
Iosoft Ltd.
PICBASIC PLUS networking
PB_UDP Software Manual

1. Introduction

This manual describes the Iosoft Ltd. PB_UDP source-code package, which
provides networking functionality for the Crownhill Associates Proton-Net
board, using the PICBASIC PLUS programming language.

Due to the limitations of the BASIC programming language, a full TCP/IP
software stack (e.g. Embedded Web server) is not included; instead, a low-level
interface employing standard UDP (User Datagram Protocol) communications is
provided, that allows for simple communications over a local network or the
Internet.

To demonstrate the networking capability, the source-code package includes
client & server code for communication with a local PC running the Iosoft
‘datagram’ utility.

This manual was written for version 1 of the software. You may have been
supplied with an updated version, for details see the revision header at the top
of the main source file. Although the new version will have improvements and
corrections, the underlying principles described in this manual will still apply.

It is impossible for us to provide a complete description of TCP/IP networking
within the confines of this manual; newcomers are recommended to read an
introductory book on the subject prior to tackling this challenging area, for
example ‘TCP/IP Lean: Web Servers for Embedded Systems’ by Jeremy Bentham
(2nd edition ISBN 1-57820-108-X).

For sales and support information on Iosoft products, refer to the Iosoft Ltd.
Web site, www.iosoft.co.uk

 Page 1 © Iosoft Ltd. 2003

http://www.iosoft.co.uk/

2. Development environment

Development environment
To use the PB_UDP package, you will need:

1. The source files PD_UDP.BAS, UDP_DATA.INC and UDP_VARS.INC; they
may have been supplied within a Zip file, in which case it must be
unzipped before putting it in an appropriate directory (e.g.
c:\projects\picbasic). There is a second file PB_UDP2.BAS that is only
required when demonstrating board-to-board communications (see
section 5).

2. A recent version of the Crownhill PICBASIC PLUS compiler. The software
was tested with v1.24e, which does include support for 32-bit ‘long’
variables.

3. A Proton-net target board, with PIC16F877 device.

4. A PICmicro device programmer, that can load the compiled HEX file into
a PIC16F877 device.

5. A PC running Windows, with an Ethernet card configured to run TCP/IP.

6. Either a crossover Ethernet cable or a hub and two straight-through
Ethernet cables to link the PC to the target board. An older 10 megabit
or a newer 10/100 megabit auto-switching hub may be used.

7. The Iosoft Ltd. ‘datagram’ network utility for the PC.

8. A straight-through serial cable to connect the target board to an unused
serial port on the PC.

9. A terminal-emulator program for the PC (such as Hyperterm supplied
with Windows), configured to 9600 baud, no parity, 1 stop bit.

 Page 2 © Iosoft Ltd. 2003

3. Using the software

Getting started
Before looking at the structure of the software, it is worth getting it running in
order to check out the development environment.

It is recommended that you set up the target board & PC on their own isolated
network, rather than using an existing office network, as it simplifies the initial
testing, and avoids the possibility of disrupting office communications.

In order for the PC and target board to communicate, they must not only be
physically connected (via a crossover Ethernet cable, or a hub), but they must
also have addresses that are in the same domain, i.e. must have similar
addresses. By default, the PB_UDP package uses an address of 10.1.1.99, which
is defined at the top of the Basic file:

SYMBOL MYIP1 = 10
SYMBOL MYIP2 = 1
SYMBOL MYIP3 = 1
SYMBOL MYID = 99

It will also try to contact a server (your PC) at the address 10.1.1.3

SYMBOL REMIP1 = 10
SYMBOL REMIP2 = 1
SYMBOL REMIP3 = 1
SYMBOL REMIP4 = 3

To check whether your PC has a compatible address, look at the TCP/IP
properties (details will vary depending on the Windows version).

 Page 3 © Iosoft Ltd. 2003

Figure 1: Windows TCP/IP properties

If the PC is set to obtain the IP address automatically, then it won’t function in
our simplified network, so a fixed IP address should be specified. Be warned
that changing the network configuration of a PC is a non-trivial task; it is
important to record the existing configuration before any changes (if in doubt,
contact the System Administrator for your network before proceeding).

Alternatively, the target board configuration can be changed to reflect the PC
settings; for example if the PC is at address 192.168.0.1, then change the Basic
code to:

SYMBOL MYIP1 = 192
SYMBOL MYIP2 = 168
SYMBOL MYIP3 = 0
SYMBOL MYID = 99

SYMBOL REMIP1 = 192
SYMBOL REMIP2 = 168
SYMBOL REMIP3 = 0
SYMBOL REMIP4 = 1

The addresses given throughout this manual will also need to be adjusted to
match.

It is important that the target board address isn’t in use by any other device (or
any other target board). The easiest way to guarantee this is to ensure no other
devices are physically connected to the network. When connecting to an
existing network, extreme care is necessary; an address may appear to be
unused (e.g. there is no response to a ‘ping’) but this may just be because the

 Page 4 © Iosoft Ltd. 2003

device is currently powered down; when it is powered up, it will clash with the
target board and cause problems. There is normally one individual (the network
administrator) who is responsible for allocating addresses on the network, and
he/she should be consulted prior to adding any new devices.

Programming the PICmicro
The PB_UDP source file should be loaded into the compiler and compiled, and
the resulting PB_UDP.HEX file programmed into a PIC16F877. There are various
types of programming adaptor, so details cannot be given here, but it is
important to check the configuration fuse settings before programming the
device, namely:

o The watchdog must be disabled.

o Low-voltage programming should be disabled

o The crystal type must be HS (high speed)

o In-circuit debugging must be disabled

The programmed device should be inserted into the target board, and the serial
and network cables connected. A terminal emulator running on the PC, set to
9600 baud, no parity, 1 stop bit. On power-up, something similar to the
following should be observed:

PB_UDP
My IP 10.1.1.99, host 10.1.1.3, gate 10.1.1.100
Tx ARP request
Rx len 60 pcol 806 ARP resp
Tx time request
Rx len 70 pcol 800 IP ICMP Destination unreachable
Tx time request
Rx len 70 pcol 800 IP ICMP Destination unreachable

All three network indicators on the target board should be lit, the Tx and Rx
LEDs flashing every second, and the system LED toggling on or off every second.

Other possible indications are:

o No activity: system LED doesn’t flash. The PIC16F877 device
programming and/or configuration fuse settings are probably incorrect.

o The ‘link status’ LED doesn’t light. The target board Ethernet
connection is faulty; the cable may be of the wrong type (crossed vs.
uncrossed). If using a hub, check that the corresponding link status LED
for the port you are using; communication can only take place if the
status LEDs at both ends of the link are illuminated.

o The serial link only shows ‘Tx ARP request’ every second. The target
board is trying to contact the PC, but is receiving no response. Check the
target board addresses as printed out on start-up, and also the PC
address.

 Page 5 © Iosoft Ltd. 2003

If you are in doubt about the PC network configuration, run the utility
WINIPCFG, select the network adaptor you are using, and you should see a
display similar to the following:

Figure 2: WINIPCFG display

PC time server: the DATAGRAM utility
The target board is contacting the PC every second in an attempt to find out
the current time; the ‘destination unreachable’ message indicates that the PC
has received the request, but doesn’t know how to respond to it. To give the PC
the capability to act as a time server, the Iosoft DATAGRAM utility must be run
on the PC. On start-up, the utility presents a small control window, divided into
4 main areas:

o Local UDP server. This controls which of 3 services the utility will offer
to the network.

o Destination address. The utility can initiate network communications,
and this area gives the destination address and port number. There is
also a timer value which, if non-zero, will cause the communication to
be repeated.

o Transmit UDP data. The data to be transmitted, in text and hexadecimal
notation.

o Receive UDP data. Any responses to the outgoing network messages.

 Page 6 © Iosoft Ltd. 2003

Figure 3: The Iosoft DATAGRAM utility

To enable server operation, it is only necessary to click one of the radio buttons
in the top area, we require the ‘time’ service, so the right-hand button is
clicked. The UDP server display briefly changes to ‘listening on port 37’, then to
a count of request that changes every second, e.g. ’17 Rx, last from 10.1.1.99
port 1024 len 0’. This confirms that the PC is receiving the time requests, and is
returning the time value; the target serial link shows:

Rx len 60 pcol 800 IP UDP time
Tx time request
Rx len 60 pcol 800 IP UDP time
Tx time request

..and so on, updated every second. The time value received from the PC is
displayed on the top right-hand side of the target board LCD, in 24-hour
notation, e.g.

15:11:04

This shows how a simple target board can fetch the current time over the
network, instead of having its own real-time clock chip with battery backup,
and a user interface to set the time. At a network level, it demonstrates how
the client software on the target board can contact the server on the PC, and
receive a response.

Target board server: message handler
The target board software also has the ability to process incoming messages,
and transmit a reply. To demonstrate this, the DATAGRAM utility is used to send
a message to the target board, and display the response.

The datagram utility is set up as follows:

 Page 7 © Iosoft Ltd. 2003

o The server address is set to the target board address 10.1.1.99

o The server port number is set to 4321

o The transmit data is set to the desired text or hex values

o The ‘send’ button is clicked.

Figure 4: Sending message to target board

The transmitted text (‘Hello’) appears on the lower line of the target LCD
display, and the datagram utility shows a response that is the current voltage
measured on the first ADC channel (2.71 volts), which is set by a potentiometer
on the board. To see the value change, enter ‘1’ in the ‘repeat’ box, click
‘send’, and the voltage value will be redisplayed every second.

Ping diagnostics
The ‘ping’ utility is often used to diagnose network problems, and the PB_UDP
software can respond to pings. Open up a DOS box on the PC, and enter ‘ping’
plus the target address:

C:\WINDOWS>ping 10.1.1.99
Pinging 10.1.1.99 with 32 bytes of data:

Reply from 10.1.1.99: bytes=32 time=35ms TTL=128
Reply from 10.1.1.99: bytes=32 time=34ms TTL=128
Reply from 10.1.1.99: bytes=32 time=34ms TTL=128
Reply from 10.1.1.99: bytes=32 time=34ms TTL=128

Ping statistics for 10.1.1.99:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 34ms, Maximum = 35ms, Average = 34ms

 Page 8 © Iosoft Ltd. 2003

Due to buffer size constraints, the maximum ping data size the PB_UDP
software can handle is 32 bytes.

Using a gateway
So far, all communications have been restricted to a small desk-top network,
but the PB_UDP software has the ability to send & receive messages across
larger network, including the Internet.

To do this, it is programmed with the address of a ‘gateway’, which will
forward any outgoing messages to a wider network, and return any responses.
The gateway address in given at the top of the source file, by default
10.1.1.100

SYMBOL GWIP1 = 10
SYMBOL GWIP2 = 1
SYMBOL GWIP3 = 1
SYMBOL GWIP4 = 100

There is also a netmask (default 255.255.255.0), which is used to determine if
the desired target address is on the local subnet (no gateway required) or on a
remote network (all requests to go though the gateway).

SYMBOL MASKIP1 = 255
SYMBOL MASKIP2 = 255
SYMBOL MASKIP3 = 255

In theory, all that is necessary is to set the gateway IP address to the correct
value for your gateway, the remote IP address to the desired timeserver on the
Internet (e.g. the Demon Internet time server 158.152.1.76), and the PB_UDP
software will automatically send the time requests out on the Internet, and
show the results. In practice, setting up a connection from an office network to
the Internet can be quite complicated, as there may be various security systems
(‘firewalls’) in place to stop unwanted messages entering or leaving the site, so
it is important to liase with the network administrator before attempting
Internet communications.

 Page 9 © Iosoft Ltd. 2003

4. Structure of the software

The PB_UDP software encompasses the following main components:

o Definitions

o Hardware initialisation

o Transmission

o Reception

o Client code

o Server code

Definitions
Extensive use is made of the SYMBOL command to define symbolic constants,
for example:

SYMBOL LCD_LINE2 = $c0

Thereafter, whenever LCD_LINE2 is used the compiler substitutes a value of
0C0h:

b = LCD_LINE2: GOSUB LCD_cmd

It is convenient to be able to redefine certain byte locations as 16 or 32-bit
words, and there is a compiler trick that allows this. For example, the 13th and
14th bytes of the received network frame are a 16-bit protocol value, with the
most-significant byte first. The following definition allows these two bytes in
the receive buffer to be accessed as if they were one word.

DIM rxbuff[RXBUFFLEN] AS BYTE
SYMBOL pcol_ = rxbuff#13
SYMBOL pcol_h = rxbuff#12
DIM pcol AS pcol_.WORD
. . .
IF pcol = PCOL_ARP THEN
. . .

IP ADDRESS

Symbol definitions are also used for the main IP address definitions

SYMBOL MYIP1 = 10
SYMBOL MYIP2 = 1
SYMBOL MYIP3 = 1
'My ID number; last byte of MAC & IP address
SYMBOL MYID = 99

'4 bytes of remote IP address
SYMBOL REMIP1 = 10
SYMBOL REMIP2 = 1
SYMBOL REMIP3 = 1
SYMBOL REMIP4 = 3

 Page 10 © Iosoft Ltd. 2003

'4 bytes of gateway IP address
SYMBOL GWIP1 = 10
SYMBOL GWIP2 = 1
SYMBOL GWIP3 = 1
SYMBOL GWIP4 = 100

'3 bytes of IP address mask
SYMBOL MASKIP1 = 255
SYMBOL MASKIP2 = 255
SYMBOL MASKIP3 = 255

If several PB_UDP implementations are on the same network, they must each
have a unique value for ‘MYID’, which is used as the least-significant byte of the
address.

MAC ADDRESS

In addition to having a unique IP address, the board must also have a unique
hardware (MAC) address. There are various ways this could be achieved, the
easiest being to use the ‘locally administered’ MAC address space provided by
the IEEE. If the most-significant byte has a value of 2, then the remaining bytes
aren’t IEEE-administered, so can be any value we choose (so long as they don’t
happen to coincide with those of someone else’s choosing). The ‘MYID’ value is
used as the least-significant byte of the MAC address; providing it has been set
to a unique value for each board on the network, then no two boards will have
the same MAC address.

Hardware initialisation
To set up the Ethernet Network Interface Controller (NIC), a large number of
hardware registers have to be initialised with specific data values. This has been
implemented using DATA statements, with pairs of values representing the
register and the byte value, for example

SYMBOL RBCR0 = $0a
SYMBOL RBCR1 = $0b
SYMBOL RCR = $0c
SYMBOL TCR = $0d
SYMBOL DCR = $0e
. . .
DATA DCR, $48 'Data config
DATA RBCR0, $00 'Clear RBCR
DATA RBCR1, $00
DATA RCR, $20 'Rx monitor mode

In essence, the software has to fetch each pair of values, and put the second
into the register specified by the first:

SYMBOL NICADDR = PORTB
SYMBOL NICDATA = PORTD
SYMBOL NIC_IOR = PORTE.0
SYMBOL NIC_IOW = PORTE.1

 Page 11 © Iosoft Ltd. 2003

SYMBOL NIC_RST = PORTE.2
. . .
REPEAT
 READ a: READ b
 NICADDR = a: NICDATA = b: GOSUB out_nic
UNTIL a >= T_STOP

The out_nic subroutine asserts the write-enable line, so that the data value
is written to the required address.

'Do a NIC write cycle
out_nic:
 OUTPUT PORTD
 NIC_IOW = 0
 DELAYUS 3
 NIC_IOW = 1
 INPUT PORTD
RETURN

TIME DELAY

It takes a finite time for the NIC to respond to some settings, so delays have to
be inserted at specific points. This is handled by a including a dummy register
value (outside the normal 0-1F hex range for NIC registers) to indicate a delay is
required, e.g.

SYMBOL T_WAIT = $fd 'Wait x ms
. . .
DATA CMDR, $21 'Stop, DMA abort (wait 2ms)
DATA T_WAIT, 2 'Wait 2ms
DATA DCR, $48 'Data config

TASK BLOCKS

This idea of dummy register values to indicate special functions has been used
extensively, for example there is a dummy value NIC_INIT to mark the start of
the initialisation data, and T_STOP to mark the end. This means that the data
table can contain several functional blocks, each with a defined beginning and
end.

DATA NIC_INIT, 0 'NIC initialisation:
DATA RESPORT, $01 'Reset NIC
DATA T_WAIT, 2 'Wait 2ms
DATA CMDR, $21 'Stop, DMA abort (wait 2ms)
. . .
DATA T_STOP, 0 'End of this task

DATA TX_ARPREQ, 0 'Tx broadcast ARP request
DATA ISR, $40 'Clear remote DMA int flag
DATA RSAR0, 0 'Set remote DMA addr
DATA RSAR1, TXSTART
. . .
DATA T_STOP, 0 'End of this task

Each block is referred to as a ‘task’, and is essentially a block of coded
instructions that must be executed to initiate the required action, such as
setting up the hardware, or transmitting a specific message. To action a task,
the following code is used:

task = NIC_INIT: GOSUB do_nic_task 'Initialise NIC
. . .
task = TX_ARPREQ: GOSUB do_nic_task 'Send ARP request

The subroutine do_nic_task searches the data table for the appropriate code
block, and then executes it:

 Page 12 © Iosoft Ltd. 2003

do_nic_task:
 IF task > NIC_INIT OR task < TASKBASE THEN RETURN
 RESTORE
 REPEAT 'Search for task marker
 READ a: READ b
 IF a = T_END THEN RETURN
 UNTIL a = task
 REPEAT 'Do task
 READ a: READ b
 IF a <= RESPORT THEN NICADDR = a: NICDATA = b: GOSUB out_nic
 IF a = T_WAIT THEN DELAYMS b
 IF a>=T_VOUT1 AND a<=T_VOUT6 THEN GOSUB vout
 UNTIL a >= T_STOP
RETURN

Transmission
A transmission task block contains all the commands to set up the NIC, and all
the data to be transmitted, for example an ARP request:

DATA TX_ARPREQ, 0 'Tx broadcast ARP request
DATA ISR, $40 'Clear remote DMA int flag
DATA RSAR0, 0 'Set remote DMA addr
DATA RSAR1, TXSTART
DATA CMDR, $12 'Start DMA remote write
DATA DPORT, $ff 'Broadcast addr
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA T_VOUT6, V_LOC_MAC 'Local MAC addr
DATA DPORT, $08 'Ether pcol 0806: ARP
DATA DPORT, $06
DATA DPORT, $00 'ARP hardware type 0001: Ethernet
DATA DPORT, $01
DATA DPORT, $08 'ARP protocol type 0800: IP
DATA DPORT, $00
DATA DPORT, MACLEN 'ARP hardware addr len
DATA DPORT, IPADDRLEN 'ARP pcol addr len
DATA DPORT, $00 'ARP operation 0001: request
DATA DPORT, $01
DATA T_VOUT6, V_LOC_MAC 'Local MAC addr
DATA T_VOUT4, V_LOC_IP 'Local IP addr
DATA DPORT, $ff 'Target MAC addr: broadcast
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA DPORT, $ff
DATA T_VOUT4, V_REMGATE_IP
DATA T_STOP, 0 'End of this task

After the initial register setting, the packet data is put in the NIC buffer (you
may care to review the ARP format as described in ‘TCP/IP Lean’ chapter 3):

6-byte destination MAC address: all 1’s (broadcast)
6-byte source MAC address: my hardware address
Protocol word: 0806h (ARP)
Hardware type word: 0001h (Ethernet)
ARP protocol word: 0800 (IP)
Hardware address length byte: 6 (Ethernet address length)
IP address length byte: 4

 Page 13 © Iosoft Ltd. 2003

ARP operation word: 0001 (ARP request)
6-byte local MAC address
4-byte local IP address
6-byte broadcast MAC address
4-byte destination IP address

DATA VARIABLES

You will note that yet more dummy register values have been used to represent
variables such as the source & destination addresses, so for example the data
pair

DATA T_VOUT4, V_LOC_IP

Indicates that a 4-byte value should be sent to the NIC data register, consisting
of the local IP address. This is handled in the vout subroutine:

NICADDR = DPORT
IF b = V_LOC_IP THEN
 NICDATA = MYIP1: GOSUB out_nic
 NICDATA = MYIP2: GOSUB out_nic
 NICDATA = MYIP3: GOSUB out_nic
 NICDATA = MYID: GOSUB out_nic
ENDIF

GATEWAY

The data variable V_REMGATE_IP represents the destination IP address, and has
an additional feature; if the destination is outside the network, the ARP request
will be sent to the gateway, instead of the true destination. The destination
address is XORed with the local address and then masked using the netmask
value to decide if the gateway IP or remote IP is to be used.

a = ((REMIP1^MYIP1)&MASKIP1) | ((REMIP2^MYIP2)&MASKIP2) |
((REMIP3^MYIP3)&MASKIP3)
 IF b = V_REMGATE_IP AND a <> 0 THEN
 NICDATA = GWIP1: GOSUB out_nic
 NICDATA = GWIP2: GOSUB out_nic
 NICDATA = GWIP3: GOSUB out_nic
 NICDATA = GWIP4: GOSUB out_nic
 RETURN
 ENDIF
 IF b = V_REM_IP OR b = V_REMGATE_IP THEN
 i = 0
 REPEAT
 NICDATA = rem_ip[i]: GOSUB out_nic: INC I
 UNTIL I > IPADDRLEN-1:
 ENDIF

LENGTH CALCULATION

It is necessary to know in advance how much data is being sent to the NIC, in
order to set the registers appropriately. A subroutine get_datalen finds a given
task, computes the amount of data it contains, and then sets the NIC length
registers accordingly.

 Page 14 © Iosoft Ltd. 2003

get_datalen:
 IF task > NIC_INIT OR task < TASKBASE THEN RETURN
 RESTORE
 REPEAT 'Search for task marker
 READ a: READ b
 IF a = T_END THEN RETURN
 UNTIL a = task
 datalen = 0
 REPEAT 'Tally data lengths
 READ a: READ b
 IF a = DPORT THEN datalen = datalen + 1
 IF a = T_VOUT2 THEN datalen = datalen + 2
 IF a = T_VOUT4 THEN datalen = datalen + 4
 IF a = T_VOUT6 THEN datalen = datalen + 6
 UNTIL a >= T_STOP
 NICADDR = RBCR0: NICDATA = datalen: GOSUB out_nic
RETURN

CLIENT/SERVER REMOTE/RESPONSE ADDRESSES

The PB_UDP code must handle two types of transaction:

CLIENT: initiate a request and wait for a response

SERVER: wait for a request, and send a response

As supplied, the software has two interlinked clients:

ARP CLIENT: requests the MAC address of the time server (or of the
gateway, if the server isn’t on the local network).

TIME CLIENT: once the MAC address is found, the time is requested at
one-second intervals.

There are also three servers:

ARP SERVER: responds to ARP requests for the local IP address.

PING SERVER: responds to pings (ICMP echo requests)

MESSAGE SERVER: accepts message for display on the LCD, returns the
current ADC voltage value.

The important point is that the PB_UDP software has no control over the timing
of any incoming messages; if the time client has just requested the time value,
there is no guarantee that the next message received will be the time response;
it could be an ARP or ping request instead. Due to the limited storage space, all
messages must be acted upon as soon as they arrive, so the ARP or ping
response must be sent even though a time response is expected.

For this reason, two types of destination addresses are used: a response
address and a remote address. The former is used by the server for all its
replies, and is just a copy of the incoming source address (i.e. it is used for
‘return to sender’ replies), while the remote address is a fixed value
corresponding to, say, the time server address.

 Page 15 © Iosoft Ltd. 2003

COPYING SOURCE DATA

A frequent requirement is to copy data from an incoming message to the
outgoing message. An instance of this is the ARP server, where the original
source IP address has to be copied into the outgoing destination IP address field.
This is achieved by using the T_VOUT4 4-byte variable definition with the offset
of the original source address within the receive buffer:

DATA T_VOUT4, 28 'Target IP addr

This copies 4 bytes from the receive buffer location 28 to the transmit buffer in
the NIC. The same technique can be used with other data sizes, for example
copying an incoming 2-byte UDP port number into the outgoing data

DATA T_VOUT2, 34 'Destination port (= incoming source port)

UDP MESSAGE RESPONSE

The most complex transmission is the UDP message response, as it must
conform to UDP & IP formatting, and also include a dynamically-changing
voltage value.

DATA TX_MSGRSP, 0 'Tx UDP message response
DATA RSAR0, 0 'Set remote DMA addr
DATA RSAR1, TXSTART
DATA CMDR, $12 'Start DMA remote write
DATA T_VOUT6, V_RESP_MAC 'Send to response MAC addr
DATA T_VOUT6, V_LOC_MAC 'Local MAC addr
DATA DPORT, $08 'IP protocol
DATA DPORT, $00
DATA DPORT, $45 'IP v4, header len 20 bytes
DATA DPORT, 0 'Normal service
DATA T_VOUT2, V_IPLEN 'Length of IP datagram
DATA DPORT, 0 'Identifier
DATA DPORT, 1
DATA DPORT, 0 'No fragmentation
DATA DPORT, 0
DATA DPORT, 128 'Time to live
DATA DPORT, 17 'Protocol UDP
DATA DPORT, $0 'Dummy checksum
DATA DPORT, $0
DATA T_VOUT4, V_LOC_IP 'Source IP addr
DATA T_VOUT4, 26 'Dest IP addr
DATA DPORT, MSGPORT/256 'Source port
DATA DPORT, MSGPORT//256
DATA T_VOUT2, 34 'Dest port (= incoming source port)
DATA T_VOUT2, V_UDPLEN 'UDP length (header + data)
DATA DPORT, 0 'Disable checksum
DATA DPORT, 0
DATA DPORT, "A" 'UDP data: voltage value
DATA DPORT, "D"
DATA DPORT, "C"
DATA DPORT, "="
DATA T_VOUT4, V_VOLTAGE
DATA DPORT, "V"
DATA T_STOP, 0 'End of this task

The points to note are:

 Page 16 © Iosoft Ltd. 2003

Dynamic data. A special variable value V_VOLTAGE has been defined,
that returns a 4-character string containing the ADC value in volts, e.g.
“1.23”.

Data length. The IP and UDP data length has to be computed before
executing this task, as follows

 task = TX_MSGRSP: GOSUB get_datalen 'Get response length
 iplen = datalen - MACHDR_LEN 'Calc IP & UDP len
 udplen = iplen - IPHDR_LEN

Checksum. The UDP checksum is set to zero to disable it, but the IP
checksum can not be disabled. A subroutine is called to compute the
checksum just prior to transmission:

 GOSUB do_nic_task
 GOSUB calc_tx_ip_csum: GOSUB transmit

Port number. An arbitrary port number has been chosen for the message
server:

 'Port to be used for incoming messages
 SYMBOL MSGPORT = 4321

Reception
The subroutine ‘receive’ is used to check the Network Interface Controller (NIC)
to see if any frames have been received. The NIC can store up to 6KB of
incoming data in its own circular buffer, so it isn’t necessary to use interrupts to
signal data arrival.

The process by which the data is extracted from the NIC packet buffer is known
as ‘remote DMA’, and is too complex to discuss here; if you need more
information, see the National Semiconductor DP8390 family data sheets, since
this device is the heart of the NE2000-compatible network controller.

A relatively small buffer is used to store the incoming data, due to the severe
RAM constraints of the PIC16.

 'Size of receive buffer
 SYMBOL RXBUFFLEN= 74
 DIM rxbuff[RXBUFFLEN] AS BYTE

For an incoming UDP packet, the sizes are:

Ethernet header: 14 bytes (2 x 6-byte MAC addresses, protocol word)
IP header: 20 bytes
UDP header: 8 bytes
UDP data: Up to 32 bytes

A much larger buffer size could be used on a PIC18xxx processor, though a
buffer larger than 255 bytes would necessitate some code modifications, as
single-byte length values have been used in various places.

If a frame has been received, it is copied into the receive buffer, and the
‘rxlen’ variable is set to the length; if the frame exceeds the buffer size it is
truncated. The frame is then analysed using the check_rx subroutine.

 Page 17 © Iosoft Ltd. 2003

 GOSUB receive
 IF rxlen > 0 THEN
 HRSOUT "Rx len ", DEC rxlen, " pcol ", HEX pcol, " "
 GOSUB check_rx
 HRSOUT $d, $a
 ENDIF

The check_rx subroutine has to classify the incoming frame, which may be ARP
(request or response), IP ICMP (ping request) or IP UDP (message request or
time response). If the frame is unrecognised, it is discarded.

During packet reception and decoding, a significant amount of information is
printed out to the serial link. Whilst this may be very useful for initial testing, it
does significantly increase the response time, so it is recommended that the
diagnostic printouts be removed when developing a real-world application.

ARP HANDLER

The ARP message handler must check that the destination IP address matches
the local IP address, then branch to handle a request (from a remote host) or a
response (to a request we have sent). In the latter case, the remote MAC
address is stored for later use, and a flag is set to show the ARP cycle is
complete.

 IF pcol = PCOL_ARP THEN
 idx = ETHLEN + 24 : GOSUB match_myip
 IF matched = 1 THEN
 IF arp_op = $0001 THEN 'ARP request
 HRSOUT "ARP req"
 txlen = 0 'Send ARP response
 task = TX_ARPRSP
 GOSUB get_datalen: GOSUB do_nic_task
 GOSUB transmit
 ENDIF
 IF arp_op = $0002 THEN 'ARP response
 idx = ETHLEN + 14:
 GOSUB match_remip: GOSUB match_gwip
 IF matched = 1 THEN
 HRSOUT "ARP resp" 'Get MAC address
 idx = ETHLEN + 8: GOSUB get_remmac
 arped = 1
 ENDIF
 ENDIF
 ENDIF
 ENDIF

IP HANDLER

An incoming IP message (known as a ‘datagram’) is checked to ensure the
destination IP address matches the local address, then is split into ICMP or UDP
handlers.

 Page 18 © Iosoft Ltd. 2003

IF pcol = PCOL_IP THEN 'IP protocol
 idx = 30 : GOSUB match_myip 'Match my address
 IF matched = 1 THEN
 HRSOUT "IP "
 IF ip_pcol = 1 THEN 'ICMP protocol
 HRSOUT "ICMP "
 . . .
 ENDIF
 IF ip_pcol = 17 THEN 'UDP datagram
 HRSOUT "UDP "
 . . .
 ENDIF
 ENDIF
ENDIF

ICMP HANDLER

The main ICMP message we’ll receive is an Echo Request (ping request), where
the incoming data must be echoed back. The Destination Unreachable message
is also displayed, since this will be received if we try to access a closed UDP
port (i.e. the PC we’re contacting isn’t running a time server application).

IF ip_pcol = 1 THEN 'ICMP protocol
 HRSOUT "ICMP "
 IF icmp_type = 8 AND rxiplen < 256 THEN
 iplen = rxiplen 'ICMP echo request
 task = TX_ICMPRSP: GOSUB get_datalen: GOSUB do_nic_task
 icmp_type = 0 'Send echo response
 icmp_csum = icmp_csum + 8 'Adjust checksum
 IF icmp_csum < 8 THEN icmp_csum = icmp_csum + 1
 NICADDR = RBCR0: NICDATA = iplen-20: GOSUB out_nic
 NICADDR = RBCR1: NICDATA = 0 : GOSUB out_nic
 NICADDR = CMDR: NICDATA = $12 : GOSUB out_nic
 NICADDR = DPORT 'Copy header & data
 FOR i=0 TO iplen-21
 NICDATA = rxbuff[i+34]: GOSUB out_nic
 NEXT
 GOSUB calc_tx_ip_csum 'Do IP checksum
 GOSUB transmit 'Send the frame
 ENDIF
 IF icmp_type = 3 THEN 'ICMP dest unreachable
 HRSOUT "Destination unreachable"
 ENDIF
 ENDIF
ENDIF

UDP HANDLER

The port numbers are used to determine the type of incoming UDP message
(confusingly, also known as a ‘datagram’). If the source port is a time server,
then it is a time response, while if the destination port is my message port, it is
a text message.

 Page 19 © Iosoft Ltd. 2003

IF rx_srce_port = 37
 HRSOUT "time " 'Response to time request
 . . .
ENDIF
IF rx_dest_port = 4321
 HRSOUT "message " 'Incoming text message
 . . .
ENDIF

UDP T IME HANDLER

An incoming time message consists of the a 32-bit value containing the number
of seconds since January 1 1900, with the most-significant byte first. We’re only
interested in the time, which can be extracted using simple modulo arithmetic,
and displayed on the LCD. A minor complication is that the compiler treats 32-
bit values as signed integers, and the current time value is large (C1C964DC hex
at the time of writing), which will look like a negative value. To correct this, an
integer number of days (24,000) is subtracted to make the seconds count
positive without altering the time value.

HRSOUT "time " 'Response to time request
rx_udp_dw = rx_udp_dw - $7b98a000 'Subtract days to make +ve
s = rx_udp_dw // 60 'Get hrs, min, sec
rx_udp_dw = rx_udp_dw / 60
m = rx_udp_dw // 60
rx_udp_dw = rx_udp_dw / 60
h = rx_udp_dw // 24
b = LCD_TIMEPOS: GOSUB LCD_cmd 'Display on top LCD line
a = h: GOSUB disp_dec2
b = $3a: GOSUB disp_char
a = m: GOSUB disp_dec2
b = $3a: GOSUB disp_char
a = s: GOSUB disp_dec2

UDP MESSAGE HANDLER

An incoming message to UDP port 4321 is displayed on the 2nd line of the LCD

idx = UDP_DATA_START 'Display on 2nd LCD line
b = LCD_LINE2: GOSUB LCD_cmd
FOR i=0 to 15 '16 chars on LCD
 b = rxbuff[idx]
 IF idx<rxlen AND b>0 THEN 'Maybe fewer in message
 GOSUB disp_char
 idx = idx + 1
 ELSE
 b = $20: GOSUB disp_char
 ENDIF
NEXT 'Respond with ADC value..

A response is sent, giving the current voltage on ADC channel 0. The code is
relatively simple, since the outgoing message is pre-formatted using DATA
statements, as discussed earlier.

centivolts = adcval ** 32000 'Get ADC volts / 100
task = TX_MSGRSP: GOSUB get_datalen 'Get response length
iplen = datalen - MACHDR_LEN 'Calc IP & UDP len
udplen = iplen - IPHDR_LEN
GOSUB do_nic_task 'Send response
GOSUB calc_tx_ip_csum: GOSUB transmit

 Page 20 © Iosoft Ltd. 2003

5. Communication between target systems

So far, all communication has been between a target board and the PC; to
demonstrate board-to-board communications, a second file PB_UDP2.C has
been included in the package. It is essentially the same as PB_UDP.C, with
minor modifications:

o The IP address has been changed from 10.1.1.99 to 10.1.1.98. This is
essential to avoid an IP address clash between the boards

o The remote IP address has been changed from 10.1.1.3 to 10.1.1.99.
Instead of requesting data from a PC, the second board will request data
from the first board.

o The remote port number has been changed from 37 to 4321. Instead
of making time requests, the second board will be sending message
requests to the first board, which will return its ADC value.

These changes are sufficient for the second board to poll the first, obtaining its
ADC value every second. The UDP message handler also been modified to
handle the new incoming messages:

IF rx_srce_port = MSGPORT
 HRSOUT "message resp " 'Incoming message response
 idx = UDP_DATA_START 'Display on 2nd LCD line
 b = LCD_LINE2: GOSUB LCD_cmd
 i = 0: REPEAT '16 chars on LCD
 b = rxbuff[idx]
 IF idx<rxlen AND b>0 THEN 'Maybe fewer in message
 PRINT b
 INC idx
 ELSE
 PRINT " "
 ENDIF
 INC i
 UNTIL I > 15
ENDIF

This is very similar to the other UDP message handler, in that the incoming text
(e.g. “ADC=1.23V”) is copied to the second line of the display.

Rotating the upper potentiometer on the first board will change the voltage
value displayed on the second board, demonstrating that the two boards have
been linked via the network.

 Page 21 © Iosoft Ltd. 2003

6. The DATAGRAM utility

Figure 5: The Iosoft DATAGRAM utility

The Iosoft Datagram utility can perform the following server functions:

o An ‘echo’ server on UDP port 7. All incoming data is echoed back to the
sender.

o An RFC 867 ‘daytime’ server on UDP port 13. The incoming data is
discarded, and a date & time string is returned to the sender.

o An RFC 868 ‘time’ server on UDP port 37. The incoming data is
discarded, and the number of seconds since 1st Jan 1900 is returned to
the sender as an unsigned 32-bit value.

It also has the following UDP client capabilities:

o Sending UDP text or hex strings to a server.

o Receiving UDP text or hex strings in response.

A simple way of testing these capabilities is to employ the ‘loopback’ IP address
127.0.0.1; for example, enable the daytime server then send a blank (null)
message to 127.0.0.1 port 13

 Page 22 © Iosoft Ltd. 2003

Figure 6: Using the loopback address

Instead of the message going out on the network, it is looped back internally to
the datagram utility, which responds as if it had received a normal network
request, so returns a date and time string, which is displayed as if it had been
received over the network.

Similarly, if you enable the echo server, then send an arbitrary string of
characters to 127.0.0.1 port 7, then that string will be echoed back, and
displayed as received UDP data.

If a normal (non-loopback) IP address is used, then the UDP message will be sent
out on the network, using the normal Windows TCP/IP settings.

JPB 23/1/03 --ends--

 Page 23 © Iosoft Ltd. 2003

	Iosoft Ltd.�PICBASIC PLUS networking�PB_UDP Software Manual
	Introduction
	Development environment
	Development environment

	Using the software
	Getting started
	Programming the PICmicro
	PC time server: the DATAGRAM utility
	Target board server: message handler
	Ping diagnostics
	Using a gateway

	Structure of the software
	Definitions
	IP ADDRESS
	MAC ADDRESS

	Hardware initialisation
	TIME DELAY
	TASK BLOCKS

	Transmission
	DATA VARIABLES
	GATEWAY
	LENGTH CALCULATION
	CLIENT/SERVER REMOTE/RESPONSE ADDRESSES
	COPYING SOURCE DATA
	UDP MESSAGE RESPONSE

	Reception
	ARP HANDLER
	IP HANDLER
	ICMP HANDLER
	UDP HANDLER
	UDP TIME HANDLER
	UDP MESSAGE HANDLER

	Communication between target systems
	The DATAGRAM utility

