = Disable timer
interrupt E
Unused g
Note | This register is cleared on system reset Q
Appendix B Table 8: Enable Bits for Timer 1 and Timer 2 Interrupts b
Interrupt Controller DSP Registers -
=
This section covers the registers concerned with interrupt control on the DSP. (§9)
1
INT_GBL_ENABLE g
Bit Description :
23~1 | o —
| |_ 0 = Reset -
interrupt 5
controller state m
Unused Q_
|11
Note This register is cleared on system reset Q
Appendix B Table 9: Interrupt Controller State Reset Bit ?J
INT_ENABLE 3
= O
Bit Description Q
23~1 | o O
| |_ 1 = Enable U)
searching for an
interrupt source -U
0 = Disable
searching for an %
interrupt source
D
-~
Unused m
Note This register is cleared on system reset -
Appendix B Table 10: Enable Interrupt Searching Bit o
D
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 51 of 74

This material is subject to CSR’s non-disclosure agreement.

CSr

(g

Appendix B: DSP Registers

INT_CLK_SWITCH_EN

Bit

23~1

Description

1 = Enable DSP
clock rate switch
during interrupt
0 = Disable DSP
clock rate switch
during interrupt

Unused

Note The DSP special clock rate during interrupt is DSP_INT_CLOCK_RATE described in

Section 8.10
This register is cleared on system reset

Appendix B Table 11: Enable Interrupt Clock Rate Bit

© Copyright CSR 2003
bc3-ug-001Pc Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 52 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

INT_SOURCES_EN

Bit

Description

23~9

s l7]efs]afalafr]o

Timer1 interrupt
1 = Enable
0 = Disable

Timer2 interrupt
1 = Enable
0 = Disable

MCU interrupt
1 =Enable
0 = Disable

PIO line change
interrupt

1 = Enable
0 = Disable

MMU

unmapped
event interrupt

1 = Enable
0 = Disable

Software0 event

interrupt
1 =Enable
0 = Disable

Software1 event

interrupt
1 = Enable
0 = Disable

Software2 event

interrupt
1 = Enable
0 = Disable

Software3 event

interrupt
1 = Enable
0 = Disable

Unused

Note Bit O:

o

INT_SOURCE_TIMER1_POSN
INT_SOURCE_TIMER2_POSN
INT_SOURCE_MCU_POSN
INT_SOURCE_PIO_POSN
INT_SOURCE_MMU_UNMAPPED_POSN

N o a

8:

INT_SOURCE_SWO0_POSN
INT_SOURCE_SW1_POSN
INT_SOURCE_SW2_POSN
INT_SOURCE_SW3_POSN

Appendix B Table 12: Interrupt Source Enable Bits

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information

Page 53 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

INT_PRIORITIES

Bit

23~18

Description

17 ~ 16
15~14
13~12
11 ~10

|_ Timer1

interrupt
priority

Timer2
interrupt
priority

MCU
interrupt
priority

PIO line
change
interrupt
priority

MMU
unmapped
event
interrupt
priority

Software0
event
interrupt
priority

Software1
event
interrupt
priority

Software2
event
interrupt
priority

Software3
event
interrupt
priority

Unused

Note

Priority level for each interrupt is a 2-bit value where the range is 3 (highest priority level) to 0

(lowest)

Appendix B Table 13: Interrupt Priority Level Bits

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 54 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

INT_SOURCE

Bit Description

23~4 | 3~0

| | | Current Interrupt

| Source

Unused
Note Current Interrupt Source is a 4-bit value that represents the current interrupt as follows:
0000 Timer1 interrupt
0001 Timer2 interrupt
0010 MCU interrupt
0011 PIO line change interrupt
0100 MMU unmapped event interrupt
0101 Software0 event interrupt
0110 Software1 event interrupt priority
0111 Software2 event interrupt
1000 Software3 event interrupt
Appendix B Table 14: Current Interrupt Source Bits
INT_ACK
Bit Description
23~1 | o
| |_ 0 = Clears
current interrupt
request (IRQ)
Unused
Note Writing to this register acknowledges an interrupt request. It de-asserts the IRQ line to Kalimba

DSP, reverts the Kalimba clock back to the non interrupt version, and initiates the search for a
new interrupt

Appendix B Tablel5: Interrupt Request Acknowledge Bit

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 55 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

INT_LOAD_INFO

Bit Description

23~ 12 | 11 | 10~ 7 [6 | 5~2 | 1-0

| | | | | | Interrupt priority

value to restore
see Appendix B
Table 13

Interrupt source
number (0-8) to
restore see
Appendix B
Table 12

Interrupt active
signal state to
restore

Interrupt request
number (0-8) to
optionally clear
see Appendix B
Table 12 and 14

0 = Clear the
Interrupt request
number in bits 7
to 10

Unused

Note Used to restore information about a previous lower priority interrupt

See the nested interrupts example code for an example of its use.

Appendix B Table 16: Restore Information about a Previous Lower Priority Interrupt

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 56 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

Appendix B: DSP Registers

(g

INT_SAVE_INFO

Bit Description

23~ 11 | 10~7 | 6 | 5~2 | 1-0

| | | | | | Previous lower

priority interrupt
priority value see
Appendix B
Table 13

Previous lower
priority interrupt
source number
(0-8) see
Appendix B
Table 12

Previous lower
priority interrupt
active signal
state

New interrupt
source number

(0-8) see
Appendix B
Table 12.
Unused
Note Used to save information about the current interrupt
See the nested interrupts example code for an example of its use
Appendix B Table 17: Save Information about Current Interrupt
INT_SW[0/1/2/3]_EVENT
Bit Description

23~1 | o

| |_ 1 = Software

Event (causes
interrupt if
enabled see
Appendix B
Table 12)
Unused

Note This register is cleared on system reset

Appendix B Table 18: Software Event 0 to 3 Interrupt Request
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 57 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

MCU Interrupt DSP registers

DSP2MCU_EVENT_DATA

Bit Description
23~ 16 | 15-0
| | Event data from
DSP to MCU
Unused
Note This register is cleared on system reset
Appendix B Table 19: Interrupt Event Data to MCU
MCU2DSP_EVENT_DATA
Bit Description
23~ 16 | 15~0
| | Event data from
MCU to DSP
Unused
Note This register is cleared on system reset
Appendix B Table 20: Interrupt Event Data from MCU
P10 Control DSP Registers
Shown below are the PIO registers accessed by the DSP:
PIO_IN
Bit Description
23~ 12 | 11~0
| | Reads value on
PIO 0 to 11
Bit0 =PIOO0
| \:
Bit 11 = PIO 11
Reads value on
AlOOto 3
Bit0 =AIOO0
\ \:
Bit3 =AIO3
Note A read only register of the PIO input.

This register is cleared on system reset

Appendix B Table 21: PIO Input Register

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

bc3-ug-001Pc

Page 58 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

Note:
(1)

Details of this VM function are under development

PIO_OUT

Bit

23~12

11~0

Description

Write value to
PIO 0 to 11

Bit0 =PIO0
\ \
Bit 11 = PIO 11

Writes value to
AlOOto 3

Bit0O =AIO0
\ \
Bit3 =AIO3

Note Writes to the PIO lines. There is a MCU register which controls which bits of the PIO port are

controlled by the MCU and which by Kalimba.

Appendix B Table 22: PIO Output Register

PIO_EVENT_EN_MASK

Bit

23~12

11~0

Description

1 = Select event
change to cause
an interrupt on
PIO 0 to 11

Bit0 =PIO0
\ Y
Bit 11 = PIO 11

1 = Select event
change to cause
an interrupt on
AlOOto 3

Bit0 =AIO0
\ 1
Bit3 =AIO3

Note A bit mask that selects which bits of the PIO port should cause an interrupt if PIO changes

state.

This register is cleared on system reset

MCU Window DSP Registers

Appendix B Table 23: PIO Event Change Interrupt Mask Register

The data word size for the MCU and the DSP differ. The MCU has a 16-bit data width and the DSP has 24-bit
data width. A register controls how the MCU presents data to the DSP, i.e. whether it is sign extended or not.

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 59 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

NOSIGNX_MCUWIN[1/2]

Bit

23~1 | o

Description

1 = Disable sign
extension in
MCU Access
Window see
Figure 5.1

0 = Enable sign
extension in
MCU Access
Window see
Figure 5.1

Unused

Note Sign extension is from 16-bit MCU value to the 24-bit Kalimba DSP value
This register is cleared on system reset

Appendix B Table 24: MCU Access Window 0 to 1 Sign Extension Enable Bit

© Copyright CSR 2003
bc3-ug-001Pc Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 60 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

Flash Window DSP Registers

FLASH_BANK_SELECT

Bit Description

23~12

| 11~0

| | Forms most

significant 12-
bits of flash
address

Unused

Note

Selects which 4Kbyte block of flash is memory mapped into the DSP flash window, i.e. value
forms the most significant bits of the flash address that is used

Appendix B Table 25: 4Kbyte Block Select Register for Flash Memory Mapped into the DSP Flash

Window

NOSIGNX_FLASHWIN

Bit Description

23~1 | o

| |_ 1 = Disable sign

extension from
Flash Window
value see Figure
5.1

0 = Enable sign
extension from
Flash Window
value see Figure
5.1

Unused

Note

Sign extension of the 16-bit flash value to the 24-bit Kalimba DSP value.
This register is cleared on system reset

Appendix B Table 26: Flash Access Window Sign Extension Enable Bit

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 61 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix B: DSP Registers

PM Window DSP Registers

NOSIGNX_PMWIN

Bit Description

23~1 | o

| |_ 1 = Disable sign

extension from
PM Window
value in DM1
see Figure 5.1

0 = Enable sign
extension from
PM Window
value in DM1
see Figure 5.1

Unused
Note Sign extension of the PM values when it is windowed as two 16-bit values in the two 24-bit
banks of DM in the Kalimba DSP.
This register is cleared on system reset
Appendix B Table 27: PM Access Window Sign Extension Enable Bit
PM_WIN_ENABLE
Bit Description
23-~1 | o
| || 1=Enablerm
mapping into
DM1 see Figure
5.1
Unused
Note | This register is cleared on system reset

Appendix B Table 28: Flash Access Window Sign Extension Enable Bit

General DSP Registers

The General Registers are:

GENERAL_FROM_MCU[0/1/2/3]

Bit Description

23~ 16 | 15~0

| | 16-bit read only

registers from
MCU

Unused

Note

16-bit read only registers with their value coming from a MCU register. See below for optional
sign extension to 24-bits

Appendix B Table 29: General Register 0 to 4 from MCU to Kalimba

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 62 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

Appendix B: DSP Registers

(g

GENERAL_TO_MCU[0/1/2/3]

Bit Description
23 ~ 16 | 15~ 0
| | 16-bit registers
written by
Kalimba and
read by MCU
Unused
Note 16-bit registers written by Kalimba, read by MCU, and seen by a VM function").
Appendix B Table 30: General Register 0 to 4 to MCU from Kalimba
Note:
™" Details of this VM function are under development
NOSIGNX_GENREGS
Bit Description
23~1 | o
| |_ 1 = Disable sign
extension from
general MCU
registers
0 = Enable sign
extension from
general MCU
registers
Unused
Note Sign extension of the 16-bit general MCU registers to the 24-bit Kalimba DSP value.
This register is cleared on system reset
Appendix B Table 31: General MCU Registers Sign Extension Enable Bit
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 63 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

b/‘/ Appendix B: DSP Registers

Clock Divide Rate DSP Registers

CLOCK_DIVIDE_RATE

Bit

23~4 | 3~0

Description

Is 4-bit value, n,
that sets divide
ratio from the
base clock
frequency for the
DSP.

Divide ratio = 2"
e.g.
0=+19@
1=+2

=+4

=+8

J
9=+512

Unused

Note This register is cleared on system reset

Appendix B Table 32: DSP Clock Rate Register for Normal Operation

Note:
" Details of this VM function are under development

@ nitial release of BlueCore3-Multimedia and Multimedia External is 32MHz or 32MIPs

© Copyright CSR 2003
bc3-ug-001Pc Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 64 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

(g

Appendix B: DSP Registers

INT_CLOCK_DIVIDE_RATE

Bit Description

23~4 | 3~0

| Is 4-bit value, n,

that sets divide
ratio from the
base clock
frequency for the
DSP during
interrupt.

Divide ratio = 2"
e.g.
0=+1
1=+2
2=+4
=:8
J
9=+512

Unused

Note

For Kalimba to use this clock frequency during interrupt INT_CLOCK_SWITCH_EN register
must be enabled see Appendix B Table 10.

This register is cleared on system reset

Appendix B Table 33: DSP Clock Rate Register for Interrupt Operation

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information Page 65 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v 4 Appendix C: Software Examples

Appendix C. Software Examples

This section contains samples of example code for the Kalimba DSP.

Double-Precision Addition

// Double-precision addition: Z = X + Y

//

// Where:

// X = {r0,rl}; - ie. r0O is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r5,r4};

// Computation time: 2 cycles

r4d = rl + r3; // add LSWs

r5 = r0 + r2 + Carry; // add MSWs

Fractional Double-Precision Multiply

// Fractional double-precision multiply: Z = X * Y

//

// Where:

// X = rO,rl]; - ie. r0 is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r4,r5,r6,17}; - ie. Z is 96-bit

// Computation time: 12 cycles

rMAC = rl * r3 (UU); // Compute LSW

r7 = rMACO; // save Z0

rMACO = rMAC1; // shift right rMAC by 24-bits

rMACl1l2 = rMAC2;
rMAC = rMAC + r0 * r3 (SU); // compute inner products
rMAC = rMAC + r2 * rl (SU);

r6 = rMACO; // save Z1

rMACO = rMAC1; // shift right rMAC by 24-bits
rMAC1l2 = rMAC2;

rMAC = rMAC + r0 * r2 (SS); // compute MSWs

r5 = rMACO; // save Z2

r4 = rMAC1; // save Z3

Integer Double-Precision Multiply

// Integer double-precision multiply: Z = X * Y

// Where:

// X = {r0,rl}; - ie. r0 is MSW and rl is LSW
// Y = {r2,r3};

// Z = {r4,r5,r6,r7}; - ie. Z is 96-bit

// Computation time: 12 cycles

rMAC = rl * r3 (UU); // Compute LSW

r7 = rMAC LSHIFT 15; // save Z0

rMACO = rMAC1; // shift right 24-bits

rMAC1l2 = rMAC2;

rMAC = rMAC + r0 * r3 (SU); // compute inner products
rMAC = ¥MAC + r2 * rl (SU);

r6 = rMAC LSHIFT 15;
rMACO = rMAC1;
rMAC1l2 = rMAC2;

// save Z1

//
rMAC = rMAC + r0 * r2 (SS); // compute MSWs

//

//

shift right 24-bits

r5 = rMAC LSHIFT 15; save Z2
r4 = rMAC LSHIFT -1; save Z3

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 66 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v /‘ Appendix C:

Software Examples

FIR Filter
// FIR filter
//
// Input parameters:
// I0 = points to oldest input value in delay line
// L0 = filter length (N)
// I4 = points to beginning of filter coefficient table
// L4 = filter length (N)
// rl0 = filter length - 1 (N-1)
// Return values:

// rMAC = sum of products output
// Computation time: N + 2 cycles

fir filter:

rMAC = 0
rl = M[IO,1]
r2 = M[I4,1];

Do fir loop;
rMAC = rMAC + rl * r2
rl = M[IO,1]
r2 = M[I4,1];

fir loop:

rMAC = rMAC + rl * r2;

© Copyright CSR 2003
bc3-ug-001Pc Advance Information
This material is subject to CSR’s non-disclosure agreement.

Page 67 of 74

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v 4 Appendix C: Software Examples

Cascaded Bi-Quad IIR Filter

// Cascaded biquad IIR filter

//
// Equation of each section:
// y(n) = (b0*x(n) + bl*x(n-1) + b2*x(n-2)

- al*y(n-1) - a2*y(n-2)) << scalefactor

Input Values:

r0 = input sample
I0 = points to oldest input value in delay line
(no biquads*2 + 2)
I1 = points to a list of scale factors for each biquad section
I4 = points to scaled coefficients b2,bl,b0,a2,al,... etc
L0 = 2 * num biquads + 2
L1 = num biquads
L4 = 5 * num biquads
MO = -3
Ml =1

rl0 = num biquads
Return Values:
r0 = output sample

T T T N T N
N e N

rl0 - cleared
I10,I1,I4,L0,L1,L4,M0,M1 - unaffected
rl,r2,r3,r4 - affected

//

// Computation time: 8 * num biquads + 3

biquad filter:
do bigquad_ loop;

rl = M[IO,1] // get x(n-2)
r2 = M[I4,1]; // get coef b2
rMAC = rl * r2
r3 = M[IO0,1] // get x(n-1)
r2 = M[I4,1]; // get coef bl
rMAC = rMAC + r3 * r2
r4 = M[I1,1] // get scalefactor
r2 = M[I4,1]; // get coef b0
rMAC = rMAC + r0 * r2
rl = M[IO0,1] // get y(n-2)
r2 = M[I4,1]; // get coef a2
rMAC = rMAC - rl * r2
rl = M[IO,MO] // get y(n-1)
r2 = M[I4,M1]; // get coef al
rMAC = rMAC - rl * r2
M[IO,1l] = r3; // store new x(n-2)
r0 = rMAC ASHIFT r4
M[IO,M1] = rO0; // store new x(n-1)
biquad loop:
M[IO,1l] = rl; // store new y(n-2)
M[IO,1] = r0; // store new y(n-1)
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 68 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix C: Software Examples

Radix-2 FFT

// An optimised FFT subroutine with a simple interface
//
// Input Values:
Sfft_npts - Number of points (a power of
SInputreal - Input array real parts
$Inputimag - Input array imag parts
LO,L1,L4,L5 - should be initialised to O.

Return Values:
SRefft - Output array real parts
SInputreal - Output array imag parts
All registers altered

Computation time:

No clock cycles = (2”n)*(4n+8.5) + 16n + 10
where n = log2 (fft npts)

fftnpts: 64 128 256 512

T T N T T
N N N N Y

No Clks: 2186 4794 10506 22938

// Declare local variables:
.VAR groups;

.VAR node_space;

#include "twiddle factors.h"

// -- ENTRY POINT --

fast fft:

MO = 0;

M1l = 1;

// -- Process the n-1 stages of butterflies --
rl = 1;

M[groups] = rl;
r0 = M[sfft_npts];
r0 = r0O ASHIFT -1;

// groups = 1

2)

M[node space]l = r0; // node_space = Npts / 2
r0 = SIGNDET rO0;

rl = 22;

r9 = rl - r0; // log2(Npts) - 1

stage_ loop:

rl0 = M[node_ space];

M2 = rl0; // M2 = node_space
r8 = M[groups];

r2 = r8 LSHIFT 1;

M[groups] = r2; // groups = groups
I0 = &twid imag; // I0 -> (-S) of WO
I2 = &SInputreal; // I2 -> x0 in 1st
I1 = I2 + M2; // Il -> x1 in 1st
I6 = &SInputimag; // I6 -> y0 in 1st
I3 = I6 + M2; // I3 -> yl in 1st
I4 = &twid real; // I4 -> C of WO

* 2;

group of stage
group of stage
group of stage
group of stage

bc3-ug-001Pc

© Copyright CSR 2003
Advance Information

Page 69 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Appendix C: Software Examples

group_loop:
r2 = M[I4,1];
ré6 = r2; // r6=C
r3 = M[I1,0]; // r3=x1
rMAC = r3 * r6 // TrMAC=x1*C
r5 = M[I3,0]; // r5=yl
r2 = M[IO,1];
r7 = r2; // r7=(-8)

rl0 = M[node space];

DO bfly loop;

rMAC = rMAC - r5 * r7 // TrMAC=x1*C-yl*-S
r0 = M[I2,0]; // 1r0=x0
rl = r0 + rMAC // rl1l=x0'=x0+ (x1*C-y1l*-3)
r2 = M[I3,M1]; // r2=yl (dummy read)
rl = r0 - rMAC // rl=x1'=x0-(xX1*C-yl*-S)
M[I2,M1] = rl; // DM=x0'
rMAC = r3 * r7 // rMAC=x1* (-S)
M[I1,M1] = rl // DM=x1'
rd4d = M[I6,MO]; // r4=y0
rMAC = rMAC + r5 * r6 // rMAC=x1*(-S)+yl*C
r5 = M[I3,-1]; // r5=next yl
rl = r4 + rMAC // rl=y0'=y0+ (yl*C+x1l* (-S))
r3 = M[I1,M0]; // r3=next x1
rd = r4 - rMAC // rl=yl'=y0- (yl*C+x1*(-S))
M[I6,M1] = rl; // DM=yO0'
rMAC = r3 * 16 // rMAC=x1*C
M[I3,M1] = r4; // DM=yl'
bfly loop:
r2 = M[I1,M2]; // move: x1, x0, yl, and yO
r3 = M[I3,M2]; // onto next group with dummy reads
r8 = r8 - Ml
r2 = M[I2,M2]
r3 = M[Ie, M2];
if NZ jump group loop;
rl0 = M[node spacel;
rl0 = rl0 ASHIFT -1; // node_space = node space / 2;
M[node space] = rl0;

r9 = r9 - 1;

if NZ jump stage loop;
// -- Process the last stage of butterflies separately --
I0 = &twid imag; // I0 -> (-8) of WO
I5 = &sSInputreal; // I2 -> x0
I1 = I5 + 1; // Il -> x1
M2 = 2;
I3 = BITREVERSE (&SRefft) ; // Refft bitreversed
r0 = M[sfft npts];
r0 = SIGNDET r0;
r0 = xr0 - 7;
rl = 1;
rl = rl LSHIFT x0;
M3 = rl; // Bitreversed modifier
I4 = &twid real; // I4 -> C of WO
I6 = &SInputimag; // 16 -> yO
I2 = I6 + 1; // I5 -> vyl
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 70 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v 4 Appendix C: Software Examples

r2 = M[I4,M1]

r5 = M[I2,M2]; // 5=yl
r6 = r2 // r6=C
r3 = M[I1,M2]; // r3=x1
rMAC = r3 * ré6 // rMAC=x1*C
r2 = M[IO,1]; // r2=(-8)
rl0 = M[$fft npts];
rl0 = rl0 ASHIFT -1; // Npts / 2
DO last loop;
rMAC = rMAC - r5 * r2 // rMAC=x1*C-yl*-S
r0 = M[I5,M2]; // 1r0=x0
rl = r0 + rMAC; // rl1l=x0'=X0+(x1*C-yl*-3)

// enable Bit Reverse addressing on AG1l
rFlags = rFlags OR BR _FLAG;

rl = r0O - rMAC // rl=x1'=x0-(x1*C-yl*-S)
M[I3,M3] = rl; // DM=x0'
rMAC = r3 * r2 // rMAC=x1* (-S)

M[I3,M3] = rl // DM=x1'

r4 = M[I6,MO0]; // r4=y0

// disable Bit Reverse addressing on AGl
rFlags = rFlags AND NOT_BR FLAG;

rMAC = rMAC + r5 * ré6 // TMAC=x1* (-S)+yl*C
r2 = M[I4,M1] // r2=C;
r3 = M[I1,M2]; // r3=next x1
rl = r4 + rMAC // rl=y0'=y0+ (y1l*C+x1* (-S))
r5 = M[I2,M2]; // r5=next yl
r4 = r4 - rMAC // rl=yl'=y0- (y1l*C+xl* (-3))
M[I6,M1] = rl; // DM=yO0'
r6 = r2 // ré6=C
r2 = M[IO,M1]; // r2=(-8)
rMAC = r3 * r6 // rMAC=x1*C
M[I6,M1] = r4; // DM=y1l'
last loop:
I3 BITREVERSE (&$Inputreal) ;

I5 &$Inputimag;
// enable Bit Reverse addressing on AGl
rFlags = rFlags OR BR _FLAG;

r2 = M[I5,1];

rl0 = N;

DO bit_rev_imag;
r2 = M[I5,M1]
M[I3,M3] = r2;

bit rev imag:

// disable Bit Reverse addressing on AG1l
rFlags = rFlags AND NOT_BR FLAG;
rts;

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 71 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

~

Document References

Document References

Document:

Reference, Date:

BlueCore3-Multimedia Kalimba DSP Assembler User Guide

bc3-ug-002Pd, May 2005

BluLab xIDE userguide

blab-ug-002Pa, June 2005

BlueCore3-Multimedia Data Sheet

BC358239A-ds-001Pf, July 2005

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 72 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

»"/ Acronyms and Definitions

Acronyms and Definitions

BlueCore™ Group term for CSR’s range of Bluetooth chips
Bluetooth® Wireless technology providing audio and data transfer over short-range radio connections
CODEC COder DECoder
CSR Cambridge Silicon Radio Limited
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIR Finite Infinite Response filter
IIR Infinite Impulse Response filter
ISR Interrupt Service Routine
Kalimba A CSR DSP core architecture
Kalasm2 Product name for BlueCore3-Multimedia Kalimba DSP Core Assembler
LS Least Significant
LSW Least Significant Word
MAC Multiply ACcumulate
MS Most Significant
MSW Most Significant
NOP No Operation
PC Program Counter
RTI ReTurn from Interrupt
RTS ReTurn from Subroutine
© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 73 of 74

This material is subject to CSR’s non-disclosure agreement.

apINg J9sN dSd equwife)] eIP3WINNI-Ew, 21039N|d

CSr

v /‘ Record of Changes

Record of Changes

Date: Revision | Reason for Change:
01 SEP 03 a Original publication of this document. (CSR reference: bc3-ug-001Pa)
14 OCT 03 b Minor modifications and clarification of divide instruction
23 JUN 05 c Minor modifications and some re-ordering of information.

BlueCore3-Multimedia Kalimba DSP

User Guide

bc3-ug-001Pc

June 2005

Unless otherwise stated, words and logos marked with ™ or ® are trademarks registered or owned by Cambridge
Silicon Radio Limited or its affiliates. Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG,
Inc. and licensed to CSR. Other products, services and names used in this document may have been
trademarked by their respective owners.

The publication of this information does not imply that any license is granted under any patent or other rights
owned by Cambridge Silicon Radio Limited.

CSR reserves the right to make technical changes to its products as part of its development programme.

While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept
responsibility for any errors.

CSR'’s products are not authorised for use in life-support or safety-critical applications.

© Copyright CSR 2003
bc3-ug-001Pc Advance Information Page 74 of 74
This material is subject to CSR’s non-disclosure agreement.

apINg JasN dSd equwife)] eIP3WINNI-Ew, 21039N|d

	1 Introduction
	2 Key Features
	3 System Overview
	3.1 Kalimba DSP Core
	3.2 Kalimba DSP Memory
	3.3 Kalimba DSP Peripherals
	3.3.1 Memory Management Unit Interface
	3.3.2 Programmable I/O Control
	3.3.3 Interrupt Control
	3.3.4 Clock Source Select and Timer
	3.3.5 Debug Interface

	4 Kalimba DSP Core Architecture
	4.1 Arithmetic Logic Unit
	4.2 Address Generators
	4.3 Registers
	4.4 Bank 1 Registers
	4.5 rFlags Register
	4.5.1 Negative Flag (N)
	4.5.2 Zero Flag (Z)
	4.5.3 Carry Flag (C)
	4.5.4 Overflow Flag (V)
	4.5.5 Sticky Overflow Flag (SV)
	4.5.6 User Definable Flag (UD)
	4.5.7 Bit Reverse Flag (BR)
	4.5.8 User Mode Flag (UM)
	4.5.9 Condition Codes

	4.6 rMAC Register
	4.7 Bank 2 Registers
	4.7.1 Index Registers
	4.7.2 Modify Registers
	4.7.3 Length Registers

	4.8 Instruction Decode
	4.8.1 Type A
	4.8.2 Type B
	4.8.3 Type C
	4.8.4 Special Cases

	4.9 Program Flow
	4.10 Debug

	5 Memory Organisation
	5.1 Memory Map
	5.1.1 PM Memory Map
	5.1.2 DM1 Memory Map
	5.1.3 DM2 Memory Map

	6 Instruction Set Description
	6.1 ADD and ADD with CARRY
	6.2 SUBTRACT and SUBTRACT With Borrow
	6.3 Bank1/2 Register Operations: ADD and SUBTRACT
	6.4 Logical Operations: AND, OR and XOR
	6.5 Shifter: LSHIFT and ASHIFT
	6.6 rMAC Move Operations
	6.7 Multiply: Signed 24-Bit Fractional and Integer
	6.8 MULTIPLY and ACCUMULATE (56-bit)
	6.9 LOAD / STORE with Memory Offset
	6.10 Sign Bits Detect and Block Sign Bits Detect
	6.11 Divide Instruction
	6.12 Program Flow: CALL, JUMP, RTS, RTI, SLEEP, DO...LOOP and BREAK
	6.13 Indexed MEM_ACCESS_1 and MEM_ACCESS_2

	7 Instruction Coding
	7.1 Type A Instruction
	7.2 Type B Instruction
	7.3 Type C Instruction
	7.4 Special Cases
	7.5 OP_CODE Coding
	7.6 AM Field
	7.7 Carry Field (C Field)
	7.8 Bank 1/2 Register Select Field (B2RS Field)
	7.9 Saturation Select Field (V Field)
	7.10 Sign Select Field (S Field)
	7.11 k16 Coding for LSHIFT and ASHIFT
	7.12 rMAC Sub Registers
	7.13 ASHIFT
	7.14 LSHIFT
	7.15 k16 Coding Divide Instructions

	8 Kalimba DSP Peripherals
	8.1 MMU Interface
	8.1.1 Read Ports
	8.1.2 Write Ports

	8.2 DSP Timers
	8.3 Kalimba Interrupt Controller
	8.3.1 DSP Core Functionality During Interrupt
	8.3.2 Interrupt Controller Functionality

	8.4 Generation of MCU Interrupt
	8.5 PIO Control
	8.6 MCU Memory Window in DM2
	8.7 Flash Memory Window in DM2
	8.8 PM Window in DM1
	8.9 General Registers
	8.10 Clock Rate Divider Control
	8.11 Debugging

