
�������
��	���
������

AN168
The I2C serial bus: theory and
practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx
µC families

Author: Carl Fenger 1988 Dec

INTEGRATED CIRCUITS

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using
Philips low-voltage PCF84Cxx and PCD33xx µC families

21988 Dec Rev. 1 1993 Dec

Author: Carl Fenger

INTRODUCTION
The I2C (Inter-IC) bus has become a popular serial bus architecture
which needs to be understood for proper implementation. On the
hardware level, I2C is a collection of microcomputers with integrated
I2C port (Philips PCD33xx, PCF84Cxxx, and many of their 80(C)51
family derivatives, plus µCs from several other manufacturers), and
a peripheral set (LCD/LED drivers, RAM, ROM, E2PROM,
Clock/Calendars, I/O, A/D, D/A, IR transcoders, frequency
synthesizers, audio processors, telephony ICs and various tuning
ICs for TV/radio). These devices all communicate serially over a
two-wire bus, serial data (SDA) and serial clock (SCL). The I2C
structure is optimized for hardwire simplicity. Parallel address and
data buses inherent in conventional systems are replaced by a
serial protocol that transmits both address and bidirectional data
over a 2-wire bus. This means that interconnecting wires are
reduced to a minimum; only VDD, ground, and the two-wire bus are
required to link the controller(s) with the peripherals or other
controllers. This results in reduced IC size, reduced pin count, and
simpler interconnections. An I2C system is therefore smaller,
simpler, and cheaper to implement than its parallel counterpart.

The data rate of the I2C bus (100K bits/sec, with 400K bit/sec
devices in development) makes it suited for systems that do not
require high speed. The I2C architecture is thus well-suited for use
in applications such as handheld products (telephone handsets,
cordless phones), television and other consumer electronics,
appliances, medical instruments, general instrumentation panels,
and any application involving human interface. Typically an I2C
system would be used in a control function where digitally
controllable elements are adjusted and monitored by a human user
via a central processor.

The I2C bus is an innovative hardware interface which provides the
software designer the flexibility to create a truly multi-master
environment. Built into the serial interface of the controllers are
status registers which monitor all possible bus conditions: bus
free/busy, bus contention, slave acknowledgement, and bus
interference. Thus an I2C system might include several controllers
on the same bus each with the ability to asynchronously
communicate with peripherals or each other. This provision also
provides expandability for future add-on controllers. (The I2C
system is also ideal for use in environments where the bus is
subject to noise. Distorted transmissions are immediately detected
by the hardware and the information presented to the software.) A
slave acknowledgement on every byte also facilitates data integrity.

An I2C system can be as simple or sophisticated as the operating
environment demands. Whether in a single master or multi-master
system, noisy or ‘safe’, correct system operation can be insured
under software control.

CONTROLLERS
The Philips family of I2C microcontrollers and microprocessors has
grown to encompass mainly devices based on the Intel 8048, 8051,
and Motorola 68000 cores. These devices have various degrees of
I2C port implementaion which dictates to which degree the I2C
protocol generation and data transmission/reception is executed in
hardware vs software. Indeed, any standard microcontroller is
capable of implementing I2C on a normal open-drain port, in which
case the protocol is 100% software generated (‘bit banging’). The
I2C port itself, even when fully hardware implemented, requires only
a handful of instructions to control and monitor the I2C bus. Hence,
the I2C port can be considered a core-independent interface.

Two families of Philips microcontrollers which include members fully
implementing the I2C interface on-chip are the PCF84Cxxx and
PCD33xx families of 8-bit low-voltage microcontrollers. These
micros are optimized for low-power, low-voltage (VDD min. = 1.8V)
and are hence ideal for battery powered, cordless products. These
families implement the 8048 instruction set, with a few instructions
deleted and replaced by I2C-port

Table 1. PCF84Cxxx Family Instructions not in the
Instruction Set

Serial I/O Register Control Conditional
Branch

MOVA,Sn DEC@Rr SEL MB2 JNTF addr

MOV Sn,A DJNZ@Rr,addr SEL MB3

MOV Sn,#data

EN SI

DIS SI

Table 2.PCF84Cxxx Instructions not in the 8400
Family Instruction Set

Data Moves Flags Branch Control

MOVXA,@R CLRF0 *JNI addr ENTOCLK

MOVXA,@R,A CPLF0 JF0 addr

MOVP3A,@A CLRF1 JF1 addr

MOVDA,P CPLF1

NALDP,A

ORLDP,A

*replaced by JT0, JNT0

specific instructions. The I2C instructions involve moving data to and
from the S0, S1, and S2 serial I/O control registers. The block
diagram of the I2C interface is shown in Figure 1.

SERIAL I/O INTERFACE
A block diagram of the Serial Input/Output (SIO) of the PCF84Cxxx
family is shown in Figure 1. The clock line of the serial bus (SCL)
has exclusive use of Pin 3, while the Serial Data (SDA) line shares
Pin 2 with parallel I/O signal P2.3 of port 2. Consequently, only
three I/O lines are available for port 2 when the I2C interface is
enabled.

Communication between the CPU and I2C interface takes place via
the internal bus of the microcomputer and the Serial I/O Interrupt
Request line (or via polling of status bits). Four registers are used to
store data and information controlling the operation of the interface:

• data shift register S0

• address register S0’

• status register S1

• clock control register S2

THE I2C BUS INTERFACE SERIAL CONTROL
REGISTERS S0, S1

All serial I2C transfers occur between the accumulator and register
S0. The I2C hardware takes care of clocking out/in the data, and
receiving/generating an acknowledge. In addition, the state of the
I2C bus is controlled and monitored via the bus control register S1.
A definition of the registers is as follows:

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 3

DIS SI

SERIAL
DATA I/O
or I/O P23
of port 2
(Pin 2)

INITIALIZE
(Pin 17)

RESET

ES0

DIG. FILTER
DATA

DATA
CONTROL

DATA

DATA IN

OUT S0

BUS
BUSY
LOGIC

ARB.
LOGIC

DIG FILTER
CLOCK

SCLK
(Pin 3)

BIT 7

S2

CLOCK
MULTIPLEXER

ACK ASC

PROGR. COUNTER

CLOCK
SYNC
LOGIC

&
CONTROL

BIT 0
WR S2

S1

BIT 7 BIT 0

STATUS
REGISTER

INTERNAL CLOCK

WR S1

RD S1
MST TRX BB PIN

ES0

AL

BC2

AAS

BC1

ADO

BCO

LRB

INTERNAL MICROCOMPUTER BUS

LRB AAS AD0 PIN

SIO
INTERRUPT

LOGIC

CLOCK CONTROL
REGISTER

SERIAL CLOCK PULSE GENERATOR

DATA SHIFT REGISTER

ADDRESS COMPARATOR

ADDRESS BACKUP LATCHES ALS

BIT 7 BIT 0

EN SI

INT REQ

S0‘

WR S0‘

WR S0

RD S0

WR ADDR. LATCHES

8400
INTERRUPT

LOGIC

BB AL

SL00947

Figure 1. Block Diagram of the PCF84Cxxx I 2C Interface
Data Shift Register S0 – S0 is the data shift register used to
perform the conversion between serial and parallel data format. All
transmissions or receptions take place through register S0 MSB
first. All I2C bus receptions or transmissions involve moving data
to/from the accumulator from/to S0.

Address Register S0’ – In multi-master systems, this register is
loaded with a controller’s slave address. When activated, (ALS = 0),
the hardware will recognize when it is being addressed by setting
the AAS (Addressed As Slave) flag. This provision allows a master
to be treated as a slave by other masters on the bus.
Status Register S1 – S1 is the bus status register. To control the
SIO interface, information is written to the register. The lower 4 bits
in S1 serve dual purposes; when written to, the control bits ES0,
BC2, BC1, BC0 are programmed (Enable Serial Output and a 3-bit
counter which indicates the current number of bits left in a serial
transfer). When reading the lower four bits, we obtain the status
information AL, AAS, AD0, LRB (Arbitration Lost, Addressed As
Slave, Address Zero (the general call has been received), the Last
Received Bit (usually the acknowledge bit)). The upper 4 bits are
the MST, TRX, BB and PIN control bits (Master, Transmitter, Bus
Busy, and Pending Interrupt Not). These bits define what role the
controller has at any particular time. The values of the master and
transmitter bits define the controller as either a master or slave (a
master initiates a transfer and generates the serial clock; a slave

does not), and as a transmitter or receiver. Bus Busy keeps track of
whether the bus is free or not, and is set and reset by the ‘Start’ and
‘Stop’ conditions which will be defined. Pending Interrupt Not is
reset after the completion of a byte transfer + acknowledge, and can
be polled to indicate when a serial transfer has been completed. An
alternative to polling the PIN bit is to enable the serial interrupt; upon
completion of a byte transfer, an interrupt will vector program control
to location 07H.

CLOCK CONTROL REGISTER (S2)
The clock control register of the PCF84Cxxx family defines the
frequency of fSCLK as the microcontroller clock frequency divided by
an integer (Table 2). It also defines ASC (asymmetrical clock) and
ACK (acknowledge).

If ASC=1, the generated SCLK has a duty cycle of about 75%. The
asymmetrical clock limites I2C bus transmission rate to below
55kHz. Divisors 39, 45 and 51 are not allowed if ASC=1. However,
an SCLK duty cycle of about 50% results if ASC=0. This permits
I2C bus transmission rates of up to 100kHz. All divisors of NO TAG
are available. Therefore, it is recommended to select ASC=0.

For the normal I2C bus protocol, ACK must be set. After each byte
transfer, an extra SCLK pulse is generated during which the receiver
may acknowledge reception. If ACK

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 4

3. fSCLK as defined by clock control register S2 of the PCF84Cxxx µC family
CC4 to CC0 Divisor of f XTAL (DF) fSCLK (kHz) at f XTAL = 3.58MHz fSCLK (kHz) at f XTAL = 10MHz fSCLK (kHz) at f XTAL = 16MHz

H‘00’ forbidden — — —

H‘01’ 39 91.8 *256.4 *410.3

H‘02’ 45 79.5 *222.2 *355.6

H‘03’ 51 70.2 *196.1 *313.7

H‘04’ 63 56.8 *158.7 *254.0

H‘05’ 75 47.7 *133.3 *213.3

H‘06’ 87 41.1 *114.9 *183.9

H’07’ 99 36.2 *101.0 *161.6

H‘08’ 123 29.1 81.3 *130.1

H‘09’ 147 24.4 68.0 *108.8

H‘0A’ 171 20.9 58.5 93.6

H‘0B’ 195 18.4 51.3 82.1

H‘0C’ 243 14.7 41.2 65.8

H‘0D’ 291 12.3 34.4 55.0

H‘0E’ 339 10.6 29.5 47.2

H’0F’ 387 9.2 25.8 41.3

H‘10’ 483 7.4 20.7 33.1

H‘11’ 579 6.2 17.3 27.6

H‘12’ 675 5.3 14.8 23.7

H‘13’ 771 4.6 13.0 20.8

H‘14’ 963 3.7 10.4 16.6

H‘15’ 1155 3.1 8.7 13.9

H‘16’ 1347 2.7 7.4 11.9

H‘17’ 1539 2.3 6.5 10.4

H‘18’ 1923 1.9 5.2 8.3

H‘19’ 2307 1.6 4.3 6.9

H‘1A’ 2691 1.3 3.7 5.9

H‘1B’ 3075 1.2 3.3 5.2

H‘1C’ 3843 0.9 2.6 4.2

H‘1D’ 4611 0.8 2.2 3.5

H‘1E’ 5379 0.7 1.9 3.0

H‘1F’ 6147 0.6 1.6 2.6

*Not permitted in non-FAST I2C systems; maximum specified fSCLK = 100kHz.

is zero, no acknowledge is generated. This mode is temporarily
used when a master/receiver refuses the acknowledgement in order
to signal an end of transmission to the slave transmitter (see the
section on the bit counter bits BC0 to BC2 in the status register S1).
The clock control register S2 is write-only. It can be written by MOV
S2,A and MOV S2,#data.

These speeds represent the frequency of the serial clock bursts and
do not reflect the speed of the processor’s main clock (i.e., it
controls the bus speed and has no effect on the CPU’s execution
speed).

BUS ARBITRATION
Due to the wire-AND configuration of the I2C bus, and the
self-synchronizing clock circuitry of I2C masters, controllers with
varying clock speeds can access the bus without clock contention.
During arbitration, the resultant clock on the bus will have a low
period equal to the longest of the low periods; the high period will
equal the shortest of the high periods. Similarly, when two masters
attempt to drive the data line simultaneously, the data is ‘ANDed’,
the master generating a low while the other is driving a high will win

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 5

arbitration. The resultant bus level will be low, and the loser will
withdraw from the bus and set its ‘Arbitration Lost’ flag (S1 bit 3).

The losing Master is now configured as a slave which could be
addressed during this very same cycle. These provisions allow for a
number of microcomputers to exist on the same bus. With properly
written subroutines, software for any one of the controllers may
regard other masters as transparent.

PCF84Cxxx

SCL

SDA

PCF8574 PCF8570

I/O EXPANDOR
ADDR = ’40’H

RAM (256-BYTE)
ADDR = ’A0’H

A0

A1

A2

A0

A1

A2

VCC

SL00948

Figure 2. Schematic for Assembly Examples

I2C PROTOCOL AND ASSEMBLY LANGUAGE
EXAMPLES
I2C data transfers follow a well-defined protocol. A transfer always
takes place between a master and a slave. Currently a
microcomputer can be master or slave, while the ‘CLIPS’
peripherals are always slaves. In a ‘bus-free’ condition, both SCL
and SDA lines are kept logical high be external pull-up resistors. All
bus transfers are bounded by a ‘Start’ and a ‘Stop’ condition. A
‘Start’ condition is defined as the SDA line making a high-to-low
transition while the SCL line is high . At this point, the internal
hardware on all slaves are activated and are prepared to clock-in
the next 8 bits and interpret it as a 7-bit address and a R/W control
bit (MSB first). All slaves have an internal address (most have 2–3
programmable address bits) which is then compared with the
received address. The slave that recodnized its address will
respond by pulling the data line low during a ninth clock generated
by the master (all I2C byte transfers require the master to generate 8
clock pulses plus a ninth acknowledge-related clock pulse). The
slave-acknowledge will be registered by the master as a ‘0’
appearing in the LRB (Last Received Bit) position of the S1 serial
I/O status register. If this bit is high after a transfer attempt, this
indicates that a slave did not acknowledge and that the transfer
should be repeated.

After the desired slave has acknowledged its address, it is ready to
either send or receive data in response to the master’s driving clock.

All other slaves have withdrawn from the bus. In addition, for
multi-master systems, the start condition has set the ‘Bus Busy’ bit
of the serial I/O register S1 on all masters on the bus. This gives a
software indication to other master that the bus is in use and to wait
until the bus is free before attempting an access.

There are two types of I2C peripherals that now must be defined:
there are those with only a chip address such as the I/O expandor,
PCF8574, and those with a chip address plus an internal address
such as the static RAM, PCF8570. Thus after sending a start
condition, address, and R/W bit, we must take into account what
type of slave is being addressed. In the case of a slave with only a
chip address, we have already indicated its address and data
direction (R/W) and are therefore ready to send or receive data.
This is performed by the master generating bursts of 9 clock pulses
for each byte that is sent or received. The transaction for writing
one byte to a slave with a chip address only is shown in Figure 3.

In this transfer, all bus activity is invoked by writing the appropriate
control byte to the serial I/O control register S1, and by moving data
to/from the serial bus buffer register S0. Coming from a known state
(MOV S1, #18H-Slave, Receiver, Bus not Busy) we first load the
serial I/O buffer S0 with the desired slave’s address (MOV S0,
#40H). To transmit this preceded by a start condition, we must first
examine the control register S1, which, after initialization, looks like
this:

MAS-

0 0 0 1 1 0 0 0
TER TRANS

BUS
BUSY PIN ES0 BC2 BC1 BC0

To transmit to a slave, the Master, Transmitter, Bus Busy, PIN
(Pending Interrupt Not), and ESO (Enable Serial Output) must be
set to a 1. This results in an ‘F8H’ being written to S1. This word
defines the controller as a Master Transmitter, invokes the transfer
by setting the ‘Bus Busy’ bit, clears the Pending Interrupt Not (an
active low flag indicating the completion of a compete byte transfer),
and activates the serial output logic by setting the Enable Serial
Output (ESO) bit.

BIT COUNTER S12, S11, S10
BC2, BC1 and BC0 comprise a bit-counter which indicates to the
logic how long the word is to be clocked out over the serial data line.
By setting this to a 000H, we are telling
it to produce 9 clocks (8 bits plus an acknowledge clock) for this
transfer. The bit counter will then count off each bit as it is
transmitted. The bit counter possibilities are shown in NO TAG.

Thus, the bit counter keeps track of the number of clock pulses
remaining in a serial transfer. Additionally, there is a
not-acknowledge mode (controlled through bit 6 of clock control
register S2) which inhibits the acknowledge clock pulse, allowing the
possibility of straight serial transfer. We may thus define the word
size for a serial transfer (by pre-loading BC2, BC1, BC0 with the
appropriate control number), with or without an acknowledge-related
clock pulse being generated. This makes the controller able to
transmit serial data to most any serial device regardless of its
protocol (e.g., C-bus devices).

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 6

MOV S1, #18H

MOV S0, #40H

MOV S1, #0F8H

CALL ACKWT:

MOV A, #2AH

MOV S0,A

CALL ACKWT:

MOV S1, #0D8H

SDA

SCL

START
CONDITION

ADDRESS ’40H’ DATA ’2AH’

STOP
CONDITION

ACKNOWLEDGE

RD/WR

:Initialize S1-Slave, Receiver, Bus not

:Busy, Enable Serial I/O

:Preload S0 with Slave’s address &

:R/W bit

:Invoke start condition & slave address

:(Master, Transmitter, Bus Busy, Enable

:Serial I/O, Bit Counter = 000)

:Check for transmission complete, ack

:received, no arbitration, etc.

:Get a data byte

:Transmit data byte

:Wait for transmission complete again

:Generate Stop condition

:(Master, Transmitter, Bus not Busy)
SL00949

Figure 3.
Table 4.Binary Numbers in Bit-Count Locations

BC2, BC1 and BC0

BC2 BC1 BC0 Bits/Byte
without ACK

Bits/Byte with
ACK

0 0 1 1 2

0 1 0 2 3

0 1 1 3 4

1 0 0 4 5

1 0 1 5 6

1 1 0 6 7

1 1 1 7 8

0 0 0 8 9

CHECKING FOR SLAVE ACKNOWLEDGE
After a ‘Start’ condition and address have been issued, the selected
slave will have recognized and acknowledged its address by pulling
the data line low during the ninth clock pulse. During this period, the
software (which runs on the processor’s main clock) will have been
either waiting for the transfer to be completed by polling the PIN bit
in S1 which goes low on completion of a transfer/reception (whose
length is defined by the pre-loaded Bit-counter value), or by the
hardware in Serial Interrupt mode. The serial interrupt (vectored to
07H) is enabled via the EN SI (enable serial interrupt) instruction.

At the point when PIN goes low (or the serial interrupt is received)
the 9-bit transfer has been completed. The acknowledgement bit
will now be in the LRB position of register S1, and may be checked
in the routine ‘ACKWT’ (Wait for Acknowledge) as shown in Figure
 4.

This routine must go one step further in multi-master systems; the
possibility of an Arbitration Lost situation may occur if other masters
are present on the bus. This condition may be detected by checking
the ‘AL’ bit (bit 3). If arbitration has been lost, provisions for
re-attempting the transmission should be taken. If arbitration is lost,
there is the possibility that the controller is being addressed as a
Slave. If this condition is to be recognized, we must test on the
‘AAS’ bit (bit 2). A ‘General Call’ address (00H) has also been
defined as an ‘all-call’ address for all slaves; bit 1, AD0, must be
tested if this feature is to be recognized by a Master.

After a successful address transfer/acknowledge, the slave is ready
to be sent its data. The instruction MOV S0,A will now automatically
send the contents of the accumulator out on the bus. After calling
the ACKWT routine once more, we are ready to terminate the
transfer. The Stop condition is created by the instruction ‘MOV S1,
#0D8H’. This re-sets the bus-busy bit, which tells the hardware to
generate a Stop – the data line makes a low-to-high transition while
the clock remains high. All bus-busy flags on other masters on the
bus are reset by this signal.

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 7

The transfer is now complete – PCF8574 I/O Expandor will transfer
the serial data stream to its 8 output pins and latch them until further
update.

ACKWT: MOV A,S1 ;Get bus status word
;from S1.

JB4 ACKWT ;Poll the PIN bit
;until it goes low
;indicating transfer
;completed

JBO BUSERR ;Jump to BUSERR
;routine if acknowledge
;not received.

RET ;transfer complete,
;acknowledge received – return.

SL00950

Figure 4.

MASTER READS ONE BYTE FROM SLAVE
A read operation is a similar process; the address, however, will be
41H, the LSB indicating to the I/O device that a read is to be
performed. During the data portion of a read, the I/O port 8574 will
transmit the contents of its latches in response to the clock
generated by the master. The Master/Receiver in this case
generates a low-level acknowledge on reception of each byte (a
‘positive’ acknowledge). Upon completion of a read, the master
must generate a ‘negative’ acknowledge during the ninth clock to
indicate to the slaves that the read operation is finished. This is
necessary because an arbitrary number of bytes may be read within
the same transfer. A negative acknowledge consists of a high signal
on the data line during the ninth clock of the last byte to be read. To
accomplish this, the master must leave the acknowledge mode just
before the final byte, read the final byte (producing only 8 clock
pulses), program the bit-counter with 001 (preparing for a one-bit
negative acknowledge pulse), and simply move the contents of S0
to the accumulator. This final instruction accomplishes two things
simultaneously: it transfers the final byte to the accumulator and
produces one clock pulse on the SCL line. The structure of the
serial I/O register S0 is such that a read from it causes a
double-buffered transfer from the I2C bus to S0, while the original
contents of S0 are transferred to the accumulator. Because the
number of clocks produced on the bus is determined by the control
number in the Bit Counter, by presetting it to 001, only one
clock is generated. At this point in time the slave is still waiting for
an acknowledge; the bus is high due to the pull-up, as single clock
pulse in this condition is interpreted as a ‘negative’ acknowledge.
The slave has now been informed that reading is completed, a Stop
condition is now generated as before. The read process (one byte
from a slave with only a chip address) is shown in Figure 5.

These examples apply to a slave with a chip address – more than
one byte can be written/read within the same transfer; however, this

option is more applicable to I2C devices with sub-addresses such as
the static RAMs or Clock/Calendar. In the case of these types of
devices, a slightly different protocol is used. The RAM, for example,
requires a chip address and an internal memory location before it
can deliver or accept a byte of information. During a write operation,
this is done by simply writing the secondary address right after the
chip address – the peripheral is designed to interpret the second
byte as an internal address. In the case of a Read operation, the
slave peripheral must send data back to the Master after it has been
addressed and sub-addressed. To accomplish this, first the Start,
Address, and Sub-address is transmitted. Then we have repeated
start condition to reverse the direction of the data transfer, followed
by the chip address and RD, than a data string (w/acknowledges).
This repeated Start does not affect other peripherals – they have
been deactivated and will not reactivate until a Stop condition is
detected. I2C peripherals are equipped with auto-incrementing logic
which will automatically transmit or receive data in consecutive
(increasing) locations. For example, to read 3 consecutive bytes to
PCF8571 RAM locations 00, 01 and 02, we use the following format
as shown in Figure 7.

This routine reads the contents of location 00, 01 and 02 of the
PCF8570 256-byte RAM and puts them in registers R0, R1, and R2.
The auto-incrementing feature allows the programmer to indicate
only a starting location, then read an arbitrary block of consecutive
memory addresses. The WAIT 1 loop is required to poll for the
completion of the final byte because the ACKWT routine will not
recognize the negative acknowledge as a valid condition.

BUS ERROR CONDITIONS: ACKNOWLEDGE NOT
RECEIVED
In the above routines, should a slave fail to acknowledge, the
condition is detected during the ‘ACKWT’ routine. The occurrence
may indicate one of two conditions: the slave has failed to operate,
or a bus disturbance has occurred. The software response to either
event is dependent on the system application. In either case, the
‘BusErr’ routine should reinitialize the bus by issuing a ‘Stop’
condition. Provision may then be taken to repeat the transfer an
arbitrary number of times. Should the symptom persist, either an
error condition will be entered, or a backup device can be activated.

These sample routines represent single-master systems. A more
detailed analysis of multi-master/noisy environment systems are
treated in other application notes. For more complex systems, the
80C51 derivative microcontrollers with I2C interface are
recommended. Philips 80C51 micros implement a slightly modified
I2C interface and conventions, but operate in a similar fashion to the
micros described here. (See Philips Semiconductors AN430, “The
83/87C51/752 in a multi-master I2C environment”.)

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 8

‘NEGATIVE ACKNOWLEDGE’

MOV S1, #18H

MOV S0, #40H

MOV S1, #0F8H

CALL ACKWT:

MOV S2, #01H

MOV S0,A

MOV S1, #0D8H

SDA

SCL

START
CONDITION

ADDRESS ’40H’ DATA

STOP
CONDITION

ACKNOWLEDGE

RD

:Initialize serial I/O control

:register

:Preload serial register S0

:with slave address and RD

:control bit

:Send address to bus along with

:start condition

:Wait for acknowledge (as

:before)

:Leave acknowledge mode

:Read data from slave to S0

:Test for byte received by

:testing S1 PIN bit
:Wait until PIN received
:Set Bit Counter to 1 and

:become a receiver (A9 =

:Mst, Rec, Bus Busy, Bit Counter =

:0001)

:Move data to accumulator and

:clock out a negative

:acknowledge
:Generate Stop Condition

MOV S0,A

MOV S1, #0A9H
JB4 Wait

MOV A,S1WAIT:

SL00951

Figure 5.

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 9

PIN
&

ACK
RECEIVED

?

INITIALIZE
BUS

STATUS

LOAD S0 WITH SLAVE
ADDRESS AND RD/WR BIT

START CONDITION
AND TRANSMIT ADDRESS

RETURN

GENERATE
STOP CONDITION

SEND/RECEIVE
DATA BYTE

YES

NO

NO

YES

PIN
&

ACK
RECEIVED

?

GENERATE
STOP

CONDITION

COMMUNICATION WITH PERIPHERAL REQUIRED

SL00952

Figure 6. Flowchart for Reading/Writing One Byte to an I 2C
Peripheral; Single-Master, Single-Address Slave

MOV S1, #18H :Initialize bus-status register

:Master, Transmitter,

:Bus-not-Busy, Enable SIO,

MOV S0, #0A0H :Load S0 with RAM’s chip

:address

MOV S1, #0F8H :Start cond. and transmit

:address

CALL ACKWT :Wait until address received

MOV A, #00H :Set up for transmitting RAM

:location address

MOV S0,A :Transmit first RAM address

CALL ACKWT :Wait

MOV S1, #18H :Set up for a repeated Start

:condition

MOV A, #0A1H :Get RAM chip address & RD bit

MOV SO, A :Send out to bus

MOV S1, #0F8H :preceded by repeated Start

CALL ACKWT :Wait

MOV A,S0 :First data byte to S0

CALL ACKWT :Wait

MOV A,S0 :Second data byte to S0

:And First data byte to Acc.

CALL ACKWT :Wait

MOV R0,A :Save first byte in R0

MOV A,S0 :Third data byte to S0

:and second data byte to Acc.

CALL ACKWT :Wait

MOV R1,A :Save second data byte

:in R1

MOV S2, #01H :Leave ack. mode

:Bit Counter=001 for neg ack.

MOV A,S0 :Third data byte to acc

:negative ack. generated

MOV R2,A :Save third data byte in R2

MOV A,S1 :Get bus status

JB4 WAIT1 :Wait until transfer complete

MOV S1, #0D8H :Stop condition

MOV S2, #41H :Restore acknowledge mode

WAIT1:

SL00953

Figure 7.

Philips Semiconductors Application note

AN168The I2C serial bus: theory and practical consideration using Philips
low-voltage PCF84Cxx and PCD33xx µC families

1988 Dec 10

ASSIGNED I2C BUS ADDRESSES

I2C ADDRESS

PART NUMBER FUNCTION A6 A5 A4 A3 A2 A1 A0

–– General call address 0 0 0 0 0 0 0
–– Reserved addresses 0 0 0 0 X X X

PCD3311/12 Tone generator DTMF/modem/musical 0 1 0 0 1 0 A
PCF8200 Voice synthesizer (male or female) 0 0 1 0 0 0 0
PCF8566 96-segment LCD driver 1:1–1:4 Mux 0 1 1 1 1 1 A
PCF8568 LCD row driver for dot matrix displays 0 1 1 1 1 0 A
PCF8569 Column driver for dot matrix displays 0 1 1 1 1 0 A
PCF8570/71 256 × 8, 128 × 8 static RAM 1 0 1 0 A A A
PCF8570C 256 × 8 static RAM 1 0 1 1 A A A
PCF8573 Clock/calendar 1 1 0 1 0 A A
PCF8574 I2C bus to 8-bit bus converter 0 1 0 0 A A A
PCF8574A I2C bus to 8-bit bus converter 0 1 1 1 A A A
PCF8576 160-segment LCD driver 1:1–1:4 Mux 0 1 1 1 0 0 A
PCF8577 64-segment LCD driver 1:1–1:2 Mux 0 1 1 1 0 1 0
PCF8577A 64-segment LCD driver 1:1–1:2 Mux 0 1 1 1 0 1 1
PCF8578 Row/column LCD dot-matrix driver 0 1 1 1 1 0 A
PCF8579 Row/column LCD dot-matrix driver 0 1 1 1 1 0 A
PCF8581 128-byte EEPROM 1 0 1 0 A A A
PCF8582 256 × 8 EEPROM 1 0 1 0 A A A
PCF8583 256 × 8 RAM with clock/calendar 1 0 1 0 0 0 A
PCF8591 4-channel, 8-bit A/D plus 8-bit D/A 1 0 0 1 A A A
PCF8594 512-byte EEPROM 1 0 1 0 A A A
SAA1064 4-digit LED driver 0 1 1 1 0 A A
SAA1136 PCM-Audio indent-word interface 0 0 1 1 1 1 0
SAA1300 5-bit high current driver 0 1 0 0 0 A A
SAA5243/45 Enhanced teletext circuit 0 0 1 0 0 0 1
SAA7191 S-VHS digital multistandard decoder “square pixel” 1 0 0 0 1 A 1
SAA7192 Digital color space converter 1 1 1 0 0 0 A
SAA7199 Digital encoder 1 0 1 1 0 0 0
SAA9020 Field memory controller 0 0 1 0 1 A A
SAA9051 Digital multi-standard TV decoder 1 0 0 0 1 0 1
SAA9068 (PIPCO) Picture-in-picture controller 0 0 1 0 0 1 A
SAB3035/36/37 (CITAC) CPU interface for tuning and control 1 1 0 0 0 A A
SAF1135 Data line decoder 0 0 1 0 0 A A
TDA4670 Picture signal improvement circuit 1 0 0 0 1 0 0
TDA4680 Video processor 1 0 0 0 1 0 0
TDA8421 Hi-fi stereo audio processor 1 0 0 0 0 0 A
TDA8425 Audio processor w/loudspeaker channel 1 0 0 0 0 0 1
TDA8440 Switch for CTV receivers 1 0 0 1 A A A
TDA8442 Interface for color decoders 1 0 0 0 1 0 0
TDA8443 YUV/RGB interface circuit 1 1 0 1 A A A
TDA8444 Octuple 6-bit DAC 0 1 0 0 A A A
TDA8461 PAL/NTSC color decoder 1 0 0 0 1 0 A
TEA6100 FM/IF and tuning interface 1 1 0 0 0 0 1
TEA6300/6310T Sound fader control circuit 1 0 0 0 0 0 0
TSA5511/12/14 PLL frequency synthesizer for TV 1 1 0 0 0 A A
TSA6057 Radio tuning PLL frequency synthesizer 1 1 0 0 0 1 A
UMF1009 Frequency synthesizer 1 1 0 0 0 A A

–– Reserved addresses 1 1 1 1 X X X

X = Don’t care.
A = Can be connected high or low by the user.

